You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/target/m68k/fpu_helper.c

753 lines
22 KiB
C

/*
* m68k FPU helpers
*
* Copyright (c) 2006-2007 CodeSourcery
* Written by Paul Brook
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "softfloat.h"
/*
* Undefined offsets may be different on various FPU.
* On 68040 they return 0.0 (floatx80_zero)
*/
static const floatx80 fpu_rom[128] = {
[0x00] = make_floatx80_init(0x4000, 0xc90fdaa22168c235ULL), /* Pi */
[0x0b] = make_floatx80_init(0x3ffd, 0x9a209a84fbcff798ULL), /* Log10(2) */
[0x0c] = make_floatx80_init(0x4000, 0xadf85458a2bb4a9aULL), /* e */
[0x0d] = make_floatx80_init(0x3fff, 0xb8aa3b295c17f0bcULL), /* Log2(e) */
[0x0e] = make_floatx80_init(0x3ffd, 0xde5bd8a937287195ULL), /* Log10(e) */
[0x0f] = make_floatx80_init(0x0000, 0x0000000000000000ULL), /* Zero */
[0x30] = make_floatx80_init(0x3ffe, 0xb17217f7d1cf79acULL), /* ln(2) */
[0x31] = make_floatx80_init(0x4000, 0x935d8dddaaa8ac17ULL), /* ln(10) */
[0x32] = make_floatx80_init(0x3fff, 0x8000000000000000ULL), /* 10^0 */
[0x33] = make_floatx80_init(0x4002, 0xa000000000000000ULL), /* 10^1 */
[0x34] = make_floatx80_init(0x4005, 0xc800000000000000ULL), /* 10^2 */
[0x35] = make_floatx80_init(0x400c, 0x9c40000000000000ULL), /* 10^4 */
[0x36] = make_floatx80_init(0x4019, 0xbebc200000000000ULL), /* 10^8 */
[0x37] = make_floatx80_init(0x4034, 0x8e1bc9bf04000000ULL), /* 10^16 */
[0x38] = make_floatx80_init(0x4069, 0x9dc5ada82b70b59eULL), /* 10^32 */
[0x39] = make_floatx80_init(0x40d3, 0xc2781f49ffcfa6d5ULL), /* 10^64 */
[0x3a] = make_floatx80_init(0x41a8, 0x93ba47c980e98ce0ULL), /* 10^128 */
[0x3b] = make_floatx80_init(0x4351, 0xaa7eebfb9df9de8eULL), /* 10^256 */
[0x3c] = make_floatx80_init(0x46a3, 0xe319a0aea60e91c7ULL), /* 10^512 */
[0x3d] = make_floatx80_init(0x4d48, 0xc976758681750c17ULL), /* 10^1024 */
[0x3e] = make_floatx80_init(0x5a92, 0x9e8b3b5dc53d5de5ULL), /* 10^2048 */
[0x3f] = make_floatx80_init(0x7525, 0xc46052028a20979bULL), /* 10^4096 */
};
int32_t HELPER(reds32)(CPUM68KState *env, FPReg *val)
{
return floatx80_to_int32(val->d, &env->fp_status);
}
float32 HELPER(redf32)(CPUM68KState *env, FPReg *val)
{
return floatx80_to_float32(val->d, &env->fp_status);
}
void HELPER(exts32)(CPUM68KState *env, FPReg *res, int32_t val)
{
res->d = int32_to_floatx80(val, &env->fp_status);
}
void HELPER(extf32)(CPUM68KState *env, FPReg *res, float32 val)
{
res->d = float32_to_floatx80(val, &env->fp_status);
}
void HELPER(extf64)(CPUM68KState *env, FPReg *res, float64 val)
{
res->d = float64_to_floatx80(val, &env->fp_status);
}
float64 HELPER(redf64)(CPUM68KState *env, FPReg *val)
{
return floatx80_to_float64(val->d, &env->fp_status);
}
void HELPER(firound)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_round_to_int(val->d, &env->fp_status);
}
static void m68k_restore_precision_mode(CPUM68KState *env)
{
switch (env->fpcr & FPCR_PREC_MASK) {
case FPCR_PREC_X: /* extended */
set_floatx80_rounding_precision(floatx80_precision_x, &env->fp_status);
break;
case FPCR_PREC_S: /* single */
set_floatx80_rounding_precision(floatx80_precision_s, &env->fp_status);
break;
case FPCR_PREC_D: /* double */
set_floatx80_rounding_precision(floatx80_precision_d, &env->fp_status);
break;
case FPCR_PREC_U: /* undefined */
default:
break;
}
}
static void cf_restore_precision_mode(CPUM68KState *env)
{
if (env->fpcr & FPCR_PREC_S) { /* single */
set_floatx80_rounding_precision(floatx80_precision_s, &env->fp_status);
} else { /* double */
set_floatx80_rounding_precision(floatx80_precision_d, &env->fp_status);
}
}
static void restore_rounding_mode(CPUM68KState *env)
{
switch (env->fpcr & FPCR_RND_MASK) {
case FPCR_RND_N: /* round to nearest */
set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
