You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/target/arm/tcg/vfp_helper.c

1369 lines
45 KiB
C

/*
* ARM VFP floating-point operations
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "internals.h"
#include "cpu-features.h"
#include "fpu/softfloat.h"
#include "qemu/log.h"
/*
* Set the float_status behaviour to match the Arm defaults:
* * tininess-before-rounding
* * 2-input NaN propagation prefers SNaN over QNaN, and then
* operand A over operand B (see FPProcessNaNs() pseudocode)
* * 3-input NaN propagation prefers SNaN over QNaN, and then
* operand C over A over B (see FPProcessNaNs3() pseudocode,
* but note that for QEMU muladd is a * b + c, whereas for
* the pseudocode function the arguments are in the order c, a, b.
* * 0 * Inf + NaN returns the default NaN if the input NaN is quiet,
* and the input NaN if it is signalling
* * Default NaN has sign bit clear, msb frac bit set
*/
void arm_set_default_fp_behaviours(float_status *s)
{
set_float_detect_tininess(float_tininess_before_rounding, s);
set_float_ftz_detection(float_ftz_before_rounding, s);
set_float_2nan_prop_rule(float_2nan_prop_s_ab, s);
set_float_3nan_prop_rule(float_3nan_prop_s_cab, s);
set_float_infzeronan_rule(float_infzeronan_dnan_if_qnan, s);
set_float_default_nan_pattern(0b01000000, s);
}
/*
* Set the float_status behaviour to match the FEAT_AFP
* FPCR.AH=1 requirements:
* * tininess-after-rounding
* * 2-input NaN propagation prefers the first NaN
* * 3-input NaN propagation prefers a over b over c
* * 0 * Inf + NaN always returns the input NaN and doesn't
* set Invalid for a QNaN
* * default NaN has sign bit set, msb frac bit set
*/
void arm_set_ah_fp_behaviours(float_status *s)
{
set_float_detect_tininess(float_tininess_after_rounding, s);
set_float_ftz_detection(float_ftz_after_rounding, s);
set_float_2nan_prop_rule(float_2nan_prop_ab, s);
set_float_3nan_prop_rule(float_3nan_prop_abc, s);
set_float_infzeronan_rule(float_infzeronan_dnan_never |
float_infzeronan_suppress_invalid, s);
set_float_default_nan_pattern(0b11000000, s);
}
/* Convert host exception flags to vfp form. */
static inline uint32_t vfp_exceptbits_from_host(int host_bits, bool ah)
{
uint32_t target_bits = 0;
if (host_bits & float_flag_invalid) {
target_bits |= FPSR_IOC;
}
if (host_bits & float_flag_divbyzero) {
target_bits |= FPSR_DZC;
}
if (host_bits & float_flag_overflow) {
target_bits |= FPSR_OFC;
}
if (host_bits & (float_flag_underflow | float_flag_output_denormal_flushed)) {
target_bits |= FPSR_UFC;
}
if (host_bits & float_flag_inexact) {
target_bits |= FPSR_IXC;
}
if (host_bits & float_flag_input_denormal_flushed) {
target_bits |= FPSR_IDC;
}
/*
* With FPCR.AH, IDC is set when an input denormal is used,
* and flushing an output denormal to zero sets both IXC and UFC.
*/
if (ah && (host_bits & float_flag_input_denormal_used)) {
target_bits |= FPSR_IDC;
}
if (ah && (host_bits & float_flag_output_denormal_flushed)) {
target_bits |= FPSR_IXC;
}
return target_bits;
}
uint32_t vfp_get_fpsr_from_host(CPUARMState *env)
{
uint32_t a32_flags = 0, a64_flags = 0;
a32_flags |= get_float_exception_flags(&env->vfp.fp_status[FPST_A32]);
a32_flags |= get_float_exception_flags(&env->vfp.fp_status[FPST_STD]);
/* FZ16 does not generate an input denormal exception. */
a32_flags |= (get_float_exception_flags(&env->vfp.fp_status[FPST_A32_F16])
& ~float_flag_input_denormal_flushed);
a32_flags |= (get_float_exception_flags(&env->vfp.fp_status[FPST_STD_F16])
& ~float_flag_input_denormal_flushed);
a64_flags |= get_float_exception_flags(&env->vfp.fp_status[FPST_A64]);
a64_flags |= (get_float_exception_flags(&env->vfp.fp_status[FPST_A64_F16])
& ~(float_flag_input_denormal_flushed | float_flag_input_denormal_used));
/*
* We do not merge in flags from FPST_AH or FPST_AH_F16, because
* they are used for insns that must not set the cumulative exception bits.
*/
/*
* Flushing an input denormal *only* because FPCR.FIZ == 1 does
* not set FPSR.IDC; if FPCR.FZ is also set then this takes
* precedence and IDC is set (see the FPUnpackBase pseudocode).
* So squash it unless (FPCR.AH == 0 && FPCR.FZ == 1).
* We only do this for the a64 flags because FIZ has no effect
* on AArch32 even if it is set.
