mirror of https://gitlab.com/qemu-project/qemu
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2780 lines
91 KiB
C
2780 lines
91 KiB
C
/*
|
|
* QEMU ARM CPU
|
|
*
|
|
* Copyright (c) 2012 SUSE LINUX Products GmbH
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see
|
|
* <http://www.gnu.org/licenses/gpl-2.0.html>
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/qemu-print.h"
|
|
#include "qemu/timer.h"
|
|
#include "qemu/log.h"
|
|
#include "exec/page-vary.h"
|
|
#include "target/arm/idau.h"
|
|
#include "qemu/module.h"
|
|
#include "qapi/error.h"
|
|
#include "cpu.h"
|
|
#ifdef CONFIG_TCG
|
|
#include "hw/core/tcg-cpu-ops.h"
|
|
#endif /* CONFIG_TCG */
|
|
#include "internals.h"
|
|
#include "cpu-features.h"
|
|
#include "exec/exec-all.h"
|
|
#include "hw/qdev-properties.h"
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
#include "hw/loader.h"
|
|
#include "hw/boards.h"
|
|
#ifdef CONFIG_TCG
|
|
#include "hw/intc/armv7m_nvic.h"
|
|
#endif /* CONFIG_TCG */
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
#include "sysemu/tcg.h"
|
|
#include "sysemu/qtest.h"
|
|
#include "sysemu/hw_accel.h"
|
|
#include "kvm_arm.h"
|
|
#include "disas/capstone.h"
|
|
#include "fpu/softfloat.h"
|
|
#include "cpregs.h"
|
|
#include "target/arm/cpu-qom.h"
|
|
#include "target/arm/gtimer.h"
|
|
|
|
static void arm_cpu_set_pc(CPUState *cs, vaddr value)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
if (is_a64(env)) {
|
|
env->pc = value;
|
|
env->thumb = false;
|
|
} else {
|
|
env->regs[15] = value & ~1;
|
|
env->thumb = value & 1;
|
|
}
|
|
}
|
|
|
|
static vaddr arm_cpu_get_pc(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
if (is_a64(env)) {
|
|
return env->pc;
|
|
} else {
|
|
return env->regs[15];
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_TCG
|
|
void arm_cpu_synchronize_from_tb(CPUState *cs,
|
|
const TranslationBlock *tb)
|
|
{
|
|
/* The program counter is always up to date with CF_PCREL. */
|
|
if (!(tb_cflags(tb) & CF_PCREL)) {
|
|
CPUARMState *env = cpu_env(cs);
|
|
/*
|
|
* It's OK to look at env for the current mode here, because it's
|
|
* never possible for an AArch64 TB to chain to an AArch32 TB.
|
|
*/
|
|
if (is_a64(env)) {
|
|
env->pc = tb->pc;
|
|
} else {
|
|
env->regs[15] = tb->pc;
|
|
}
|
|
}
|
|
}
|
|
|
|
void arm_restore_state_to_opc(CPUState *cs,
|
|
const TranslationBlock *tb,
|
|
const uint64_t *data)
|
|
{
|
|
CPUARMState *env = cpu_env(cs);
|
|
|
|
if (is_a64(env)) {
|
|
if (tb_cflags(tb) & CF_PCREL) {
|
|
env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
|
|
} else {
|
|
env->pc = data[0];
|
|
}
|
|
env->condexec_bits = 0;
|
|
env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
|
|
} else {
|
|
if (tb_cflags(tb) & CF_PCREL) {
|
|
env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
|
|
} else {
|
|
env->regs[15] = data[0];
|
|
}
|
|
env->condexec_bits = data[1];
|
|
env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
|
|
}
|
|
}
|
|
#endif /* CONFIG_TCG */
|
|
|
|
/*
|
|
* With SCTLR_ELx.NMI == 0, IRQ with Superpriority is masked identically with
|
|
* IRQ without Superpriority. Moreover, if the GIC is configured so that
|
|
* FEAT_GICv3_NMI is only set if FEAT_NMI is set, then we won't ever see
|
|
* CPU_INTERRUPT_*NMI anyway. So we might as well accept NMI here
|
|
* unconditionally.
