You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/target/i386/kvm/tdx.c

1290 lines
38 KiB
C

/*
* QEMU TDX support
*
* Copyright (c) 2025 Intel Corporation
*
* Author:
* Xiaoyao Li <xiaoyao.li@intel.com>
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qemu/base64.h"
#include "qemu/mmap-alloc.h"
#include "qapi/error.h"
#include "qom/object_interfaces.h"
#include "crypto/hash.h"
#include "system/kvm_int.h"
#include "system/runstate.h"
#include "system/system.h"
#include "system/ramblock.h"
#include <linux/kvm_para.h>
#include "cpu.h"
#include "cpu-internal.h"
#include "host-cpu.h"
#include "hw/i386/e820_memory_layout.h"
#include "hw/i386/tdvf.h"
#include "hw/i386/x86.h"
#include "hw/i386/tdvf-hob.h"
#include "kvm_i386.h"
#include "tdx.h"
#include "standard-headers/asm-x86/kvm_para.h"
#define TDX_MIN_TSC_FREQUENCY_KHZ (100 * 1000)
#define TDX_MAX_TSC_FREQUENCY_KHZ (10 * 1000 * 1000)
#define TDX_TD_ATTRIBUTES_DEBUG BIT_ULL(0)
#define TDX_TD_ATTRIBUTES_SEPT_VE_DISABLE BIT_ULL(28)
#define TDX_TD_ATTRIBUTES_PKS BIT_ULL(30)
#define TDX_TD_ATTRIBUTES_PERFMON BIT_ULL(63)
#define TDX_SUPPORTED_TD_ATTRS (TDX_TD_ATTRIBUTES_SEPT_VE_DISABLE |\
TDX_TD_ATTRIBUTES_PKS | \
TDX_TD_ATTRIBUTES_PERFMON)
#define TDX_SUPPORTED_KVM_FEATURES ((1U << KVM_FEATURE_NOP_IO_DELAY) | \
(1U << KVM_FEATURE_PV_UNHALT) | \
(1U << KVM_FEATURE_PV_TLB_FLUSH) | \
(1U << KVM_FEATURE_PV_SEND_IPI) | \
(1U << KVM_FEATURE_POLL_CONTROL) | \
(1U << KVM_FEATURE_PV_SCHED_YIELD) | \
(1U << KVM_FEATURE_MSI_EXT_DEST_ID))
static TdxGuest *tdx_guest;
static struct kvm_tdx_capabilities *tdx_caps;
static struct kvm_cpuid2 *tdx_supported_cpuid;
/* Valid after kvm_arch_init()->confidential_guest_kvm_init()->tdx_kvm_init() */
bool is_tdx_vm(void)
{
return !!tdx_guest;
}
enum tdx_ioctl_level {
TDX_VM_IOCTL,
TDX_VCPU_IOCTL,
};
static int tdx_ioctl_internal(enum tdx_ioctl_level level, void *state,
int cmd_id, __u32 flags, void *data,
Error **errp)
{
struct kvm_tdx_cmd tdx_cmd = {};
int r;
const char *tdx_ioctl_name[] = {
[KVM_TDX_CAPABILITIES] = "KVM_TDX_CAPABILITIES",
[KVM_TDX_INIT_VM] = "KVM_TDX_INIT_VM",
[KVM_TDX_INIT_VCPU] = "KVM_TDX_INIT_VCPU",
[KVM_TDX_INIT_MEM_REGION] = "KVM_TDX_INIT_MEM_REGION",
[KVM_TDX_FINALIZE_VM] = "KVM_TDX_FINALIZE_VM",
[KVM_TDX_GET_CPUID] = "KVM_TDX_GET_CPUID",
};
tdx_cmd.id = cmd_id;
tdx_cmd.flags = flags;
tdx_cmd.data = (__u64)(unsigned long)data;
switch (level) {
case TDX_VM_IOCTL:
r = kvm_vm_ioctl(kvm_state, KVM_MEMORY_ENCRYPT_OP, &tdx_cmd);
break;
case TDX_VCPU_IOCTL:
r = kvm_vcpu_ioctl(state, KVM_MEMORY_ENCRYPT_OP, &tdx_cmd);
break;
default:
error_setg(errp, "Invalid tdx_ioctl_level %d", level);
return -EINVAL;
}
if (r < 0) {
error_setg_errno(errp, -r, "TDX ioctl %s failed, hw_errors: 0x%llx",
tdx_ioctl_name[cmd_id], tdx_cmd.hw_error);
}
return r;
}
static inline int tdx_vm_ioctl(int cmd_id, __u32 flags, void *data,
Error **errp)
{
return tdx_ioctl_internal(TDX_VM_IOCTL, NULL, cmd_id, flags, data, errp);
}
static inline int tdx_vcpu_ioctl(CPUState *cpu, int cmd_id, __u32 flags,
void *data, Error **errp)
{
return tdx_ioctl_internal(TDX_VCPU_IOCTL, cpu, cmd_id, flags, data, errp);
}
static int get_tdx_capabilities(Error **errp)
{
struct kvm_tdx_capabilities *caps;
/* 1st generation of TDX reports 6 cpuid configs */
int nr_cpuid_configs = 6;
size_t size;
int r;
do {
Error *local_err = NULL;
size = sizeof(struct kvm_tdx_capabilities) +
nr_cpuid_configs * sizeof(struct kvm_cpuid_entry2);
caps = g_malloc0(size);
caps->cpuid.nent = nr_cpuid_configs;
r = tdx_vm_ioctl(KVM_TDX_CAPABILITIES, 0, caps, &local_err);
if (r == -E2BIG) {
g_free(caps);
nr_cpuid_configs *= 2;
if (nr_cpuid_configs > KVM_MAX_CPUID_ENTRIES) {
error_report("KVM TDX seems broken that number of CPUID entries"
" in kvm_tdx_capabilities exceeds limit: %d",
KVM_MAX_CPUID_ENTRIES);
error_propagate(errp, local_err);
return r;
}
error_free(local_err);
} else if (r < 0) {
g_free(caps);
error_propagate(errp, local_err);
return r;
}
} while (r == -E2BIG);
tdx_caps = caps;
return 0;
}
void tdx_set_tdvf_region(MemoryRegion *tdvf_mr)
{
assert(!tdx_guest->tdvf_mr);
tdx_guest->tdvf_mr = tdvf_mr;