*/
if ((env->vfp.fpcr & (FPCR_FZ | FPCR_AH)) != FPCR_FZ) {
a64_flags &= ~float_flag_input_denormal_flushed;
}
return vfp_exceptbits_from_host(a64_flags, env->vfp.fpcr & FPCR_AH) |
vfp_exceptbits_from_host(a32_flags, false);
}
void vfp_clear_float_status_exc_flags(CPUARMState *env)
{
/*
* Clear out all the exception-flag information in the float_status
* values. The caller should have arranged for env->vfp.fpsr to
* be the architecturally up-to-date exception flag information first.
*/
set_float_exception_flags(0, &env->vfp.fp_status[FPST_A32]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_A64]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_A32_F16]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_A64_F16]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_STD]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_STD_F16]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_AH]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_AH_F16]);
}
static void vfp_sync_and_clear_float_status_exc_flags(CPUARMState *env)
{
/*
* Synchronize any pending exception-flag information in the
* float_status values into env->vfp.fpsr, and then clear out
* the float_status data.
*/
env->vfp.fpsr |= vfp_get_fpsr_from_host(env);
vfp_clear_float_status_exc_flags(env);
}
void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val, uint32_t mask)
{
uint64_t changed = env->vfp.fpcr;
changed ^= val;
changed &= mask;
if (changed & (3 << 22)) {
int i = (val >> 22) & 3;
switch (i) {
case FPROUNDING_TIEEVEN:
i = float_round_nearest_even;
break;
case FPROUNDING_POSINF:
i = float_round_up;
break;
case FPROUNDING_NEGINF:
i = float_round_down;
break;
case FPROUNDING_ZERO:
i = float_round_to_zero;
break;
}
set_float_rounding_mode(i, &env->vfp.fp_status[FPST_A32]);
set_float_rounding_mode(i, &env->vfp.fp_status[FPST_A64]);
set_float_rounding_mode(i, &env->vfp.fp_status[FPST_A32_F16]);
set_float_rounding_mode(i, &env->vfp.fp_status[FPST_A64_F16]);
}
if (changed & FPCR_FZ16) {
bool ftz_enabled = val & FPCR_FZ16;
set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A32_F16]);
set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A64_F16]);
set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_STD_F16]);
set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_AH_F16]);
set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A32_F16]);
set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A64_F16]);
set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_STD_F16]);
set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_AH_F16]);
}
if (changed & FPCR_FZ) {
bool ftz_enabled = val & FPCR_FZ;
set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A32]);
set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A64]);
/* FIZ is A64 only so FZ always makes A32 code flush inputs to zero */
set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A32]);
}
if (changed & (FPCR_FZ | FPCR_AH | FPCR_FIZ)) {
/*
* A64: Flush denormalized inputs to zero if FPCR.FIZ = 1, or
* both FPCR.AH = 0 and FPCR.FZ = 1.
*/
bool fitz_enabled = (val & FPCR_FIZ) ||
(val & (FPCR_FZ | FPCR_AH)) == FPCR_FZ;
set_flush_inputs_to_zero(fitz_enabled, &env->vfp.fp_status[FPST_A64]);
}
if (changed & FPCR_DN) {
bool dnan_enabled = val & FPCR_DN;
set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_A32]);
set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_A64]);
set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_A32_F16]);
set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_A64_F16]);
set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_AH]);
set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_AH_F16]);
}
if (changed & FPCR_AH) {
bool ah_enabled = val & FPCR_AH;
if (ah_enabled) {
/* Change behaviours for A64 FP operations */
arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_A64]);
arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_A64_F16]);
} else {
arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A64]);
arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A64_F16]);
}
}
/*
* If any bits changed that we look at in vfp_get_fpsr_from_host(),
* we must sync the float_status flags into vfp.fpsr now (under the
* old regime) before we update vfp.fpcr.
*/
if (changed & (FPCR_FZ | FPCR_AH | FPCR_FIZ)) {
vfp_sync_and_clear_float_status_exc_flags(env);
}
}
/*
* VFP support. We follow the convention used for VFP instructions:
* Single precision routines have a "s" suffix, double precision a
* "d" suffix.