|
|
*/
|
|
static bool arm_cpu_has_work(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
return (cpu->power_state != PSCI_OFF)
|
|
&& cs->interrupt_request &
|
|
(CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
|
|
| CPU_INTERRUPT_NMI | CPU_INTERRUPT_VINMI | CPU_INTERRUPT_VFNMI
|
|
| CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
|
|
| CPU_INTERRUPT_EXITTB);
|
|
}
|
|
|
|
static int arm_cpu_mmu_index(CPUState *cs, bool ifetch)
|
|
{
|
|
return arm_env_mmu_index(cpu_env(cs));
|
|
}
|
|
|
|
void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
|
|
void *opaque)
|
|
{
|
|
ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
|
|
|
|
entry->hook = hook;
|
|
entry->opaque = opaque;
|
|
|
|
QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
|
|
}
|
|
|
|
void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
|
|
void *opaque)
|
|
{
|
|
ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
|
|
|
|
entry->hook = hook;
|
|
entry->opaque = opaque;
|
|
|
|
QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
|
|
}
|
|
|
|
/*
|
|
* Set the float_status behaviour to match the Arm defaults:
|
|
* * tininess-before-rounding
|
|
* * 2-input NaN propagation prefers SNaN over QNaN, and then
|
|
* operand A over operand B (see FPProcessNaNs() pseudocode)
|
|
*/
|
|
static void arm_set_default_fp_behaviours(float_status *s)
|
|
{
|
|
set_float_detect_tininess(float_tininess_before_rounding, s);
|
|
set_float_2nan_prop_rule(float_2nan_prop_s_ab, s);
|
|
}
|
|
|
|
static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
|
|
{
|
|
/* Reset a single ARMCPRegInfo register */
|
|
ARMCPRegInfo *ri = value;
|
|
ARMCPU *cpu = opaque;
|
|
|
|
if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
|
|
return;
|
|
}
|
|
|
|
if (ri->resetfn) {
|
|
ri->resetfn(&cpu->env, ri);
|
|
return;
|
|
}
|
|
|
|
/* A zero offset is never possible as it would be regs[0]
|
|
* so we use it to indicate that reset is being handled elsewhere.
|
|
* This is basically only used for fields in non-core coprocessors
|
|
* (like the pxa2xx ones).
|
|
*/
|
|
if (!ri->fieldoffset) {
|
|
return;
|
|
}
|
|
|
|
if (cpreg_field_is_64bit(ri)) {
|
|
CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
|
|
} else {
|
|
CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
|
|
}
|
|
}
|
|
|
|
static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
|
|
{
|
|
/* Purely an assertion check: we've already done reset once,
|
|
* so now check that running the reset for the cpreg doesn't
|
|
* change its value. This traps bugs where two different cpregs
|
|
* both try to reset the same state field but to different values.
|
|
*/
|
|
ARMCPRegInfo *ri = value;
|
|
ARMCPU *cpu = opaque;
|
|
uint64_t oldvalue, newvalue;
|
|
|
|
if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
|
|
return;
|
|
}
|
|
|
|
oldvalue = read_raw_cp_reg(&cpu->env, ri);
|
|
cp_reg_reset(key, value, opaque);
|
|
newvalue = read_raw_cp_reg(&cpu->env, ri);
|
|
assert(oldvalue == newvalue);
|
|
}
|
|
|
|
static void arm_cpu_reset_hold(Object *obj, ResetType type)
|
|
{
|
|
CPUState *cs = CPU(obj);
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
if (acc->parent_phases.hold) {
|
|
acc->parent_phases.hold(obj, type);
|
|
}
|
|
|
|
memset(env, 0, offsetof(CPUARMState, end_reset_fields));
|
|
|
|
g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
|
|
g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
|
|
|
|
env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
|
|
env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
|
|
env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
|
|
env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
|
|
|
|
cpu->power_state = cs->start_powered_off ? PSCI_OFF : PSCI_ON;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
|
|
env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
|
|
/* 64 bit CPUs always start in 64 bit mode */
|
|
env->aarch64 = true;
|
|
#if defined(CONFIG_USER_ONLY)
|
|
env->pstate = PSTATE_MODE_EL0t;
|
|
/* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
|
|
env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
|
|
/* Enable all PAC keys. */
|
|
env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
|
|
SCTLR_EnDA | SCTLR_EnDB);
|
|
/* Trap on btype=3 for PACIxSP. */
|
|
env->cp15.sctlr_el[1] |= SCTLR_BT0;
|
|
/* Trap on implementation defined registers. */
|
|
if (cpu_isar_feature(aa64_tidcp1, cpu)) {
|
|
env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
|
|
}
|
|
/* and to the FP/Neon instructions */
|
|
env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
|
|
CPACR_EL1, FPEN, 3);
|
|
/* and to the SVE instructions, with default vector length */
|
|
if (cpu_isar_feature(aa64_sve, cpu)) {
|
|
env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
|
|
CPACR_EL1, ZEN, 3);
|
|
env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
|
|
}
|
|
/* and for SME instructions, with default vector length, and TPIDR2 */
|
|
if (cpu_isar_feature(aa64_sme, cpu)) {
|
|
env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
|
|
env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
|
|
CPACR_EL1, SMEN, 3);
|
|
env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
|
|
if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
|
|
env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
|
|
SMCR, FA64, 1);
|
|
}
|
|
}
|
|
/*
|
|
* Enable 48-bit address space (TODO: take reserved_va into account).