}
static TdxFirmwareEntry *tdx_get_hob_entry(TdxGuest *tdx)
{
TdxFirmwareEntry *entry;
for_each_tdx_fw_entry(&tdx->tdvf, entry) {
if (entry->type == TDVF_SECTION_TYPE_TD_HOB) {
return entry;
}
}
error_report("TDVF metadata doesn't specify TD_HOB location.");
exit(1);
}
static void tdx_add_ram_entry(uint64_t address, uint64_t length,
enum TdxRamType type)
{
uint32_t nr_entries = tdx_guest->nr_ram_entries;
tdx_guest->ram_entries = g_renew(TdxRamEntry, tdx_guest->ram_entries,
nr_entries + 1);
tdx_guest->ram_entries[nr_entries].address = address;
tdx_guest->ram_entries[nr_entries].length = length;
tdx_guest->ram_entries[nr_entries].type = type;
tdx_guest->nr_ram_entries++;
}
static int tdx_accept_ram_range(uint64_t address, uint64_t length)
{
uint64_t head_start, tail_start, head_length, tail_length;
uint64_t tmp_address, tmp_length;
TdxRamEntry *e;
int i = 0;
do {
if (i == tdx_guest->nr_ram_entries) {
return -1;
}
e = &tdx_guest->ram_entries[i++];
} while (address + length <= e->address || address >= e->address + e->length);
/*
* The to-be-accepted ram range must be fully contained by one
* RAM entry.
*/
if (e->address > address ||
e->address + e->length < address + length) {
return -1;
}
if (e->type == TDX_RAM_ADDED) {
return 0;
}
tmp_address = e->address;
tmp_length = e->length;
e->address = address;
e->length = length;
e->type = TDX_RAM_ADDED;
head_length = address - tmp_address;
if (head_length > 0) {
head_start = tmp_address;
tdx_add_ram_entry(head_start, head_length, TDX_RAM_UNACCEPTED);
}
tail_start = address + length;
if (tail_start < tmp_address + tmp_length) {
tail_length = tmp_address + tmp_length - tail_start;
tdx_add_ram_entry(tail_start, tail_length, TDX_RAM_UNACCEPTED);
}
return 0;
}
static int tdx_ram_entry_compare(const void *lhs_, const void* rhs_)
{
const TdxRamEntry *lhs = lhs_;
const TdxRamEntry *rhs = rhs_;
if (lhs->address == rhs->address) {
return 0;
}
if (le64_to_cpu(lhs->address) > le64_to_cpu(rhs->address)) {
return 1;
}
return -1;
}
static void tdx_init_ram_entries(void)
{
unsigned i, j, nr_e820_entries;
nr_e820_entries = e820_get_table(NULL);
tdx_guest->ram_entries = g_new(TdxRamEntry, nr_e820_entries);
for (i = 0, j = 0; i < nr_e820_entries; i++) {
uint64_t addr, len;
if (e820_get_entry(i, E820_RAM, &addr, &len)) {
tdx_guest->ram_entries[j].address = addr;
tdx_guest->ram_entries[j].length = len;
tdx_guest->ram_entries[j].type = TDX_RAM_UNACCEPTED;
j++;
}
}
tdx_guest->nr_ram_entries = j;
}
static void tdx_post_init_vcpus(void)
{
TdxFirmwareEntry *hob;
CPUState *cpu;
hob = tdx_get_hob_entry(tdx_guest);
CPU_FOREACH(cpu) {
tdx_vcpu_ioctl(cpu, KVM_TDX_INIT_VCPU, 0, (void *)(uintptr_t)hob->address,
&error_fatal);
}
}
static void tdx_finalize_vm(Notifier *notifier, void *unused)
{
TdxFirmware *tdvf = &tdx_guest->tdvf;
TdxFirmwareEntry *entry;
RAMBlock *ram_block;
Error *local_err = NULL;
int r;
tdx_init_ram_entries();
for_each_tdx_fw_entry(tdvf, entry) {
switch (entry->type) {
case TDVF_SECTION_TYPE_BFV:
case TDVF_SECTION_TYPE_CFV:
entry->mem_ptr = tdvf->mem_ptr + entry->data_offset;
break;
case TDVF_SECTION_TYPE_TD_HOB:
case TDVF_SECTION_TYPE_TEMP_MEM:
entry->mem_ptr = qemu_ram_mmap(-1, entry->size,
qemu_real_host_page_size(), 0, 0);
if (entry->mem_ptr == MAP_FAILED) {
error_report("Failed to mmap memory for TDVF section %d",
entry->type);
exit(1);
}
if (tdx_accept_ram_range(entry->address, entry->size)) {
error_report("Failed to accept memory for TDVF section %d",
entry->type);
qemu_ram_munmap(-1, entry->mem_ptr, entry->size);
exit(1);
}
break;
default:
error_report("Unsupported TDVF section %d", entry->type);
exit(1);
}
}
qsort(tdx_guest->ram_entries, tdx_guest->nr_ram_entries,
sizeof(TdxRamEntry), &tdx_ram_entry_compare);
tdvf_hob_create(tdx_guest, tdx_get_hob_entry(tdx_guest));
tdx_post_init_vcpus();
for_each_tdx_fw_entry(tdvf, entry) {
struct kvm_tdx_init_mem_region region;
uint32_t flags;
region = (struct kvm_tdx_init_mem_region) {
.source_addr = (uintptr_t)entry->mem_ptr,
.gpa = entry->address,
.nr_pages = entry->size >> 12,
};
flags = entry->attributes & TDVF_SECTION_ATTRIBUTES_MR_EXTEND ?