*/
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
#define VFP_BINOP(name) \
dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, float_status *fpst) \
{ \
return float16_ ## name(a, b, fpst); \
} \
float32 VFP_HELPER(name, s)(float32 a, float32 b, float_status *fpst) \
{ \
return float32_ ## name(a, b, fpst); \
} \
float64 VFP_HELPER(name, d)(float64 a, float64 b, float_status *fpst) \
{ \
return float64_ ## name(a, b, fpst); \
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
VFP_BINOP(min)
VFP_BINOP(max)
VFP_BINOP(minnum)
VFP_BINOP(maxnum)
#undef VFP_BINOP
dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, float_status *fpst)
{
return float16_sqrt(a, fpst);
}
float32 VFP_HELPER(sqrt, s)(float32 a, float_status *fpst)
{
return float32_sqrt(a, fpst);
}
float64 VFP_HELPER(sqrt, d)(float64 a, float_status *fpst)
{
return float64_sqrt(a, fpst);
}
static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp)
{
uint32_t flags;
switch (cmp) {
case float_relation_equal:
flags = 0x6;
break;
case float_relation_less:
flags = 0x8;
break;
case float_relation_greater:
flags = 0x2;
break;
case float_relation_unordered:
flags = 0x3;
break;
default:
g_assert_not_reached();
}
env->vfp.fpsr = deposit64(env->vfp.fpsr, 28, 4, flags); /* NZCV */
}
/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \
void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
{ \
softfloat_to_vfp_compare(env, \
FLOATTYPE ## _compare_quiet(a, b, &env->vfp.fp_status[FPST])); \
} \
void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
{ \
softfloat_to_vfp_compare(env, \
FLOATTYPE ## _compare(a, b, &env->vfp.fp_status[FPST])); \
}
DO_VFP_cmp(h, float16, dh_ctype_f16, FPST_A32_F16)
DO_VFP_cmp(s, float32, float32, FPST_A32)
DO_VFP_cmp(d, float64, float64, FPST_A32)
#undef DO_VFP_cmp
/* Integer to float and float to integer conversions */
#define CONV_ITOF(name, ftype, fsz, sign) \
ftype HELPER(name)(uint32_t x, float_status *fpst) \
{ \
return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
}
#define CONV_FTOI(name, ftype, fsz, sign, round) \
sign##int32_t HELPER(name)(ftype x, float_status *fpst) \
{ \
if (float##fsz##_is_any_nan(x)) { \
float_raise(float_flag_invalid, fpst); \
return 0; \
} \
return float##fsz##_to_##sign##int32##round(x, fpst); \
}
#define FLOAT_CONVS(name, p, ftype, fsz, sign) \
CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
FLOAT_CONVS(si, h, uint32_t, 16, )
FLOAT_CONVS(si, s, float32, 32, )
FLOAT_CONVS(si, d, float64, 64, )
FLOAT_CONVS(ui, h, uint32_t, 16, u)
FLOAT_CONVS(ui, s, float32, 32, u)
FLOAT_CONVS(ui, d, float64, 64, u)
#undef CONV_ITOF
#undef CONV_FTOI
#undef FLOAT_CONVS
/* floating point conversion */
float64 VFP_HELPER(fcvtd, s)(float32 x, float_status *status)
{
return float32_to_float64(x, status);
}
float32 VFP_HELPER(fcvts, d)(float64 x, float_status *status)
{
return float64_to_float32(x, status);
}
uint32_t HELPER(bfcvt)(float32 x, float_status *status)
{
return float32_to_bfloat16(x, status);
}
uint32_t HELPER(bfcvt_pair)(uint64_t pair, float_status *status)
{
bfloat16 lo = float32_to_bfloat16(extract64(pair, 0, 32), status);
bfloat16 hi = float32_to_bfloat16(extract64(pair, 32, 32), status);
return deposit32(lo, 16, 16, hi);
}
/*
* VFP3 fixed point conversion. The AArch32 versions of fix-to-float
* must always round-to-nearest; the AArch64 ones honour the FPSCR
* rounding mode. (For AArch32 Neon the standard-FPSCR is set to
* round-to-nearest so either helper will work.) AArch32 float-to-fix
* must round-to-zero.
*/
#define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
ftype HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
float_status *fpst) \
{ return itype##_to_##float##fsz##_scalbn(x, -shift, fpst); }
#define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \
ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t x, \
uint32_t shift, \
float_status *fpst) \
{ \
ftype ret; \
FloatRoundMode oldmode = fpst->float_rounding_mode; \
fpst->float_rounding_mode = float_round_nearest_even; \
ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpst); \
fpst->float_rounding_mode = oldmode; \
return ret; \
}
#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \
uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift, \
float_status *fpst) \
{ \
if (unlikely(float##fsz##_is_any_nan(x))) { \
float_raise(float_flag_invalid, fpst); \
return 0; \
} \
return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
}
#define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype) \
VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
float_round_to_zero, _round_to_zero) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
get_float_rounding_mode(fpst), )
#define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype) \
VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
get_float_rounding_mode(fpst), )
VFP_CONV_FIX(sh, d, 64, float64, 64, int16)
VFP_CONV_FIX(sl, d, 64, float64, 64, int32)
VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64)
VFP_CONV_FIX(uh, d, 64, float64, 64, uint16)
VFP_CONV_FIX(ul, d, 64, float64, 64, uint32)
VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64)
VFP_CONV_FIX(sh, s, 32, float32, 32, int16)
VFP_CONV_FIX(sl, s, 32, float32, 32, int32)
VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64)
VFP_CONV_FIX(uh, s, 32, float32, 32, uint16)
VFP_CONV_FIX(ul, s, 32, float32, 32, uint32)
VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64)
VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16)
VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32)
VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64)
VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16)
VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32)
VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64)
VFP_CONV_FLOAT_FIX_ROUND(sq, d, 64, float64, 64, int64,
float_round_to_zero, _round_to_zero)
VFP_CONV_FLOAT_FIX_ROUND(uq, d, 64, float64, 64, uint64,
float_round_to_zero, _round_to_zero)
#undef VFP_CONV_FIX
#undef VFP_CONV_FIX_FLOAT
#undef VFP_CONV_FLOAT_FIX_ROUND
#undef VFP_CONV_FIX_A64
/* Set the current fp rounding mode and return the old one.
* The argument is a softfloat float_round_ value.
*/
uint32_t HELPER(set_rmode)(uint32_t rmode, float_status *fp_status)
{
uint32_t prev_rmode = get_float_rounding_mode(fp_status);
set_float_rounding_mode(rmode, fp_status);
return prev_rmode;
}
/* Half precision conversions. */
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, float_status *fpst,
uint32_t ahp_mode)
{
/* Squash FZ16 to 0 for the duration of conversion. In this case,
* it would affect flushing input denormals.