|
|
* Enable TBI0 but not TBI1.
|
|
* Note that this must match useronly_clean_ptr.
|
|
*/
|
|
env->cp15.tcr_el[1] = 5 | (1ULL << 37);
|
|
|
|
/* Enable MTE */
|
|
if (cpu_isar_feature(aa64_mte, cpu)) {
|
|
/* Enable tag access, but leave TCF0 as No Effect (0). */
|
|
env->cp15.sctlr_el[1] |= SCTLR_ATA0;
|
|
/*
|
|
* Exclude all tags, so that tag 0 is always used.
|
|
* This corresponds to Linux current->thread.gcr_incl = 0.
|
|
*
|
|
* Set RRND, so that helper_irg() will generate a seed later.
|
|
* Here in cpu_reset(), the crypto subsystem has not yet been
|
|
* initialized.
|
|
*/
|
|
env->cp15.gcr_el1 = 0x1ffff;
|
|
}
|
|
/*
|
|
* Disable access to SCXTNUM_EL0 from CSV2_1p2.
|
|
* This is not yet exposed from the Linux kernel in any way.
|
|
*/
|
|
env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
|
|
/* Disable access to Debug Communication Channel (DCC). */
|
|
env->cp15.mdscr_el1 |= 1 << 12;
|
|
/* Enable FEAT_MOPS */
|
|
env->cp15.sctlr_el[1] |= SCTLR_MSCEN;
|
|
#else
|
|
/* Reset into the highest available EL */
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
env->pstate = PSTATE_MODE_EL3h;
|
|
} else if (arm_feature(env, ARM_FEATURE_EL2)) {
|
|
env->pstate = PSTATE_MODE_EL2h;
|
|
} else {
|
|
env->pstate = PSTATE_MODE_EL1h;
|
|
}
|
|
|
|
/* Sample rvbar at reset. */
|
|
env->cp15.rvbar = cpu->rvbar_prop;
|
|
env->pc = env->cp15.rvbar;
|
|
#endif
|
|
} else {
|
|
#if defined(CONFIG_USER_ONLY)
|
|
/* Userspace expects access to cp10 and cp11 for FP/Neon */
|
|
env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
|
|
CPACR, CP10, 3);
|
|
env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
|
|
CPACR, CP11, 3);
|
|
#endif
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
env->cp15.rvbar = cpu->rvbar_prop;
|
|
env->regs[15] = cpu->rvbar_prop;
|
|
}
|
|
}
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
env->uncached_cpsr = ARM_CPU_MODE_USR;
|
|
/* For user mode we must enable access to coprocessors */
|
|
env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
|
|
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
|
|
env->cp15.c15_cpar = 3;
|
|
} else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
|
|
env->cp15.c15_cpar = 1;
|
|
}
|
|
#else
|
|
|
|
/*
|
|
* If the highest available EL is EL2, AArch32 will start in Hyp
|
|
* mode; otherwise it starts in SVC. Note that if we start in
|
|
* AArch64 then these values in the uncached_cpsr will be ignored.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_EL2) &&
|
|
!arm_feature(env, ARM_FEATURE_EL3)) {
|
|
env->uncached_cpsr = ARM_CPU_MODE_HYP;
|
|
} else {
|
|
env->uncached_cpsr = ARM_CPU_MODE_SVC;
|
|
}
|
|
env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
|
|
|
|
/* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
|
|
* executing as AArch32 then check if highvecs are enabled and
|
|
* adjust the PC accordingly.