KVM_TDX_MEASURE_MEMORY_REGION : 0;
do {
error_free(local_err);
local_err = NULL;
r = tdx_vcpu_ioctl(first_cpu, KVM_TDX_INIT_MEM_REGION, flags,
&region, &local_err);
} while (r == -EAGAIN || r == -EINTR);
if (r < 0) {
error_report_err(local_err);
exit(1);
}
if (entry->type == TDVF_SECTION_TYPE_TD_HOB ||
entry->type == TDVF_SECTION_TYPE_TEMP_MEM) {
qemu_ram_munmap(-1, entry->mem_ptr, entry->size);
entry->mem_ptr = NULL;
}
}
/*
* TDVF image has been copied into private region above via
* KVM_MEMORY_MAPPING. It becomes useless.
*/
ram_block = tdx_guest->tdvf_mr->ram_block;
ram_block_discard_range(ram_block, 0, ram_block->max_length);
tdx_vm_ioctl(KVM_TDX_FINALIZE_VM, 0, NULL, &error_fatal);
CONFIDENTIAL_GUEST_SUPPORT(tdx_guest)->ready = true;
}
static Notifier tdx_machine_done_notify = {
.notify = tdx_finalize_vm,
};
/*
* Some CPUID bits change from fixed1 to configurable bits when TDX module
* supports TDX_FEATURES0.VE_REDUCTION. e.g., MCA/MCE/MTRR/CORE_CAPABILITY.
*
* To make QEMU work with all the versions of TDX module, keep the fixed1 bits
* here if they are ever fixed1 bits in any of the version though not fixed1 in
* the latest version. Otherwise, with the older version of TDX module, QEMU may
* treat the fixed1 bit as unsupported.
*
* For newer TDX module, it does no harm to keep them in tdx_fixed1_bits even
* though they changed to configurable bits. Because tdx_fixed1_bits is used to
* setup the supported bits.
*/
KvmCpuidInfo tdx_fixed1_bits = {
.cpuid.nent = 8,
.entries[0] = {
.function = 0x1,
.index = 0,
.ecx = CPUID_EXT_SSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_DTES64 |
CPUID_EXT_DSCPL | CPUID_EXT_SSSE3 | CPUID_EXT_CX16 |
CPUID_EXT_PDCM | CPUID_EXT_PCID | CPUID_EXT_SSE41 |
CPUID_EXT_SSE42 | CPUID_EXT_X2APIC | CPUID_EXT_MOVBE |
CPUID_EXT_POPCNT | CPUID_EXT_AES | CPUID_EXT_XSAVE |
CPUID_EXT_RDRAND | CPUID_EXT_HYPERVISOR,
.edx = CPUID_FP87 | CPUID_VME | CPUID_DE | CPUID_PSE | CPUID_TSC |
CPUID_MSR | CPUID_PAE | CPUID_MCE | CPUID_CX8 | CPUID_APIC |
CPUID_SEP | CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV |
CPUID_PAT | CPUID_CLFLUSH | CPUID_DTS | CPUID_MMX | CPUID_FXSR |
CPUID_SSE | CPUID_SSE2,
},
.entries[1] = {
.function = 0x6,
.index = 0,
.eax = CPUID_6_EAX_ARAT,
},
.entries[2] = {
.function = 0x7,
.index = 0,
.flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX,
.ebx = CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_FDP_EXCPTN_ONLY |
CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_ZERO_FCS_FDS | CPUID_7_0_EBX_RDSEED |
CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLFLUSHOPT |
CPUID_7_0_EBX_CLWB | CPUID_7_0_EBX_SHA_NI,
.ecx = CPUID_7_0_ECX_BUS_LOCK_DETECT | CPUID_7_0_ECX_MOVDIRI |
CPUID_7_0_ECX_MOVDIR64B,
.edx = CPUID_7_0_EDX_MD_CLEAR | CPUID_7_0_EDX_SPEC_CTRL |
CPUID_7_0_EDX_STIBP | CPUID_7_0_EDX_FLUSH_L1D |
CPUID_7_0_EDX_ARCH_CAPABILITIES | CPUID_7_0_EDX_CORE_CAPABILITY |
CPUID_7_0_EDX_SPEC_CTRL_SSBD,
},
.entries[3] = {
.function = 0x7,
.index = 2,
.flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX,
.edx = CPUID_7_2_EDX_PSFD | CPUID_7_2_EDX_IPRED_CTRL |
CPUID_7_2_EDX_RRSBA_CTRL | CPUID_7_2_EDX_BHI_CTRL,
},
.entries[4] = {
.function = 0xD,
.index = 0,
.flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX,
.eax = XSTATE_FP_MASK | XSTATE_SSE_MASK,
},
.entries[5] = {
.function = 0xD,
.index = 1,
.flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX,
.eax = CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC|
CPUID_XSAVE_XGETBV1 | CPUID_XSAVE_XSAVES,
},
.entries[6] = {
.function = 0x80000001,
.index = 0,
.ecx = CPUID_EXT3_LAHF_LM | CPUID_EXT3_ABM | CPUID_EXT3_3DNOWPREFETCH,
/*
* Strictly speaking, SYSCALL is not fixed1 bit since it depends on
* the CPU to be in 64-bit mode. But here fixed1 is used to serve the
* purpose of supported bits for TDX. In this sense, SYACALL is always
* supported.