*/
bool save = get_flush_inputs_to_zero(fpst);
set_flush_inputs_to_zero(false, fpst);
float32 r = float16_to_float32(a, !ahp_mode, fpst);
set_flush_inputs_to_zero(save, fpst);
return r;
}
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, float_status *fpst,
uint32_t ahp_mode)
{
/* Squash FZ16 to 0 for the duration of conversion. In this case,
* it would affect flushing output denormals.
*/
bool save = get_flush_to_zero(fpst);
set_flush_to_zero(false, fpst);
float16 r = float32_to_float16(a, !ahp_mode, fpst);
set_flush_to_zero(save, fpst);
return r;
}
float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, float_status *fpst,
uint32_t ahp_mode)
{
/* Squash FZ16 to 0 for the duration of conversion. In this case,
* it would affect flushing input denormals.
*/
bool save = get_flush_inputs_to_zero(fpst);
set_flush_inputs_to_zero(false, fpst);
float64 r = float16_to_float64(a, !ahp_mode, fpst);
set_flush_inputs_to_zero(save, fpst);
return r;
}
uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, float_status *fpst,
uint32_t ahp_mode)
{
/* Squash FZ16 to 0 for the duration of conversion. In this case,
* it would affect flushing output denormals.
*/
bool save = get_flush_to_zero(fpst);
set_flush_to_zero(false, fpst);
float16 r = float64_to_float16(a, !ahp_mode, fpst);
set_flush_to_zero(save, fpst);
return r;
}
/* NEON helpers. */
/* Constants 256 and 512 are used in some helpers; we avoid relying on
* int->float conversions at run-time. */
#define float64_256 make_float64(0x4070000000000000LL)
#define float64_512 make_float64(0x4080000000000000LL)
#define float16_maxnorm make_float16(0x7bff)
#define float32_maxnorm make_float32(0x7f7fffff)
#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
/* Reciprocal functions
*
* The algorithm that must be used to calculate the estimate
* is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
*/
/* See RecipEstimate()
*
* input is a 9 bit fixed point number
* input range 256 .. 511 for a number from 0.5 <= x < 1.0.
* result range 256 .. 511 for a number from 1.0 to 511/256.
*/
static int recip_estimate(int input)
{
int a, b, r;
assert(256 <= input && input < 512);
a = (input * 2) + 1;
b = (1 << 19) / a;
r = (b + 1) >> 1;
assert(256 <= r && r < 512);
return r;
}
/*
* Increased precision version:
* input is a 13 bit fixed point number
* input range 2048 .. 4095 for a number from 0.5 <= x < 1.0.
* result range 4096 .. 8191 for a number from 1.0 to 2.0
*/
static int recip_estimate_incprec(int input)
{
int a, b, r;
assert(2048 <= input && input < 4096);
a = (input * 2) + 1;
/*
* The pseudocode expresses this as an operation on infinite
* precision reals where it calculates 2^25 / a and then looks
* at the error between that and the rounded-down-to-integer
* value to see if it should instead round up. We instead
* follow the same approach as the pseudocode for the 8-bit
* precision version, and calculate (2 * (2^25 / a)) as an
* integer so we can do the "add one and halve" to round it.
* So the 1 << 26 here is correct.
*/
b = (1 << 26) / a;
r = (b + 1) >> 1;
assert(4096 <= r && r < 8192);
return r;
}
/*
* Common wrapper to call recip_estimate
*
* The parameters are exponent and 64 bit fraction (without implicit
* bit) where the binary point is nominally at bit 52. Returns a
* float64 which can then be rounded to the appropriate size by the
* callee.
*/
static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac,
bool increasedprecision)
{
uint32_t scaled, estimate;
uint64_t result_frac;
int result_exp;
/* Handle sub-normals */
if (*exp == 0) {
if (extract64(frac, 51, 1) == 0) {
*exp = -1;
frac <<= 2;
} else {
frac <<= 1;
}
}
if (increasedprecision) {
/* scaled = UInt('1':fraction<51:41>) */
scaled = deposit32(1 << 11, 0, 11, extract64(frac, 41, 11));
estimate = recip_estimate_incprec(scaled);
} else {
/* scaled = UInt('1':fraction<51:44>) */
scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
estimate = recip_estimate(scaled);
}
result_exp = exp_off - *exp;
if (increasedprecision) {
result_frac = deposit64(0, 40, 12, estimate);
} else {
result_frac = deposit64(0, 44, 8, estimate);
}
if (result_exp == 0) {
result_frac = deposit64(result_frac >> 1, 51, 1, 1);
} else if (result_exp == -1) {
result_frac = deposit64(result_frac >> 2, 50, 2, 1);
result_exp = 0;
}
*exp = result_exp;
return result_frac;
}
static bool round_to_inf(float_status *fpst, bool sign_bit)
{
switch (fpst->float_rounding_mode) {
case float_round_nearest_even: /* Round to Nearest */
return true;
case float_round_up: /* Round to +Inf */
return !sign_bit;
case float_round_down: /* Round to -Inf */
return sign_bit;
case float_round_to_zero: /* Round to Zero */
return false;
default:
g_assert_not_reached();
}
}
uint32_t HELPER(recpe_f16)(uint32_t input, float_status *fpst)
{
float16 f16 = float16_squash_input_denormal(input, fpst);
uint32_t f16_val = float16_val(f16);
uint32_t f16_sign = float16_is_neg(f16);
int f16_exp = extract32(f16_val, 10, 5);