break;
case FPCR_RND_Z: /* round to zero */
set_float_rounding_mode(float_round_to_zero, &env->fp_status);
break;
case FPCR_RND_M: /* round toward minus infinity */
set_float_rounding_mode(float_round_down, &env->fp_status);
break;
case FPCR_RND_P: /* round toward positive infinity */
set_float_rounding_mode(float_round_up, &env->fp_status);
break;
}
}
void cpu_m68k_restore_fp_status(CPUM68KState *env)
{
if (m68k_feature(env, M68K_FEATURE_CF_FPU)) {
cf_restore_precision_mode(env);
} else {
m68k_restore_precision_mode(env);
}
restore_rounding_mode(env);
}
void cpu_m68k_set_fpcr(CPUM68KState *env, uint32_t val)
{
env->fpcr = val & 0xffff;
cpu_m68k_restore_fp_status(env);
}
void HELPER(fitrunc)(CPUM68KState *env, FPReg *res, FPReg *val)
{
FloatRoundMode rounding_mode = get_float_rounding_mode(&env->fp_status);
set_float_rounding_mode(float_round_to_zero, &env->fp_status);
res->d = floatx80_round_to_int(val->d, &env->fp_status);
set_float_rounding_mode(rounding_mode, &env->fp_status);
}
void HELPER(set_fpcr)(CPUM68KState *env, uint32_t val)
{
cpu_m68k_set_fpcr(env, val);
}
/* Convert host exception flags to cpu_m68k form. */
static int cpu_m68k_exceptbits_from_host(int host_bits)
{
int target_bits = 0;
if (host_bits & float_flag_invalid) {
target_bits |= 0x80;
}
if (host_bits & float_flag_overflow) {
target_bits |= 0x40;
}
if (host_bits & (float_flag_underflow | float_flag_output_denormal)) {
target_bits |= 0x20;
}
if (host_bits & float_flag_divbyzero) {
target_bits |= 0x10;
}
if (host_bits & float_flag_inexact) {
target_bits |= 0x08;
}
return target_bits;
}
/* Convert cpu_m68k exception flags to target form. */
static int cpu_m68k_exceptbits_to_host(int target_bits)
{
int host_bits = 0;
if (target_bits & 0x80) {
host_bits |= float_flag_invalid;
}
if (target_bits & 0x40) {
host_bits |= float_flag_overflow;
}
if (target_bits & 0x20) {
host_bits |= float_flag_underflow;
}
if (target_bits & 0x10) {
host_bits |= float_flag_divbyzero;
}
if (target_bits & 0x08) {
host_bits |= float_flag_inexact;
}
return host_bits;
}
uint32_t cpu_m68k_get_fpsr(CPUM68KState *env)
{
int host_flags = get_float_exception_flags(&env->fp_status);
int target_flags = cpu_m68k_exceptbits_from_host(host_flags);
int except = (env->fpsr & ~(0xf8)) | target_flags;
return except;
}
uint32_t HELPER(get_fpsr)(CPUM68KState *env)
{
return cpu_m68k_get_fpsr(env);
}
void cpu_m68k_set_fpsr(CPUM68KState *env, uint32_t val)
{
env->fpsr = val;
int host_flags = cpu_m68k_exceptbits_to_host((int) env->fpsr);
set_float_exception_flags(host_flags, &env->fp_status);
}
void HELPER(set_fpsr)(CPUM68KState *env, uint32_t val)
{
cpu_m68k_set_fpsr(env, val);
}
#define PREC_BEGIN(prec) \
do { \
FloatX80RoundPrec old = \
get_floatx80_rounding_precision(&env->fp_status); \
set_floatx80_rounding_precision(prec, &env->fp_status) \
#define PREC_END() \
set_floatx80_rounding_precision(old, &env->fp_status); \
} while (0)
void HELPER(fsround)(CPUM68KState *env, FPReg *res, FPReg *val)
{
PREC_BEGIN(floatx80_precision_s);
res->d = floatx80_round(val->d, &env->fp_status);
PREC_END();
}
void HELPER(fdround)(CPUM68KState *env, FPReg *res, FPReg *val)
{
PREC_BEGIN(floatx80_precision_d);
res->d = floatx80_round(val->d, &env->fp_status);
PREC_END();
}
void HELPER(fsqrt)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_sqrt(val->d, &env->fp_status);
}
void HELPER(fssqrt)(CPUM68KState *env, FPReg *res, FPReg *val)
{
PREC_BEGIN(floatx80_precision_s);
res->d = floatx80_sqrt(val->d, &env->fp_status);
PREC_END();
}
void HELPER(fdsqrt)(CPUM68KState *env, FPReg *res, FPReg *val)
{
PREC_BEGIN(floatx80_precision_d);
res->d = floatx80_sqrt(val->d, &env->fp_status);
PREC_END();
}