*/
.edx = CPUID_EXT2_SYSCALL | CPUID_EXT2_NX | CPUID_EXT2_PDPE1GB |
CPUID_EXT2_RDTSCP | CPUID_EXT2_LM,
},
.entries[7] = {
.function = 0x80000007,
.index = 0,
.edx = CPUID_APM_INVTSC,
},
};
typedef struct TdxAttrsMap {
uint32_t attr_index;
uint32_t cpuid_leaf;
uint32_t cpuid_subleaf;
int cpuid_reg;
uint32_t feat_mask;
} TdxAttrsMap;
static TdxAttrsMap tdx_attrs_maps[] = {
{.attr_index = 27,
.cpuid_leaf = 7,
.cpuid_subleaf = 1,
.cpuid_reg = R_EAX,
.feat_mask = CPUID_7_1_EAX_LASS,},
{.attr_index = 30,
.cpuid_leaf = 7,
.cpuid_subleaf = 0,
.cpuid_reg = R_ECX,
.feat_mask = CPUID_7_0_ECX_PKS,},
{.attr_index = 31,
.cpuid_leaf = 7,
.cpuid_subleaf = 0,
.cpuid_reg = R_ECX,
.feat_mask = CPUID_7_0_ECX_KeyLocker,},
};
typedef struct TdxXFAMDep {
int xfam_bit;
FeatureMask feat_mask;
} TdxXFAMDep;
/*
* Note, only the CPUID bits whose virtualization type are "XFAM & Native" are
* defiend here.
*
* For those whose virtualization type are "XFAM & Configured & Native", they
* are reported as configurable bits. And they are not supported if not in the
* configureable bits list from KVM even if the corresponding XFAM bit is
* supported.
*/
TdxXFAMDep tdx_xfam_deps[] = {
{ XSTATE_YMM_BIT, { FEAT_1_ECX, CPUID_EXT_FMA }},
{ XSTATE_YMM_BIT, { FEAT_7_0_EBX, CPUID_7_0_EBX_AVX2 }},
{ XSTATE_OPMASK_BIT, { FEAT_7_0_ECX, CPUID_7_0_ECX_AVX512_VBMI}},
{ XSTATE_OPMASK_BIT, { FEAT_7_0_EDX, CPUID_7_0_EDX_AVX512_FP16}},
{ XSTATE_PT_BIT, { FEAT_7_0_EBX, CPUID_7_0_EBX_INTEL_PT}},
{ XSTATE_PKRU_BIT, { FEAT_7_0_ECX, CPUID_7_0_ECX_PKU}},
{ XSTATE_XTILE_CFG_BIT, { FEAT_7_0_EDX, CPUID_7_0_EDX_AMX_BF16 }},
{ XSTATE_XTILE_CFG_BIT, { FEAT_7_0_EDX, CPUID_7_0_EDX_AMX_TILE }},
{ XSTATE_XTILE_CFG_BIT, { FEAT_7_0_EDX, CPUID_7_0_EDX_AMX_INT8 }},
};
static struct kvm_cpuid_entry2 *find_in_supported_entry(uint32_t function,
uint32_t index)
{
struct kvm_cpuid_entry2 *e;
e = cpuid_find_entry(tdx_supported_cpuid, function, index);
if (!e) {
if (tdx_supported_cpuid->nent >= KVM_MAX_CPUID_ENTRIES) {
error_report("tdx_supported_cpuid requries more space than %d entries",
KVM_MAX_CPUID_ENTRIES);
exit(1);
}
e = &tdx_supported_cpuid->entries[tdx_supported_cpuid->nent++];
e->function = function;
e->index = index;
}
return e;
}
static void tdx_add_supported_cpuid_by_fixed1_bits(void)
{
struct kvm_cpuid_entry2 *e, *e1;
int i;
for (i = 0; i < tdx_fixed1_bits.cpuid.nent; i++) {
e = &tdx_fixed1_bits.entries[i];
e1 = find_in_supported_entry(e->function, e->index);
e1->eax |= e->eax;
e1->ebx |= e->ebx;
e1->ecx |= e->ecx;
e1->edx |= e->edx;
}
}
static void tdx_add_supported_cpuid_by_attrs(void)
{
struct kvm_cpuid_entry2 *e;
TdxAttrsMap *map;
int i;
for (i = 0; i < ARRAY_SIZE(tdx_attrs_maps); i++) {
map = &tdx_attrs_maps[i];
if (!((1ULL << map->attr_index) & tdx_caps->supported_attrs)) {
continue;
}
e = find_in_supported_entry(map->cpuid_leaf, map->cpuid_subleaf);
switch(map->cpuid_reg) {
case R_EAX:
e->eax |= map->feat_mask;
break;
case R_EBX:
e->ebx |= map->feat_mask;
break;
case R_ECX:
e->ecx |= map->feat_mask;
break;
case R_EDX:
e->edx |= map->feat_mask;
break;
}
}
}
static void tdx_add_supported_cpuid_by_xfam(void)
{
struct kvm_cpuid_entry2 *e;
int i;
const TdxXFAMDep *xfam_dep;
const FeatureWordInfo *f;
for (i = 0; i < ARRAY_SIZE(tdx_xfam_deps); i++) {
xfam_dep = &tdx_xfam_deps[i];
if (!((1ULL << xfam_dep->xfam_bit) & tdx_caps->supported_xfam)) {
continue;
}
f = &feature_word_info[xfam_dep->feat_mask.index];
if (f->type != CPUID_FEATURE_WORD) {
continue;
}
e = find_in_supported_entry(f->cpuid.eax, f->cpuid.ecx);
switch(f->cpuid.reg) {
case R_EAX:
e->eax |= xfam_dep->feat_mask.mask;
break;
case R_EBX:
e->ebx |= xfam_dep->feat_mask.mask;
break;
case R_ECX:
e->ecx |= xfam_dep->feat_mask.mask;
break;
case R_EDX:
e->edx |= xfam_dep->feat_mask.mask;
break;
}
}
e = find_in_supported_entry(0xd, 0);
e->eax |= (tdx_caps->supported_xfam & CPUID_XSTATE_XCR0_MASK);
e->edx |= (tdx_caps->supported_xfam & CPUID_XSTATE_XCR0_MASK) >> 32;
e = find_in_supported_entry(0xd, 1);
/*
* Mark XFD always support for TDX, it will be cleared finally in
* tdx_adjust_cpuid_features() if XFD is unavailable on the hardware
* because in this case the original data has it as 0.