uint32_t f16_frac = extract32(f16_val, 0, 10);
uint64_t f64_frac;
if (float16_is_any_nan(f16)) {
float16 nan = f16;
if (float16_is_signaling_nan(f16, fpst)) {
float_raise(float_flag_invalid, fpst);
if (!fpst->default_nan_mode) {
nan = float16_silence_nan(f16, fpst);
}
}
if (fpst->default_nan_mode) {
nan = float16_default_nan(fpst);
}
return nan;
} else if (float16_is_infinity(f16)) {
return float16_set_sign(float16_zero, float16_is_neg(f16));
} else if (float16_is_zero(f16)) {
float_raise(float_flag_divbyzero, fpst);
return float16_set_sign(float16_infinity, float16_is_neg(f16));
} else if (float16_abs(f16) < (1 << 8)) {
/* Abs(value) < 2.0^-16 */
float_raise(float_flag_overflow | float_flag_inexact, fpst);
if (round_to_inf(fpst, f16_sign)) {
return float16_set_sign(float16_infinity, f16_sign);
} else {
return float16_set_sign(float16_maxnorm, f16_sign);
}
} else if (f16_exp >= 29 && fpst->flush_to_zero) {
float_raise(float_flag_underflow, fpst);
return float16_set_sign(float16_zero, float16_is_neg(f16));
}
f64_frac = call_recip_estimate(&f16_exp, 29,
((uint64_t) f16_frac) << (52 - 10), false);
/* result = sign : result_exp<4:0> : fraction<51:42> */
f16_val = deposit32(0, 15, 1, f16_sign);
f16_val = deposit32(f16_val, 10, 5, f16_exp);
f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
return make_float16(f16_val);
}
/*
* FEAT_RPRES means the f32 FRECPE has an "increased precision" variant
* which is used when FPCR.AH == 1.
*/
static float32 do_recpe_f32(float32 input, float_status *fpst, bool rpres)
{
float32 f32 = float32_squash_input_denormal(input, fpst);
uint32_t f32_val = float32_val(f32);
bool f32_sign = float32_is_neg(f32);
int f32_exp = extract32(f32_val, 23, 8);
uint32_t f32_frac = extract32(f32_val, 0, 23);
uint64_t f64_frac;
if (float32_is_any_nan(f32)) {
float32 nan = f32;
if (float32_is_signaling_nan(f32, fpst)) {
float_raise(float_flag_invalid, fpst);
if (!fpst->default_nan_mode) {
nan = float32_silence_nan(f32, fpst);
}
}
if (fpst->default_nan_mode) {
nan = float32_default_nan(fpst);
}
return nan;
} else if (float32_is_infinity(f32)) {
return float32_set_sign(float32_zero, float32_is_neg(f32));
} else if (float32_is_zero(f32)) {
float_raise(float_flag_divbyzero, fpst);
return float32_set_sign(float32_infinity, float32_is_neg(f32));
} else if (float32_abs(f32) < (1ULL << 21)) {
/* Abs(value) < 2.0^-128 */
float_raise(float_flag_overflow | float_flag_inexact, fpst);
if (round_to_inf(fpst, f32_sign)) {
return float32_set_sign(float32_infinity, f32_sign);
} else {
return float32_set_sign(float32_maxnorm, f32_sign);
}
} else if (f32_exp >= 253 && fpst->flush_to_zero) {
float_raise(float_flag_underflow, fpst);
return float32_set_sign(float32_zero, float32_is_neg(f32));
}
f64_frac = call_recip_estimate(&f32_exp, 253,
((uint64_t) f32_frac) << (52 - 23), rpres);
/* result = sign : result_exp<7:0> : fraction<51:29> */
f32_val = deposit32(0, 31, 1, f32_sign);
f32_val = deposit32(f32_val, 23, 8, f32_exp);
f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
return make_float32(f32_val);
}
float32 HELPER(recpe_f32)(float32 input, float_status *fpst)
{
return do_recpe_f32(input, fpst, false);
}
float32 HELPER(recpe_rpres_f32)(float32 input, float_status *fpst)
{
return do_recpe_f32(input, fpst, true);
}
float64 HELPER(recpe_f64)(float64 input, float_status *fpst)
{
float64 f64 = float64_squash_input_denormal(input, fpst);
uint64_t f64_val = float64_val(f64);
bool f64_sign = float64_is_neg(f64);
int f64_exp = extract64(f64_val, 52, 11);
uint64_t f64_frac = extract64(f64_val, 0, 52);
/* Deal with any special cases */
if (float64_is_any_nan(f64)) {
float64 nan = f64;
if (float64_is_signaling_nan(f64, fpst)) {
float_raise(float_flag_invalid, fpst);
if (!fpst->default_nan_mode) {
nan = float64_silence_nan(f64, fpst);
}
}
if (fpst->default_nan_mode) {
nan = float64_default_nan(fpst);
}
return nan;
} else if (float64_is_infinity(f64)) {
return float64_set_sign(float64_zero, float64_is_neg(f64));
} else if (float64_is_zero(f64)) {
float_raise(float_flag_divbyzero, fpst);
return float64_set_sign(float64_infinity, float64_is_neg(f64));
} else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
/* Abs(value) < 2.0^-1024 */
float_raise(float_flag_overflow | float_flag_inexact, fpst);
if (round_to_inf(fpst, f64_sign)) {
return float64_set_sign(float64_infinity, f64_sign);
} else {
return float64_set_sign(float64_maxnorm, f64_sign);
}
} else if (f64_exp >= 2045 && fpst->flush_to_zero) {
float_raise(float_flag_underflow, fpst);
return float64_set_sign(float64_zero, float64_is_neg(f64));
}
f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac, false);
/* result = sign : result_exp<10:0> : fraction<51:0>; */
f64_val = deposit64(0, 63, 1, f64_sign);
f64_val = deposit64(f64_val, 52, 11, f64_exp);
f64_val = deposit64(f64_val, 0, 52, f64_frac);
return make_float64(f64_val);
}
/* The algorithm that must be used to calculate the estimate
* is specified by the ARM ARM.
