You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/target/hppa/int_helper.c

287 lines
9.6 KiB
C

/*
* HPPA interrupt helper routines
*
* Copyright (c) 2017 Richard Henderson
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/main-loop.h"
#include "qemu/log.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "hw/core/cpu.h"
#include "hw/hppa/hppa_hardware.h"
static void eval_interrupt(HPPACPU *cpu)
{
CPUState *cs = CPU(cpu);
if (cpu->env.cr[CR_EIRR]) {
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
/* Each CPU has a word mapped into the GSC bus. Anything on the GSC bus
* can write to this word to raise an external interrupt on the target CPU.
* This includes the system controller (DINO) for regular devices, or
* another CPU for SMP interprocessor interrupts.
*/
static uint64_t io_eir_read(void *opaque, hwaddr addr, unsigned size)
{
HPPACPU *cpu = opaque;
/* ??? What does a read of this register over the GSC bus do? */
return cpu->env.cr[CR_EIRR];
}
static void io_eir_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
HPPACPU *cpu = opaque;
CPUHPPAState *env = &cpu->env;
int widthm1 = 31;
int le_bit;
/* The default PSW.W controls the width of EIRR. */
if (hppa_is_pa20(env) && env->cr[CR_PSW_DEFAULT] & PDC_PSW_WIDE_BIT) {
widthm1 = 63;
}
le_bit = ~data & widthm1;
env->cr[CR_EIRR] |= 1ull << le_bit;
eval_interrupt(cpu);
}
const MemoryRegionOps hppa_io_eir_ops = {
.read = io_eir_read,
.write = io_eir_write,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.impl.min_access_size = 4,
.impl.max_access_size = 4,
};
void hppa_cpu_alarm_timer(void *opaque)
{
/* Raise interrupt 0. */
io_eir_write(opaque, 0, 0, 4);
}
void HELPER(write_eirr)(CPUHPPAState *env, target_ulong val)
{
env->cr[CR_EIRR] &= ~val;
bql_lock();
eval_interrupt(env_archcpu(env));
bql_unlock();
}
void hppa_cpu_do_interrupt(CPUState *cs)
{
HPPACPU *cpu = HPPA_CPU(cs);
CPUHPPAState *env = &cpu->env;
int i = cs->exception_index;
uint64_t old_psw;
/* As documented in pa2.0 -- interruption handling. */
/* step 1 */
env->cr[CR_IPSW] = old_psw = cpu_hppa_get_psw(env);
/* step 2 -- Note PSW_W is masked out again for pa1.x */
cpu_hppa_put_psw(env,
(env->cr[CR_PSW_DEFAULT] & PDC_PSW_WIDE_BIT ? PSW_W : 0) |
(i == EXCP_HPMC ? PSW_M : 0));
/* step 3 */
/*
* IIASQ is the top bits of the virtual address, or zero if translation
* is disabled -- with PSW_W == 0, this will reduce to the space.
*/
if (old_psw & PSW_C) {
env->cr[CR_IIASQ] =
hppa_form_gva_psw(old_psw, env->iasq_f, env->iaoq_f) >> 32;
env->cr_back[0] =
hppa_form_gva_psw(old_psw, env->iasq_b, env->iaoq_b) >> 32;
} else {
env->cr[CR_IIASQ] = 0;
env->cr_back[0] = 0;
}
/* IIAOQ is the full offset for wide mode, or 32 bits for narrow mode. */
if (old_psw & PSW_W) {
env->cr[CR_IIAOQ] = env->iaoq_f;
env->cr_back[1] = env->iaoq_b;
} else {
env->cr[CR_IIAOQ] = (uint32_t)env->iaoq_f;
env->cr_back[1] = (uint32_t)env->iaoq_b;
}
if (old_psw & PSW_Q) {
/* step 5 */
/* ISR and IOR will be set elsewhere. */
switch (i) {
case EXCP_ILL:
case EXCP_BREAK:
case EXCP_OVERFLOW:
case EXCP_COND:
case EXCP_PRIV_REG:
case EXCP_PRIV_OPR:
/* IIR set via translate.c. */
break;
case EXCP_ASSIST:
case EXCP_DTLB_MISS:
case EXCP_NA_ITLB_MISS:
case EXCP_NA_DTLB_MISS:
case EXCP_DMAR:
case EXCP_DMPI:
case EXCP_UNALIGN:
case EXCP_DMP:
case EXCP_DMB:
case EXCP_TLB_DIRTY:
case EXCP_PAGE_REF:
case EXCP_ASSIST_EMU:
{
/* Avoid reading directly from the virtual address, lest we
raise another exception from some sort of TLB issue. */
/* ??? An alternate fool-proof method would be to store the