void HELPER(fabs)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_round(floatx80_abs(val->d), &env->fp_status);
}
void HELPER(fsabs)(CPUM68KState *env, FPReg *res, FPReg *val)
{
PREC_BEGIN(floatx80_precision_s);
res->d = floatx80_round(floatx80_abs(val->d), &env->fp_status);
PREC_END();
}
void HELPER(fdabs)(CPUM68KState *env, FPReg *res, FPReg *val)
{
PREC_BEGIN(floatx80_precision_d);
res->d = floatx80_round(floatx80_abs(val->d), &env->fp_status);
PREC_END();
}
void HELPER(fneg)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_round(floatx80_chs(val->d), &env->fp_status);
}
void HELPER(fsneg)(CPUM68KState *env, FPReg *res, FPReg *val)
{
PREC_BEGIN(floatx80_precision_s);
res->d = floatx80_round(floatx80_chs(val->d), &env->fp_status);
PREC_END();
}
void HELPER(fdneg)(CPUM68KState *env, FPReg *res, FPReg *val)
{
PREC_BEGIN(floatx80_precision_d);
res->d = floatx80_round(floatx80_chs(val->d), &env->fp_status);
PREC_END();
}
void HELPER(fadd)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1)
{
res->d = floatx80_add(val0->d, val1->d, &env->fp_status);
}
void HELPER(fsadd)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1)
{
PREC_BEGIN(floatx80_precision_s);
res->d = floatx80_add(val0->d, val1->d, &env->fp_status);
PREC_END();
}
void HELPER(fdadd)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1)
{
PREC_BEGIN(floatx80_precision_d);
res->d = floatx80_add(val0->d, val1->d, &env->fp_status);
PREC_END();
}
void HELPER(fsub)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1)
{
res->d = floatx80_sub(val1->d, val0->d, &env->fp_status);
}
void HELPER(fssub)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1)
{
PREC_BEGIN(floatx80_precision_s);
res->d = floatx80_sub(val1->d, val0->d, &env->fp_status);
PREC_END();
}
void HELPER(fdsub)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1)
{
PREC_BEGIN(floatx80_precision_d);
res->d = floatx80_sub(val1->d, val0->d, &env->fp_status);
PREC_END();
}
void HELPER(fmul)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1)
{
res->d = floatx80_mul(val0->d, val1->d, &env->fp_status);
}
void HELPER(fsmul)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1)
{
PREC_BEGIN(floatx80_precision_s);
res->d = floatx80_mul(val0->d, val1->d, &env->fp_status);
PREC_END();
}
void HELPER(fdmul)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1)
{
PREC_BEGIN(floatx80_precision_d);
res->d = floatx80_mul(val0->d, val1->d, &env->fp_status);
PREC_END();
}
void HELPER(fsglmul)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1)
{
FloatRoundMode rounding_mode = get_float_rounding_mode(&env->fp_status);
floatx80 a, b;
PREC_BEGIN(floatx80_precision_s);
set_float_rounding_mode(float_round_to_zero, &env->fp_status);
a = floatx80_round(val0->d, &env->fp_status);
b = floatx80_round(val1->d, &env->fp_status);
set_float_rounding_mode(rounding_mode, &env->fp_status);
res->d = floatx80_mul(a, b, &env->fp_status);
PREC_END();
}
void HELPER(fdiv)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1)
{
res->d = floatx80_div(val1->d, val0->d, &env->fp_status);
}
void HELPER(fsdiv)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1)
{
PREC_BEGIN(floatx80_precision_s);
res->d = floatx80_div(val1->d, val0->d, &env->fp_status);
PREC_END();
}
void HELPER(fddiv)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1)
{
PREC_BEGIN(floatx80_precision_d);
res->d = floatx80_div(val1->d, val0->d, &env->fp_status);
PREC_END();
}
void HELPER(fsgldiv)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1)
{
FloatRoundMode rounding_mode = get_float_rounding_mode(&env->fp_status);
floatx80 a, b;
PREC_BEGIN(floatx80_precision_s);
set_float_rounding_mode(float_round_to_zero, &env->fp_status);
a = floatx80_round(val1->d, &env->fp_status);
b = floatx80_round(val0->d, &env->fp_status);