*/
static int do_recip_sqrt_estimate(int a)
{
int b, estimate;
assert(128 <= a && a < 512);
if (a < 256) {
a = a * 2 + 1;
} else {
a = (a >> 1) << 1;
a = (a + 1) * 2;
}
b = 512;
while (a * (b + 1) * (b + 1) < (1 << 28)) {
b += 1;
}
estimate = (b + 1) / 2;
assert(256 <= estimate && estimate < 512);
return estimate;
}
static int do_recip_sqrt_estimate_incprec(int a)
{
/*
* The Arm ARM describes the 12-bit precision version of RecipSqrtEstimate
* in terms of an infinite-precision floating point calculation of a
* square root. We implement this using the same kind of pure integer
* algorithm as the 8-bit mantissa, to get the same bit-for-bit result.
*/
int64_t b, estimate;
assert(1024 <= a && a < 4096);
if (a < 2048) {
a = a * 2 + 1;
} else {
a = (a >> 1) << 1;
a = (a + 1) * 2;
}
b = 8192;
while (a * (b + 1) * (b + 1) < (1ULL << 39)) {
b += 1;
}
estimate = (b + 1) / 2;
assert(4096 <= estimate && estimate < 8192);
return estimate;
}
static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac,
bool increasedprecision)
{
int estimate;
uint32_t scaled;
if (*exp == 0) {
while (extract64(frac, 51, 1) == 0) {
frac = frac << 1;
*exp -= 1;
}
frac = extract64(frac, 0, 51) << 1;
}
if (increasedprecision) {
if (*exp & 1) {
/* scaled = UInt('01':fraction<51:42>) */
scaled = deposit32(1 << 10, 0, 10, extract64(frac, 42, 10));
} else {
/* scaled = UInt('1':fraction<51:41>) */
scaled = deposit32(1 << 11, 0, 11, extract64(frac, 41, 11));
}
estimate = do_recip_sqrt_estimate_incprec(scaled);
} else {
if (*exp & 1) {
/* scaled = UInt('01':fraction<51:45>) */
scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
} else {
/* scaled = UInt('1':fraction<51:44>) */
scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
}
estimate = do_recip_sqrt_estimate(scaled);
}
*exp = (exp_off - *exp) / 2;
if (increasedprecision) {
return extract64(estimate, 0, 12) << 40;
} else {
return extract64(estimate, 0, 8) << 44;
}
}
uint32_t HELPER(rsqrte_f16)(uint32_t input, float_status *s)
{
float16 f16 = float16_squash_input_denormal(input, s);
uint16_t val = float16_val(f16);
bool f16_sign = float16_is_neg(f16);
int f16_exp = extract32(val, 10, 5);
uint16_t f16_frac = extract32(val, 0, 10);
uint64_t f64_frac;
if (float16_is_any_nan(f16)) {
float16 nan = f16;
if (float16_is_signaling_nan(f16, s)) {
float_raise(float_flag_invalid, s);
if (!s->default_nan_mode) {
nan = float16_silence_nan(f16, s);
}
}
if (s->default_nan_mode) {
nan = float16_default_nan(s);
}
return nan;
} else if (float16_is_zero(f16)) {
float_raise(float_flag_divbyzero, s);
return float16_set_sign(float16_infinity, f16_sign);
} else if (f16_sign) {
float_raise(float_flag_invalid, s);
return float16_default_nan(s);
} else if (float16_is_infinity(f16)) {
return float16_zero;
}
/* Scale and normalize to a double-precision value between 0.25 and 1.0,
* preserving the parity of the exponent. */
f64_frac = ((uint64_t) f16_frac) << (52 - 10);
f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac, false);
/* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
val = deposit32(0, 15, 1, f16_sign);
val = deposit32(val, 10, 5, f16_exp);
val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
return make_float16(val);
}
/*
* FEAT_RPRES means the f32 FRSQRTE has an "increased precision" variant
* which is used when FPCR.AH == 1.