instruction data into the unwind info. That's probably
a bit too much in the way of extra storage required. */
vaddr vaddr = env->iaoq_f & -4;
hwaddr paddr = vaddr;
if (old_psw & PSW_C) {
int prot, t;
vaddr = hppa_form_gva_psw(old_psw, env->iasq_f, vaddr);
t = hppa_get_physical_address(env, vaddr, MMU_KERNEL_IDX,
0, 0, &paddr, &prot);
if (t >= 0) {
/* We can't re-load the instruction. */
env->cr[CR_IIR] = 0;
break;
}
}
env->cr[CR_IIR] = ldl_phys(cs->as, paddr);
}
break;
default:
/* Other exceptions do not set IIR. */
break;
}
/* step 6 */
env->shadow[0] = env->gr[1];
env->shadow[1] = env->gr[8];
env->shadow[2] = env->gr[9];
env->shadow[3] = env->gr[16];
env->shadow[4] = env->gr[17];
env->shadow[5] = env->gr[24];
env->shadow[6] = env->gr[25];
}
/* step 7 */
if (i == EXCP_TOC) {
env->iaoq_f = hppa_form_gva(env, 0, FIRMWARE_START);
/* help SeaBIOS and provide iaoq_b and iasq_back in shadow regs */
env->gr[24] = env->cr_back[0];
env->gr[25] = env->cr_back[1];
} else {
env->iaoq_f = hppa_form_gva(env, 0, env->cr[CR_IVA] + 32 * i);
}
env->iaoq_b = hppa_form_gva(env, 0, env->iaoq_f + 4);
env->iasq_f = 0;
env->iasq_b = 0;
if (qemu_loglevel_mask(CPU_LOG_INT)) {
static const char * const names[] = {
[EXCP_HPMC] = "high priority machine check",
[EXCP_POWER_FAIL] = "power fail interrupt",
[EXCP_RC] = "recovery counter trap",
[EXCP_EXT_INTERRUPT] = "external interrupt",
[EXCP_LPMC] = "low priority machine check",
[EXCP_ITLB_MISS] = "instruction tlb miss fault",
[EXCP_IMP] = "instruction memory protection trap",
[EXCP_ILL] = "illegal instruction trap",
[EXCP_BREAK] = "break instruction trap",
[EXCP_PRIV_OPR] = "privileged operation trap",
[EXCP_PRIV_REG] = "privileged register trap",
[EXCP_OVERFLOW] = "overflow trap",
[EXCP_COND] = "conditional trap",
[EXCP_ASSIST] = "assist exception trap",
[EXCP_DTLB_MISS] = "data tlb miss fault",
[EXCP_NA_ITLB_MISS] = "non-access instruction tlb miss",
[EXCP_NA_DTLB_MISS] = "non-access data tlb miss",
[EXCP_DMP] = "data memory protection trap",
[EXCP_DMB] = "data memory break trap",
[EXCP_TLB_DIRTY] = "tlb dirty bit trap",
[EXCP_PAGE_REF] = "page reference trap",
[EXCP_ASSIST_EMU] = "assist emulation trap",
[EXCP_HPT] = "high-privilege transfer trap",
[EXCP_LPT] = "low-privilege transfer trap",
[EXCP_TB] = "taken branch trap",
[EXCP_DMAR] = "data memory access rights trap",
[EXCP_DMPI] = "data memory protection id trap",
[EXCP_UNALIGN] = "unaligned data reference trap",
[EXCP_PER_INTERRUPT] = "performance monitor interrupt",
[EXCP_SYSCALL] = "syscall",
[EXCP_SYSCALL_LWS] = "syscall-lws",
[EXCP_TOC] = "TOC (transfer of control)",
};
FILE *logfile = qemu_log_trylock();
if (logfile) {
const char *name = NULL;
if (i >= 0 && i < ARRAY_SIZE(names)) {
name = names[i];
}
if (name) {
fprintf(logfile, "INT: cpu %d %s\n", cs->cpu_index, name);
} else {
fprintf(logfile, "INT: cpu %d unknown %d\n", cs->cpu_index, i);
}
hppa_cpu_dump_state(cs, logfile, 0);
qemu_log_unlock(logfile);
}
}
cs->exception_index = -1;
}
bool hppa_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
HPPACPU *cpu = HPPA_CPU(cs);
CPUHPPAState *env = &cpu->env;
if (interrupt_request & CPU_INTERRUPT_NMI) {
/* Raise TOC (NMI) interrupt */
cpu_reset_interrupt(cs, CPU_INTERRUPT_NMI);
cs->exception_index = EXCP_TOC;
hppa_cpu_do_interrupt(cs);
return true;
}
/* If interrupts are requested and enabled, raise them. */
if ((interrupt_request & CPU_INTERRUPT_HARD)
&& (env->psw & PSW_I)
&& (env->cr[CR_EIRR] & env->cr[CR_EIEM])) {
cs->exception_index = EXCP_EXT_INTERRUPT;
hppa_cpu_do_interrupt(cs);
return true;
}
return false;
}