set_float_rounding_mode(rounding_mode, &env->fp_status);
res->d = floatx80_div(a, b, &env->fp_status);
PREC_END();
}
static int float_comp_to_cc(FloatRelation float_compare)
{
switch (float_compare) {
case float_relation_equal:
return FPSR_CC_Z;
case float_relation_less:
return FPSR_CC_N;
case float_relation_unordered:
return FPSR_CC_A;
case float_relation_greater:
return 0;
default:
g_assert_not_reached();
}
}
void HELPER(fcmp)(CPUM68KState *env, FPReg *val0, FPReg *val1)
{
FloatRelation float_compare;
float_compare = floatx80_compare(val1->d, val0->d, &env->fp_status);
env->fpsr = (env->fpsr & ~FPSR_CC_MASK) | float_comp_to_cc(float_compare);
}
void HELPER(ftst)(CPUM68KState *env, FPReg *val)
{
uint32_t cc = 0;
if (floatx80_is_neg(val->d)) {
cc |= FPSR_CC_N;
}
if (floatx80_is_any_nan(val->d)) {
cc |= FPSR_CC_A;
} else if (floatx80_is_infinity(val->d)) {
cc |= FPSR_CC_I;
} else if (floatx80_is_zero(val->d)) {
cc |= FPSR_CC_Z;
}
env->fpsr = (env->fpsr & ~FPSR_CC_MASK) | cc;
}
void HELPER(fconst)(CPUM68KState *env, FPReg *val, uint32_t offset)
{
val->d = fpu_rom[offset];
}
typedef int (*float_access)(CPUM68KState *env, uint32_t addr, FPReg *fp,
uintptr_t ra);
static uint32_t fmovem_predec(CPUM68KState *env, uint32_t addr, uint32_t mask,
float_access access_fn)
{
uintptr_t ra = GETPC();
int i, size;
for (i = 7; i >= 0; i--, mask <<= 1) {
if (mask & 0x80) {
size = access_fn(env, addr, &env->fregs[i], ra);
if ((mask & 0xff) != 0x80) {
addr -= size;
}
}
}
return addr;
}
static uint32_t fmovem_postinc(CPUM68KState *env, uint32_t addr, uint32_t mask,
float_access access_fn)
{
uintptr_t ra = GETPC();
int i, size;
for (i = 0; i < 8; i++, mask <<= 1) {
if (mask & 0x80) {
size = access_fn(env, addr, &env->fregs[i], ra);
addr += size;
}
}
return addr;
}
static int cpu_ld_floatx80_ra(CPUM68KState *env, uint32_t addr, FPReg *fp,
uintptr_t ra)
{
uint32_t high;
uint64_t low;
high = cpu_ldl_data_ra(env, addr, ra);
low = cpu_ldq_data_ra(env, addr + 4, ra);
fp->l.upper = high >> 16;
fp->l.lower = low;
return 12;
}
static int cpu_st_floatx80_ra(CPUM68KState *env, uint32_t addr, FPReg *fp,
uintptr_t ra)
{
cpu_stl_data_ra(env, addr, fp->l.upper << 16, ra);
cpu_stq_data_ra(env, addr + 4, fp->l.lower, ra);
return 12;
}
static int cpu_ld_float64_ra(CPUM68KState *env, uint32_t addr, FPReg *fp,
uintptr_t ra)
{
uint64_t val;
val = cpu_ldq_data_ra(env, addr, ra);
fp->d = float64_to_floatx80(*(float64 *)&val, &env->fp_status);
return 8;
}
static int cpu_st_float64_ra(CPUM68KState *env, uint32_t addr, FPReg *fp,
uintptr_t ra)
{
float64 val;
val = floatx80_to_float64(fp->d, &env->fp_status);
cpu_stq_data_ra(env, addr, *(uint64_t *)&val, ra);
return 8;
}
uint32_t HELPER(fmovemx_st_predec)(CPUM68KState *env, uint32_t addr,
uint32_t mask)
{
return fmovem_predec(env, addr, mask, cpu_st_floatx80_ra);
}
uint32_t HELPER(fmovemx_st_postinc)(CPUM68KState *env, uint32_t addr,
uint32_t mask)
{
return fmovem_postinc(env, addr, mask, cpu_st_floatx80_ra);
}
uint32_t HELPER(fmovemx_ld_postinc)(CPUM68KState *env, uint32_t addr,
uint32_t mask)
{
return fmovem_postinc(env, addr, mask, cpu_ld_floatx80_ra);
}
uint32_t HELPER(fmovemd_st_predec)(CPUM68KState *env, uint32_t addr,
uint32_t mask)
{
return fmovem_predec(env, addr, mask, cpu_st_float64_ra);
}
uint32_t HELPER(fmovemd_st_postinc)(CPUM68KState *env, uint32_t addr,
uint32_t mask)
{
return fmovem_postinc(env, addr, mask, cpu_st_float64_ra);
}
uint32_t HELPER(fmovemd_ld_postinc)(CPUM68KState *env, uint32_t addr,
uint32_t mask)
{
return fmovem_postinc(env, addr, mask, cpu_ld_float64_ra);
}
static void make_quotient(CPUM68KState *env, int sign, uint32_t quotient)
{
quotient = (sign << 7) | (quotient & 0x7f);
env->fpsr = (env->fpsr & ~FPSR_QT_MASK) | (quotient << FPSR_QT_SHIFT);