|
|
*/
|
|
if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
|
|
env->regs[15] = 0xFFFF0000;
|
|
}
|
|
|
|
env->vfp.xregs[ARM_VFP_FPEXC] = 0;
|
|
#endif
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
#ifndef CONFIG_USER_ONLY
|
|
uint32_t initial_msp; /* Loaded from 0x0 */
|
|
uint32_t initial_pc; /* Loaded from 0x4 */
|
|
uint8_t *rom;
|
|
uint32_t vecbase;
|
|
#endif
|
|
|
|
if (cpu_isar_feature(aa32_lob, cpu)) {
|
|
/*
|
|
* LTPSIZE is constant 4 if MVE not implemented, and resets
|
|
* to an UNKNOWN value if MVE is implemented. We choose to
|
|
* always reset to 4.
|
|
*/
|
|
env->v7m.ltpsize = 4;
|
|
/* The LTPSIZE field in FPDSCR is constant and reads as 4. */
|
|
env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
|
|
env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
env->v7m.secure = true;
|
|
} else {
|
|
/* This bit resets to 0 if security is supported, but 1 if
|
|
* it is not. The bit is not present in v7M, but we set it
|
|
* here so we can avoid having to make checks on it conditional
|
|
* on ARM_FEATURE_V8 (we don't let the guest see the bit).
|
|
*/
|
|
env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
|
|
/*
|
|
* Set NSACR to indicate "NS access permitted to everything";
|
|
* this avoids having to have all the tests of it being
|
|
* conditional on ARM_FEATURE_M_SECURITY. Note also that from
|
|
* v8.1M the guest-visible value of NSACR in a CPU without the
|
|
* Security Extension is 0xcff.
|
|
*/
|
|
env->v7m.nsacr = 0xcff;
|
|
}
|
|
|
|
/* In v7M the reset value of this bit is IMPDEF, but ARM recommends
|
|
* that it resets to 1, so QEMU always does that rather than making
|
|
* it dependent on CPU model. In v8M it is RES1.
|
|
*/
|
|
env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
|
|
env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
/* in v8M the NONBASETHRDENA bit [0] is RES1 */
|
|
env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
|
|
env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
|
|
}
|
|
if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
|
|
env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
|
|
env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
|
|
}
|
|
|
|
if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
|
|
env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
|
|
env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
|
|
R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* Unlike A/R profile, M profile defines the reset LR value */
|
|
env->regs[14] = 0xffffffff;
|
|
|
|
env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
|
|
env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
|
|
|
|
/* Load the initial SP and PC from offset 0 and 4 in the vector table */
|
|
vecbase = env->v7m.vecbase[env->v7m.secure];
|
|
rom = rom_ptr_for_as(cs->as, vecbase, 8);
|
|
if (rom) {
|
|
/* Address zero is covered by ROM which hasn't yet been
|
|
* copied into physical memory.
|
|
*/
|
|
initial_msp = ldl_p(rom);
|
|
initial_pc = ldl_p(rom + 4);
|
|
} else {
|
|
/* Address zero not covered by a ROM blob, or the ROM blob
|
|
* is in non-modifiable memory and this is a second reset after
|
|
* it got copied into memory. In the latter case, rom_ptr
|
|
* will return a NULL pointer and we should use ldl_phys instead.
|
|
*/
|
|
initial_msp = ldl_phys(cs->as, vecbase);
|
|
initial_pc = ldl_phys(cs->as, vecbase + 4);
|
|
}
|
|
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"Loaded reset SP 0x%x PC 0x%x from vector table\n",
|
|
initial_msp, initial_pc);
|
|
|
|
env->regs[13] = initial_msp & 0xFFFFFFFC;
|
|
env->regs[15] = initial_pc & ~1;
|
|
env->thumb = initial_pc & 1;
|
|
#else
|
|
/*
|
|
* For user mode we run non-secure and with access to the FPU.
|
|
* The FPU context is active (ie does not need further setup)
|
|
* and is owned by non-secure.
|
|
*/
|
|
env->v7m.secure = false;
|
|
env->v7m.nsacr = 0xcff;
|
|
env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
|
|
env->v7m.fpccr[M_REG_S] &=
|
|
~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
|
|
env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
|
|
#endif
|
|
}
|
|
|
|
/* M profile requires that reset clears the exclusive monitor;
|
|
* A profile does not, but clearing it makes more sense than having it
|
|
* set with an exclusive access on address zero.