*/
static float32 do_rsqrte_f32(float32 input, float_status *s, bool rpres)
{
float32 f32 = float32_squash_input_denormal(input, s);
uint32_t val = float32_val(f32);
uint32_t f32_sign = float32_is_neg(f32);
int f32_exp = extract32(val, 23, 8);
uint32_t f32_frac = extract32(val, 0, 23);
uint64_t f64_frac;
if (float32_is_any_nan(f32)) {
float32 nan = f32;
if (float32_is_signaling_nan(f32, s)) {
float_raise(float_flag_invalid, s);
if (!s->default_nan_mode) {
nan = float32_silence_nan(f32, s);
}
}
if (s->default_nan_mode) {
nan = float32_default_nan(s);
}
return nan;
} else if (float32_is_zero(f32)) {
float_raise(float_flag_divbyzero, s);
return float32_set_sign(float32_infinity, float32_is_neg(f32));
} else if (float32_is_neg(f32)) {
float_raise(float_flag_invalid, s);
return float32_default_nan(s);
} else if (float32_is_infinity(f32)) {
return float32_zero;
}
/* Scale and normalize to a double-precision value between 0.25 and 1.0,
* preserving the parity of the exponent. */
f64_frac = ((uint64_t) f32_frac) << 29;
f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac, rpres);
/*
* result = sign : result_exp<7:0> : estimate<7:0> : Zeros(15)
* or for increased precision
* result = sign : result_exp<7:0> : estimate<11:0> : Zeros(11)
*/
val = deposit32(0, 31, 1, f32_sign);
val = deposit32(val, 23, 8, f32_exp);
if (rpres) {
val = deposit32(val, 11, 12, extract64(f64_frac, 52 - 12, 12));
} else {
val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
}
return make_float32(val);
}
float32 HELPER(rsqrte_f32)(float32 input, float_status *s)
{
return do_rsqrte_f32(input, s, false);
}
float32 HELPER(rsqrte_rpres_f32)(float32 input, float_status *s)
{
return do_rsqrte_f32(input, s, true);
}
float64 HELPER(rsqrte_f64)(float64 input, float_status *s)
{
float64 f64 = float64_squash_input_denormal(input, s);
uint64_t val = float64_val(f64);
bool f64_sign = float64_is_neg(f64);
int f64_exp = extract64(val, 52, 11);
uint64_t f64_frac = extract64(val, 0, 52);
if (float64_is_any_nan(f64)) {
float64 nan = f64;
if (float64_is_signaling_nan(f64, s)) {
float_raise(float_flag_invalid, s);
if (!s->default_nan_mode) {
nan = float64_silence_nan(f64, s);
}
}
if (s->default_nan_mode) {
nan = float64_default_nan(s);
}
return nan;
} else if (float64_is_zero(f64)) {
float_raise(float_flag_divbyzero, s);
return float64_set_sign(float64_infinity, float64_is_neg(f64));
} else if (float64_is_neg(f64)) {
float_raise(float_flag_invalid, s);
return float64_default_nan(s);
} else if (float64_is_infinity(f64)) {
return float64_zero;
}
f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac, false);
/* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
val = deposit64(0, 61, 1, f64_sign);
val = deposit64(val, 52, 11, f64_exp);
val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
return make_float64(val);
}
uint32_t HELPER(recpe_u32)(uint32_t a)
{
int input, estimate;
if ((a & 0x80000000) == 0) {
return 0xffffffff;
}
input = extract32(a, 23, 9);
estimate = recip_estimate(input);
return deposit32(0, (32 - 9), 9, estimate);
}
uint32_t HELPER(rsqrte_u32)(uint32_t a)
{
int estimate;
if ((a & 0xc0000000) == 0) {
return 0xffffffff;
}
estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
return deposit32(0, 23, 9, estimate);
}
/* VFPv4 fused multiply-accumulate */
dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b,
dh_ctype_f16 c, float_status *fpst)
{
return float16_muladd(a, b, c, 0, fpst);
}
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c,
float_status *fpst)
{
return float32_muladd(a, b, c, 0, fpst);
}
float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c,
float_status *fpst)
{
return float64_muladd(a, b, c, 0, fpst);
}
/* ARMv8 round to integral */
dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, float_status *fp_status)
{
return float16_round_to_int(x, fp_status);
}
float32 HELPER(rints_exact)(float32 x, float_status *fp_status)
{
return float32_round_to_int(x, fp_status);
}
float64 HELPER(rintd_exact)(float64 x, float_status *fp_status)
{
return float64_round_to_int(x, fp_status);
}
dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, float_status *fp_status)
{
int old_flags = get_float_exception_flags(fp_status), new_flags;
float16 ret;
ret = float16_round_to_int(x, fp_status);
/* Suppress any inexact exceptions the conversion produced */
if (!(old_flags & float_flag_inexact)) {
new_flags = get_float_exception_flags(fp_status);
set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
}
return ret;
}
float32 HELPER(rints)(float32 x, float_status *fp_status)
{
int old_flags = get_float_exception_flags(fp_status), new_flags;
float32 ret;
ret = float32_round_to_int(x, fp_status);
/* Suppress any inexact exceptions the conversion produced */
if (!(old_flags & float_flag_inexact)) {
new_flags = get_float_exception_flags(fp_status);
set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
}
return ret;
}
float64 HELPER(rintd)(float64 x, float_status *fp_status)
{
int old_flags = get_float_exception_flags(fp_status), new_flags;
float64 ret;
ret = float64_round_to_int(x, fp_status);
/* Suppress any inexact exceptions the conversion produced */
if (!(old_flags & float_flag_inexact)) {
new_flags = get_float_exception_flags(fp_status);
set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
}
return ret;
}
/* Convert ARM rounding mode to softfloat */
const FloatRoundMode arm_rmode_to_sf_map[] = {
[FPROUNDING_TIEEVEN] = float_round_nearest_even,
[FPROUNDING_POSINF] = float_round_up,
[FPROUNDING_NEGINF] = float_round_down,
[FPROUNDING_ZERO] = float_round_to_zero,
[FPROUNDING_TIEAWAY] = float_round_ties_away,
[FPROUNDING_ODD] = float_round_to_odd,
};
/*
* Implement float64 to int32_t conversion without saturation;
* the result is supplied modulo 2^32.