*/
e->eax |= CPUID_XSAVE_XFD;
e->ecx |= (tdx_caps->supported_xfam & CPUID_XSTATE_XSS_MASK);
e->edx |= (tdx_caps->supported_xfam & CPUID_XSTATE_XSS_MASK) >> 32;
}
static void tdx_add_supported_kvm_features(void)
{
struct kvm_cpuid_entry2 *e;
e = find_in_supported_entry(0x40000001, 0);
e->eax = TDX_SUPPORTED_KVM_FEATURES;
}
static void tdx_setup_supported_cpuid(void)
{
if (tdx_supported_cpuid) {
return;
}
tdx_supported_cpuid = g_malloc0(sizeof(*tdx_supported_cpuid) +
KVM_MAX_CPUID_ENTRIES * sizeof(struct kvm_cpuid_entry2));
memcpy(tdx_supported_cpuid->entries, tdx_caps->cpuid.entries,
tdx_caps->cpuid.nent * sizeof(struct kvm_cpuid_entry2));
tdx_supported_cpuid->nent = tdx_caps->cpuid.nent;
tdx_add_supported_cpuid_by_fixed1_bits();
tdx_add_supported_cpuid_by_attrs();
tdx_add_supported_cpuid_by_xfam();
tdx_add_supported_kvm_features();
}
static int tdx_kvm_init(ConfidentialGuestSupport *cgs, Error **errp)
{
MachineState *ms = MACHINE(qdev_get_machine());
X86MachineState *x86ms = X86_MACHINE(ms);
TdxGuest *tdx = TDX_GUEST(cgs);
int r = 0;
kvm_mark_guest_state_protected();
if (x86ms->smm == ON_OFF_AUTO_AUTO) {
x86ms->smm = ON_OFF_AUTO_OFF;
} else if (x86ms->smm == ON_OFF_AUTO_ON) {
error_setg(errp, "TDX VM doesn't support SMM");
return -EINVAL;
}
if (x86ms->pic == ON_OFF_AUTO_AUTO) {
x86ms->pic = ON_OFF_AUTO_OFF;
} else if (x86ms->pic == ON_OFF_AUTO_ON) {
error_setg(errp, "TDX VM doesn't support PIC");
return -EINVAL;
}
if (kvm_state->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
kvm_state->kernel_irqchip_split = ON_OFF_AUTO_ON;
} else if (kvm_state->kernel_irqchip_split != ON_OFF_AUTO_ON) {
error_setg(errp, "TDX VM requires kernel_irqchip to be split");
return -EINVAL;
}
if (!tdx_caps) {
r = get_tdx_capabilities(errp);
if (r) {
return r;
}
}
tdx_setup_supported_cpuid();
/* TDX relies on KVM_HC_MAP_GPA_RANGE to handle TDG.VP.VMCALL<MapGPA> */
if (!kvm_enable_hypercall(BIT_ULL(KVM_HC_MAP_GPA_RANGE))) {
return -EOPNOTSUPP;
}
/*
* Set kvm_readonly_mem_allowed to false, because TDX only supports readonly
* memory for shared memory but not for private memory. Besides, whether a
* memslot is private or shared is not determined by QEMU.
*
* Thus, just mark readonly memory not supported for simplicity.