|
|
*/
|
|
arm_clear_exclusive(env);
|
|
|
|
if (arm_feature(env, ARM_FEATURE_PMSA)) {
|
|
if (cpu->pmsav7_dregion > 0) {
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
memset(env->pmsav8.rbar[M_REG_NS], 0,
|
|
sizeof(*env->pmsav8.rbar[M_REG_NS])
|
|
* cpu->pmsav7_dregion);
|
|
memset(env->pmsav8.rlar[M_REG_NS], 0,
|
|
sizeof(*env->pmsav8.rlar[M_REG_NS])
|
|
* cpu->pmsav7_dregion);
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
memset(env->pmsav8.rbar[M_REG_S], 0,
|
|
sizeof(*env->pmsav8.rbar[M_REG_S])
|
|
* cpu->pmsav7_dregion);
|
|
memset(env->pmsav8.rlar[M_REG_S], 0,
|
|
sizeof(*env->pmsav8.rlar[M_REG_S])
|
|
* cpu->pmsav7_dregion);
|
|
}
|
|
} else if (arm_feature(env, ARM_FEATURE_V7)) {
|
|
memset(env->pmsav7.drbar, 0,
|
|
sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
|
|
memset(env->pmsav7.drsr, 0,
|
|
sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
|
|
memset(env->pmsav7.dracr, 0,
|
|
sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
|
|
}
|
|
}
|
|
|
|
if (cpu->pmsav8r_hdregion > 0) {
|
|
memset(env->pmsav8.hprbar, 0,
|
|
sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
|
|
memset(env->pmsav8.hprlar, 0,
|
|
sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
|
|
}
|
|
|
|
env->pmsav7.rnr[M_REG_NS] = 0;
|
|
env->pmsav7.rnr[M_REG_S] = 0;
|
|
env->pmsav8.mair0[M_REG_NS] = 0;
|
|
env->pmsav8.mair0[M_REG_S] = 0;
|
|
env->pmsav8.mair1[M_REG_NS] = 0;
|
|
env->pmsav8.mair1[M_REG_S] = 0;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
if (cpu->sau_sregion > 0) {
|
|
memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
|
|
memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
|
|
}
|
|
env->sau.rnr = 0;
|
|
/* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
|
|
* the Cortex-M33 does.
|
|
*/
|
|
env->sau.ctrl = 0;
|
|
}
|
|
|
|
set_flush_to_zero(1, &env->vfp.standard_fp_status);
|
|
set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
|
|
set_default_nan_mode(1, &env->vfp.standard_fp_status);
|
|
set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
|
|
arm_set_default_fp_behaviours(&env->vfp.fp_status);
|
|
arm_set_default_fp_behaviours(&env->vfp.standard_fp_status);
|
|
arm_set_default_fp_behaviours(&env->vfp.fp_status_f16);
|
|
arm_set_default_fp_behaviours(&env->vfp.standard_fp_status_f16);
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (kvm_enabled()) {
|
|
kvm_arm_reset_vcpu(cpu);
|
|
}
|
|
#endif
|
|
|
|
if (tcg_enabled()) {
|
|
hw_breakpoint_update_all(cpu);
|
|
hw_watchpoint_update_all(cpu);
|
|
|
|
arm_rebuild_hflags(env);
|
|
}
|
|
}
|
|
|
|
void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cpustate);
|
|
CPUARMState *env = &cpu->env;
|
|
bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
|
|
bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
|
|
|
|
/*
|
|
* Check we have the EL we're aiming for. If that is the
|
|
* highest implemented EL, then cpu_reset has already done
|
|
* all the work.
|
|
*/
|
|
switch (target_el) {
|
|
case 3:
|
|
assert(have_el3);
|
|
return;
|
|
case 2:
|
|
assert(have_el2);
|
|
if (!have_el3) {
|
|
return;
|
|
}
|
|
break;
|
|
case 1:
|
|
if (!have_el3 && !have_el2) {
|
|
return;
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (have_el3) {
|
|
/*
|
|
* Set the EL3 state so code can run at EL2. This should match
|
|
* the requirements set by Linux in its booting spec.