*/
uint64_t HELPER(fjcvtzs)(float64 value, float_status *status)
{
uint32_t frac, e_old, e_new;
bool inexact;
e_old = get_float_exception_flags(status);
set_float_exception_flags(0, status);
frac = float64_to_int32_modulo(value, float_round_to_zero, status);
e_new = get_float_exception_flags(status);
set_float_exception_flags(e_old | e_new, status);
/* Normal inexact, denormal with flush-to-zero, or overflow or NaN */
inexact = e_new & (float_flag_inexact |
float_flag_input_denormal_flushed |
float_flag_invalid);
/* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */
inexact |= value == float64_chs(float64_zero);
/* Pack the result and the env->ZF representation of Z together. */
return deposit64(frac, 32, 32, inexact);
}
uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
{
uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status[FPST_A32]);
uint32_t result = pair;
uint32_t z = (pair >> 32) == 0;
/* Store Z, clear NCV, in FPSCR.NZCV. */
env->vfp.fpsr = (env->vfp.fpsr & ~FPSR_NZCV_MASK) | (z * FPSR_Z);
return result;
}
/* Round a float32 to an integer that fits in int32_t or int64_t. */
static float32 frint_s(float32 f, float_status *fpst, int intsize)
{
int old_flags = get_float_exception_flags(fpst);
uint32_t exp = extract32(f, 23, 8);
if (unlikely(exp == 0xff)) {
/* NaN or Inf. */
goto overflow;
}
/* Round and re-extract the exponent. */
f = float32_round_to_int(f, fpst);
exp = extract32(f, 23, 8);
/* Validate the range of the result. */
if (exp < 126 + intsize) {
/* abs(F) <= INT{N}_MAX */
return f;
}
if (exp == 126 + intsize) {
uint32_t sign = extract32(f, 31, 1);
uint32_t frac = extract32(f, 0, 23);
if (sign && frac == 0) {
/* F == INT{N}_MIN */
return f;
}
}
overflow:
/*
* Raise Invalid and return INT{N}_MIN as a float. Revert any
* inexact exception float32_round_to_int may have raised.
*/
set_float_exception_flags(old_flags | float_flag_invalid, fpst);
return (0x100u + 126u + intsize) << 23;
}
float32 HELPER(frint32_s)(float32 f, float_status *fpst)
{
return frint_s(f, fpst, 32);
}
float32 HELPER(frint64_s)(float32 f, float_status *fpst)
{
return frint_s(f, fpst, 64);
}
/* Round a float64 to an integer that fits in int32_t or int64_t. */
static float64 frint_d(float64 f, float_status *fpst, int intsize)
{
int old_flags = get_float_exception_flags(fpst);
uint32_t exp = extract64(f, 52, 11);
if (unlikely(exp == 0x7ff)) {
/* NaN or Inf. */
goto overflow;
}
/* Round and re-extract the exponent. */
f = float64_round_to_int(f, fpst);
exp = extract64(f, 52, 11);
/* Validate the range of the result. */
if (exp < 1022 + intsize) {
/* abs(F) <= INT{N}_MAX */
return f;
}
if (exp == 1022 + intsize) {
uint64_t sign = extract64(f, 63, 1);
uint64_t frac = extract64(f, 0, 52);
if (sign && frac == 0) {
/* F == INT{N}_MIN */
return f;
}
}
overflow:
/*
* Raise Invalid and return INT{N}_MIN as a float. Revert any
* inexact exception float64_round_to_int may have raised.
*/
set_float_exception_flags(old_flags | float_flag_invalid, fpst);
return (uint64_t)(0x800 + 1022 + intsize) << 52;
}
float64 HELPER(frint32_d)(float64 f, float_status *fpst)
{
return frint_d(f, fpst, 32);
}
float64 HELPER(frint64_d)(float64 f, float_status *fpst)
{
return frint_d(f, fpst, 64);
}
void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg)
{
uint32_t syndrome;
switch (reg) {
case ARM_VFP_MVFR0:
case ARM_VFP_MVFR1:
case ARM_VFP_MVFR2:
if (!(arm_hcr_el2_eff(env) & HCR_TID3)) {
return;
}
break;
case ARM_VFP_FPSID:
if (!(arm_hcr_el2_eff(env) & HCR_TID0)) {
return;
}
break;
default:
g_assert_not_reached();
}
syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT)
| ARM_EL_IL
| (1 << 24) | (0xe << 20) | (7 << 14)
| (reg << 10) | (rt << 5) | 1);
raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
}
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
{
return vfp_get_fpscr(env);
}
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
{
vfp_set_fpscr(env, val);
}