*/
kvm_readonly_mem_allowed = false;
qemu_add_machine_init_done_notifier(&tdx_machine_done_notify);
tdx_guest = tdx;
return 0;
}
static int tdx_kvm_type(X86ConfidentialGuest *cg)
{
/* Do the object check */
TDX_GUEST(cg);
return KVM_X86_TDX_VM;
}
static void tdx_cpu_instance_init(X86ConfidentialGuest *cg, CPUState *cpu)
{
X86CPU *x86cpu = X86_CPU(cpu);
object_property_set_bool(OBJECT(cpu), "pmu", false, &error_abort);
/* invtsc is fixed1 for TD guest */
object_property_set_bool(OBJECT(cpu), "invtsc", true, &error_abort);
x86cpu->enable_cpuid_0x1f = true;
}
static uint32_t tdx_adjust_cpuid_features(X86ConfidentialGuest *cg,
uint32_t feature, uint32_t index,
int reg, uint32_t value)
{
struct kvm_cpuid_entry2 *e;
e = cpuid_find_entry(&tdx_fixed1_bits.cpuid, feature, index);
if (e) {
value |= cpuid_entry_get_reg(e, reg);
}
if (is_feature_word_cpuid(feature, index, reg)) {
e = cpuid_find_entry(tdx_supported_cpuid, feature, index);
if (e) {
value &= cpuid_entry_get_reg(e, reg);
}
}
return value;
}
static struct kvm_cpuid2 *tdx_fetch_cpuid(CPUState *cpu, int *ret)
{
struct kvm_cpuid2 *fetch_cpuid;
int size = KVM_MAX_CPUID_ENTRIES;
Error *local_err = NULL;
int r;
do {
error_free(local_err);
local_err = NULL;
fetch_cpuid = g_malloc0(sizeof(*fetch_cpuid) +
sizeof(struct kvm_cpuid_entry2) * size);
fetch_cpuid->nent = size;
r = tdx_vcpu_ioctl(cpu, KVM_TDX_GET_CPUID, 0, fetch_cpuid, &local_err);
if (r == -E2BIG) {
g_free(fetch_cpuid);
size = fetch_cpuid->nent;
}
} while (r == -E2BIG);
if (r < 0) {
error_report_err(local_err);
*ret = r;
return NULL;
}
return fetch_cpuid;
}
static int tdx_check_features(X86ConfidentialGuest *cg, CPUState *cs)
{
uint64_t actual, requested, unavailable, forced_on;
g_autofree struct kvm_cpuid2 *fetch_cpuid;
const char *forced_on_prefix = NULL;
const char *unav_prefix = NULL;
struct kvm_cpuid_entry2 *entry;
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
FeatureWordInfo *wi;
FeatureWord w;
bool mismatch = false;
int r;
fetch_cpuid = tdx_fetch_cpuid(cs, &r);
if (!fetch_cpuid) {
return r;
}
if (cpu->check_cpuid || cpu->enforce_cpuid) {
unav_prefix = "TDX doesn't support requested feature";
forced_on_prefix = "TDX forcibly sets the feature";
}
for (w = 0; w < FEATURE_WORDS; w++) {
wi = &feature_word_info[w];
actual = 0;
switch (wi->type) {
case CPUID_FEATURE_WORD:
entry = cpuid_find_entry(fetch_cpuid, wi->cpuid.eax, wi->cpuid.ecx);
if (!entry) {
/*
* If KVM doesn't report it means it's totally configurable
* by QEMU
*/
continue;
}
actual = cpuid_entry_get_reg(entry, wi->cpuid.reg);
break;
case MSR_FEATURE_WORD:
/*
* TODO:
* validate MSR features when KVM has interface report them.
*/
continue;
}
/* Fixup for special cases */
switch (w) {
case FEAT_8000_0001_EDX:
/*
* Intel enumerates SYSCALL bit as 1 only when processor in 64-bit
* mode and before vcpu running it's not in 64-bit mode.
*/
actual |= CPUID_EXT2_SYSCALL;
break;
default:
break;
}
requested = env->features[w];
unavailable = requested & ~actual;
mark_unavailable_features(cpu, w, unavailable, unav_prefix);
if (unavailable) {
mismatch = true;
}
forced_on = actual & ~requested;
mark_forced_on_features(cpu, w, forced_on, forced_on_prefix);
if (forced_on) {
mismatch = true;
}
}
if (cpu->enforce_cpuid && mismatch) {
return -EINVAL;
}
if (cpu->phys_bits != host_cpu_phys_bits()) {
error_report("TDX requires guest CPU physical bits (%u) "
"to match host CPU physical bits (%u)",
cpu->phys_bits, host_cpu_phys_bits());
return -EINVAL;
}
return 0;
}
static int tdx_validate_attributes(TdxGuest *tdx, Error **errp)
{
if ((tdx->attributes & ~tdx_caps->supported_attrs)) {
error_setg(errp, "Invalid attributes 0x%"PRIx64" for TDX VM "
"(KVM supported: 0x%"PRIx64")", tdx->attributes,
(uint64_t)tdx_caps->supported_attrs);
return -1;
}
if (tdx->attributes & ~TDX_SUPPORTED_TD_ATTRS) {
error_setg(errp, "Some QEMU unsupported TD attribute bits being "
"requested: 0x%"PRIx64" (QEMU supported: 0x%"PRIx64")",
tdx->attributes, (uint64_t)TDX_SUPPORTED_TD_ATTRS);
return -1;
}
return 0;
}
static int setup_td_guest_attributes(X86CPU *x86cpu, Error **errp)
{
CPUX86State *env = &x86cpu->env;
tdx_guest->attributes |= (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKS) ?