}
void HELPER(fmod)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1)
{
uint64_t quotient;
int sign = extractFloatx80Sign(val1->d) ^ extractFloatx80Sign(val0->d);
res->d = floatx80_modrem(val1->d, val0->d, true, &quotient,
&env->fp_status);
if (floatx80_is_any_nan(res->d)) {
return;
}
make_quotient(env, sign, quotient);
}
void HELPER(frem)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1)
{
FPReg fp_quot;
floatx80 fp_rem;
fp_rem = floatx80_rem(val1->d, val0->d, &env->fp_status);
if (!floatx80_is_any_nan(fp_rem)) {
float_status fp_status = { };
uint32_t quotient;
int sign;
/* Calculate quotient directly using round to nearest mode */
set_float_2nan_prop_rule(float_2nan_prop_ab, &fp_status);
set_float_rounding_mode(float_round_nearest_even, &fp_status);
set_floatx80_rounding_precision(
get_floatx80_rounding_precision(&env->fp_status), &fp_status);
fp_quot.d = floatx80_div(val1->d, val0->d, &fp_status);
sign = extractFloatx80Sign(fp_quot.d);
quotient = floatx80_to_int32(floatx80_abs(fp_quot.d), &env->fp_status);
make_quotient(env, sign, quotient);
}
res->d = fp_rem;
}
void HELPER(fgetexp)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_getexp(val->d, &env->fp_status);
}
void HELPER(fgetman)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_getman(val->d, &env->fp_status);
}
void HELPER(fscale)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1)
{
res->d = floatx80_scale(val1->d, val0->d, &env->fp_status);
}
void HELPER(flognp1)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_lognp1(val->d, &env->fp_status);
}
void HELPER(flogn)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_logn(val->d, &env->fp_status);
}
void HELPER(flog10)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_log10(val->d, &env->fp_status);
}
void HELPER(flog2)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_log2(val->d, &env->fp_status);
}
void HELPER(fetox)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_etox(val->d, &env->fp_status);
}
void HELPER(ftwotox)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_twotox(val->d, &env->fp_status);
}
void HELPER(ftentox)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_tentox(val->d, &env->fp_status);
}
void HELPER(ftan)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_tan(val->d, &env->fp_status);
}
void HELPER(fsin)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_sin(val->d, &env->fp_status);
}
void HELPER(fcos)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_cos(val->d, &env->fp_status);
}
void HELPER(fsincos)(CPUM68KState *env, FPReg *res0, FPReg *res1, FPReg *val)
{
floatx80 a = val->d;
/*
* If res0 and res1 specify the same floating-point data register,
* the sine result is stored in the register, and the cosine
* result is discarded.
*/
res1->d = floatx80_cos(a, &env->fp_status);
res0->d = floatx80_sin(a, &env->fp_status);
}
void HELPER(fatan)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_atan(val->d, &env->fp_status);
}
void HELPER(fasin)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_asin(val->d, &env->fp_status);
}
void HELPER(facos)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_acos(val->d, &env->fp_status);
}
void HELPER(fatanh)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_atanh(val->d, &env->fp_status);
}
void HELPER(fetoxm1)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_etoxm1(val->d, &env->fp_status);
}
void HELPER(ftanh)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_tanh(val->d, &env->fp_status);
}
void HELPER(fsinh)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_sinh(val->d, &env->fp_status);
}
void HELPER(fcosh)(CPUM68KState *env, FPReg *res, FPReg *val)
{
res->d = floatx80_cosh(val->d, &env->fp_status);
}