TDX_TD_ATTRIBUTES_PKS : 0;
tdx_guest->attributes |= x86cpu->enable_pmu ? TDX_TD_ATTRIBUTES_PERFMON : 0;
return tdx_validate_attributes(tdx_guest, errp);
}
static int setup_td_xfam(X86CPU *x86cpu, Error **errp)
{
CPUX86State *env = &x86cpu->env;
uint64_t xfam;
xfam = env->features[FEAT_XSAVE_XCR0_LO] |
env->features[FEAT_XSAVE_XCR0_HI] |
env->features[FEAT_XSAVE_XSS_LO] |
env->features[FEAT_XSAVE_XSS_HI];
if (xfam & ~tdx_caps->supported_xfam) {
error_setg(errp, "Invalid XFAM 0x%"PRIx64" for TDX VM (supported: 0x%"PRIx64"))",
xfam, (uint64_t)tdx_caps->supported_xfam);
return -1;
}
tdx_guest->xfam = xfam;
return 0;
}
static void tdx_filter_cpuid(struct kvm_cpuid2 *cpuids)
{
int i, dest_cnt = 0;
struct kvm_cpuid_entry2 *src, *dest, *conf;
for (i = 0; i < cpuids->nent; i++) {
src = cpuids->entries + i;
conf = cpuid_find_entry(&tdx_caps->cpuid, src->function, src->index);
if (!conf) {
continue;
}
dest = cpuids->entries + dest_cnt;
dest->function = src->function;
dest->index = src->index;
dest->flags = src->flags;
dest->eax = src->eax & conf->eax;
dest->ebx = src->ebx & conf->ebx;
dest->ecx = src->ecx & conf->ecx;
dest->edx = src->edx & conf->edx;
dest_cnt++;
}
cpuids->nent = dest_cnt++;
}
int tdx_pre_create_vcpu(CPUState *cpu, Error **errp)
{
X86CPU *x86cpu = X86_CPU(cpu);
CPUX86State *env = &x86cpu->env;
g_autofree struct kvm_tdx_init_vm *init_vm = NULL;
Error *local_err = NULL;
size_t data_len;
int retry = 10000;
int r = 0;
QEMU_LOCK_GUARD(&tdx_guest->lock);
if (tdx_guest->initialized) {
return r;
}
init_vm = g_malloc0(sizeof(struct kvm_tdx_init_vm) +
sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
if (!kvm_check_extension(kvm_state, KVM_CAP_X86_APIC_BUS_CYCLES_NS)) {
error_setg(errp, "KVM doesn't support KVM_CAP_X86_APIC_BUS_CYCLES_NS");
return -EOPNOTSUPP;
}
r = kvm_vm_enable_cap(kvm_state, KVM_CAP_X86_APIC_BUS_CYCLES_NS,
0, TDX_APIC_BUS_CYCLES_NS);
if (r < 0) {
error_setg_errno(errp, -r,
"Unable to set core crystal clock frequency to 25MHz");
return r;
}
if (env->tsc_khz && (env->tsc_khz < TDX_MIN_TSC_FREQUENCY_KHZ ||
env->tsc_khz > TDX_MAX_TSC_FREQUENCY_KHZ)) {
error_setg(errp, "Invalid TSC %"PRId64" KHz, must specify cpu_frequency "
"between [%d, %d] kHz", env->tsc_khz,
TDX_MIN_TSC_FREQUENCY_KHZ, TDX_MAX_TSC_FREQUENCY_KHZ);
return -EINVAL;
}
if (env->tsc_khz % (25 * 1000)) {
error_setg(errp, "Invalid TSC %"PRId64" KHz, it must be multiple of 25MHz",
env->tsc_khz);
return -EINVAL;
}
/* it's safe even env->tsc_khz is 0. KVM uses host's tsc_khz in this case */
r = kvm_vm_ioctl(kvm_state, KVM_SET_TSC_KHZ, env->tsc_khz);
if (r < 0) {
error_setg_errno(errp, -r, "Unable to set TSC frequency to %"PRId64" kHz",
env->tsc_khz);
return r;
}
if (tdx_guest->mrconfigid) {
g_autofree uint8_t *data = qbase64_decode(tdx_guest->mrconfigid,
strlen(tdx_guest->mrconfigid), &data_len, errp);
if (!data) {
return -1;
}
if (data_len != QCRYPTO_HASH_DIGEST_LEN_SHA384) {
error_setg(errp, "TDX: failed to decode mrconfigid");
return -1;
}
memcpy(init_vm->mrconfigid, data, data_len);
}
if (tdx_guest->mrowner) {
g_autofree uint8_t *data = qbase64_decode(tdx_guest->mrowner,
strlen(tdx_guest->mrowner), &data_len, errp);
if (!data) {
return -1;
}
if (data_len != QCRYPTO_HASH_DIGEST_LEN_SHA384) {
error_setg(errp, "TDX: failed to decode mrowner");
return -1;
}
memcpy(init_vm->mrowner, data, data_len);
}
if (tdx_guest->mrownerconfig) {
g_autofree uint8_t *data = qbase64_decode(tdx_guest->mrownerconfig,
strlen(tdx_guest->mrownerconfig), &data_len, errp);
if (!data) {
return -1;
}
if (data_len != QCRYPTO_HASH_DIGEST_LEN_SHA384) {
error_setg(errp, "TDX: failed to decode mrownerconfig");
return -1;
}
memcpy(init_vm->mrownerconfig, data, data_len);
}
r = setup_td_guest_attributes(x86cpu, errp);
if (r) {
return r;
}
r = setup_td_xfam(x86cpu, errp);
if (r) {
return r;
}
init_vm->cpuid.nent = kvm_x86_build_cpuid(env, init_vm->cpuid.entries, 0);
tdx_filter_cpuid(&init_vm->cpuid);
init_vm->attributes = tdx_guest->attributes;
init_vm->xfam = tdx_guest->xfam;
/*
* KVM_TDX_INIT_VM gets -EAGAIN when KVM side SEAMCALL(TDH_MNG_CREATE)
* gets TDX_RND_NO_ENTROPY due to Random number generation (e.g., RDRAND or
* RDSEED) is busy.
*
* Retry for the case.
*/
do {
error_free(local_err);
local_err = NULL;
r = tdx_vm_ioctl(KVM_TDX_INIT_VM, 0, init_vm, &local_err);
} while (r == -EAGAIN && --retry);
if (r < 0) {
if (!retry) {
error_append_hint(&local_err, "Hardware RNG (Random Number "
"Generator) is busy occupied by someone (via RDRAND/RDSEED) "
"maliciously, which leads to KVM_TDX_INIT_VM keeping failure "
"due to lack of entropy.\n");
}
error_propagate(errp, local_err);
return r;
}
tdx_guest->initialized = true;
return 0;
}
int tdx_parse_tdvf(void *flash_ptr, int size)
{
return tdvf_parse_metadata(&tdx_guest->tdvf, flash_ptr, size);
}
static void tdx_panicked_on_fatal_error(X86CPU *cpu, uint64_t error_code,
char *message, uint64_t gpa)
{
GuestPanicInformation *panic_info;
panic_info = g_new0(GuestPanicInformation, 1);
panic_info->type = GUEST_PANIC_INFORMATION_TYPE_TDX;
panic_info->u.tdx.error_code = (uint32_t) error_code;
panic_info->u.tdx.message = message;
panic_info->u.tdx.gpa = gpa;
qemu_system_guest_panicked(panic_info);
}
/*
* Only 8 registers can contain valid ASCII byte stream to form the fatal
* message, and their sequence is: R14, R15, RBX, RDI, RSI, R8, R9, RDX
*/
#define TDX_FATAL_MESSAGE_MAX 64
#define TDX_REPORT_FATAL_ERROR_GPA_VALID BIT_ULL(63)
int tdx_handle_report_fatal_error(X86CPU *cpu, struct kvm_run *run)
{
uint64_t error_code = run->system_event.data[R_R12];
uint64_t reg_mask = run->system_event.data[R_ECX];
char *message = NULL;
uint64_t *tmp;
uint64_t gpa = -1ull;
if (error_code & 0xffff) {
error_report("TDX: REPORT_FATAL_ERROR: invalid error code: 0x%"PRIx64,
error_code);
return -1;
}
if (reg_mask) {
message = g_malloc0(TDX_FATAL_MESSAGE_MAX + 1);
tmp = (uint64_t *)message;
#define COPY_REG(REG) \
do { \
if (reg_mask & BIT_ULL(REG)) { \
*(tmp++) = run->system_event.data[REG]; \
} \
} while (0)
COPY_REG(R_R14);
COPY_REG(R_R15);
COPY_REG(R_EBX);
COPY_REG(R_EDI);
COPY_REG(R_ESI);
COPY_REG(R_R8);
COPY_REG(R_R9);
COPY_REG(R_EDX);
*((char *)tmp) = '\0';
}
#undef COPY_REG
if (error_code & TDX_REPORT_FATAL_ERROR_GPA_VALID) {
gpa = run->system_event.data[R_R13];
}
tdx_panicked_on_fatal_error(cpu, error_code, message, gpa);
return -1;
}
static bool tdx_guest_get_sept_ve_disable(Object *obj, Error **errp)
{
TdxGuest *tdx = TDX_GUEST(obj);
return !!(tdx->attributes & TDX_TD_ATTRIBUTES_SEPT_VE_DISABLE);
}
static void tdx_guest_set_sept_ve_disable(Object *obj, bool value, Error **errp)
{
TdxGuest *tdx = TDX_GUEST(obj);
if (value) {
tdx->attributes |= TDX_TD_ATTRIBUTES_SEPT_VE_DISABLE;
} else {
tdx->attributes &= ~TDX_TD_ATTRIBUTES_SEPT_VE_DISABLE;
}
}
static char *tdx_guest_get_mrconfigid(Object *obj, Error **errp)
{
TdxGuest *tdx = TDX_GUEST(obj);
return g_strdup(tdx->mrconfigid);
}
static void tdx_guest_set_mrconfigid(Object *obj, const char *value, Error **errp)
{
TdxGuest *tdx = TDX_GUEST(obj);
g_free(tdx->mrconfigid);
tdx->mrconfigid = g_strdup(value);
}
static char *tdx_guest_get_mrowner(Object *obj, Error **errp)
{
TdxGuest *tdx = TDX_GUEST(obj);
return g_strdup(tdx->mrowner);
}
static void tdx_guest_set_mrowner(Object *obj, const char *value, Error **errp)
{
TdxGuest *tdx = TDX_GUEST(obj);
g_free(tdx->mrowner);
tdx->mrowner = g_strdup(value);
}
static char *tdx_guest_get_mrownerconfig(Object *obj, Error **errp)
{
TdxGuest *tdx = TDX_GUEST(obj);
return g_strdup(tdx->mrownerconfig);
}
static void tdx_guest_set_mrownerconfig(Object *obj, const char *value, Error **errp)
{
TdxGuest *tdx = TDX_GUEST(obj);
g_free(tdx->mrownerconfig);
tdx->mrownerconfig = g_strdup(value);
}
/* tdx guest */
OBJECT_DEFINE_TYPE_WITH_INTERFACES(TdxGuest,
tdx_guest,
TDX_GUEST,
X86_CONFIDENTIAL_GUEST,
{ TYPE_USER_CREATABLE },
{ NULL })
static void tdx_guest_init(Object *obj)
{
ConfidentialGuestSupport *cgs = CONFIDENTIAL_GUEST_SUPPORT(obj);
TdxGuest *tdx = TDX_GUEST(obj);
qemu_mutex_init(&tdx->lock);
cgs->require_guest_memfd = true;
tdx->attributes = TDX_TD_ATTRIBUTES_SEPT_VE_DISABLE;
object_property_add_uint64_ptr(obj, "attributes", &tdx->attributes,
OBJ_PROP_FLAG_READWRITE);
object_property_add_bool(obj, "sept-ve-disable",
tdx_guest_get_sept_ve_disable,
tdx_guest_set_sept_ve_disable);
object_property_add_str(obj, "mrconfigid",
tdx_guest_get_mrconfigid,
tdx_guest_set_mrconfigid);
object_property_add_str(obj, "mrowner",
tdx_guest_get_mrowner, tdx_guest_set_mrowner);
object_property_add_str(obj, "mrownerconfig",
tdx_guest_get_mrownerconfig,
tdx_guest_set_mrownerconfig);
}
static void tdx_guest_finalize(Object *obj)
{
}
static void tdx_guest_class_init(ObjectClass *oc, const void *data)
{
ConfidentialGuestSupportClass *klass = CONFIDENTIAL_GUEST_SUPPORT_CLASS(oc);
X86ConfidentialGuestClass *x86_klass = X86_CONFIDENTIAL_GUEST_CLASS(oc);
klass->kvm_init = tdx_kvm_init;
x86_klass->kvm_type = tdx_kvm_type;
x86_klass->cpu_instance_init = tdx_cpu_instance_init;
x86_klass->adjust_cpuid_features = tdx_adjust_cpuid_features;
x86_klass->check_features = tdx_check_features;
}