|
|
*/
|
|
if (env->aarch64) {
|
|
env->cp15.scr_el3 |= SCR_RW;
|
|
if (cpu_isar_feature(aa64_pauth, cpu)) {
|
|
env->cp15.scr_el3 |= SCR_API | SCR_APK;
|
|
}
|
|
if (cpu_isar_feature(aa64_mte, cpu)) {
|
|
env->cp15.scr_el3 |= SCR_ATA;
|
|
}
|
|
if (cpu_isar_feature(aa64_sve, cpu)) {
|
|
env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
|
|
env->vfp.zcr_el[3] = 0xf;
|
|
}
|
|
if (cpu_isar_feature(aa64_sme, cpu)) {
|
|
env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
|
|
env->cp15.scr_el3 |= SCR_ENTP2;
|
|
env->vfp.smcr_el[3] = 0xf;
|
|
}
|
|
if (cpu_isar_feature(aa64_hcx, cpu)) {
|
|
env->cp15.scr_el3 |= SCR_HXEN;
|
|
}
|
|
if (cpu_isar_feature(aa64_fgt, cpu)) {
|
|
env->cp15.scr_el3 |= SCR_FGTEN;
|
|
}
|
|
}
|
|
|
|
if (target_el == 2) {
|
|
/* If the guest is at EL2 then Linux expects the HVC insn to work */
|
|
env->cp15.scr_el3 |= SCR_HCE;
|
|
}
|
|
|
|
/* Put CPU into non-secure state */
|
|
env->cp15.scr_el3 |= SCR_NS;
|
|
/* Set NSACR.{CP11,CP10} so NS can access the FPU */
|
|
env->cp15.nsacr |= 3 << 10;
|
|
}
|
|
|
|
if (have_el2 && target_el < 2) {
|
|
/* Set EL2 state so code can run at EL1. */
|
|
if (env->aarch64) {
|
|
env->cp15.hcr_el2 |= HCR_RW;
|
|
}
|
|
}
|
|
|
|
/* Set the CPU to the desired state */
|
|
if (env->aarch64) {
|
|
env->pstate = aarch64_pstate_mode(target_el, true);
|
|
} else {
|
|
static const uint32_t mode_for_el[] = {
|
|
0,
|
|
ARM_CPU_MODE_SVC,
|
|
ARM_CPU_MODE_HYP,
|
|
ARM_CPU_MODE_SVC,
|
|
};
|
|
|
|
cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
|
|
}
|
|
}
|
|
|
|
|
|
#if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
|
|
|
|
static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
|
|
unsigned int target_el,
|
|
unsigned int cur_el, bool secure,
|
|
uint64_t hcr_el2)
|
|
{
|
|
CPUARMState *env = cpu_env(cs);
|
|
bool pstate_unmasked;
|
|
bool unmasked = false;
|
|
bool allIntMask = false;
|
|
|
|
/*
|
|
* Don't take exceptions if they target a lower EL.
|
|
* This check should catch any exceptions that would not be taken
|
|
* but left pending.
|
|
*/
|
|
if (cur_el > target_el) {
|
|
return false;
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
|
|
env->cp15.sctlr_el[target_el] & SCTLR_NMI && cur_el == target_el) {
|
|
allIntMask = env->pstate & PSTATE_ALLINT ||
|
|
((env->cp15.sctlr_el[target_el] & SCTLR_SPINTMASK) &&
|
|
(env->pstate & PSTATE_SP));
|
|
}
|
|
|
|
switch (excp_idx) {
|
|
case EXCP_NMI:
|
|
pstate_unmasked = !allIntMask;
|
|
break;
|
|
|
|
case EXCP_VINMI:
|
|
if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
|
|
/* VINMIs are only taken when hypervized. */
|
|
return false;
|
|
}
|
|
return !allIntMask;
|
|
case EXCP_VFNMI:
|
|
if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
|
|
/* VFNMIs are only taken when hypervized. */
|
|
return false;
|
|
}
|
|
return !allIntMask;
|
|
case EXCP_FIQ:
|
|
pstate_unmasked = (!(env->daif & PSTATE_F)) && (!allIntMask);
|
|
break;
|
|
|
|
case EXCP_IRQ:
|
|
pstate_unmasked = (!(env->daif & PSTATE_I)) && (!allIntMask);
|
|
break;
|
|
|
|
case EXCP_VFIQ:
|
|
if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
|
|
/* VFIQs are only taken when hypervized. */
|
|
return false;
|
|
}
|
|
return !(env->daif & PSTATE_F) && (!allIntMask);
|
|
case EXCP_VIRQ:
|
|
if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
|
|
/* VIRQs are only taken when hypervized. */
|
|
return false;
|
|
}
|
|
return !(env->daif & PSTATE_I) && (!allIntMask);
|
|
case EXCP_VSERR:
|
|
if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
|
|
/* VIRQs are only taken when hypervized. */
|
|
return false;
|
|
}
|
|
return !(env->daif & PSTATE_A);
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/*
|
|
* Use the target EL, current execution state and SCR/HCR settings to
|
|
* determine whether the corresponding CPSR bit is used to mask the
|
|
* interrupt.
|
|
*/
|
|
if ((target_el > cur_el) && (target_el != 1)) {
|
|
/* Exceptions targeting a higher EL may not be maskable */
|
|
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
|
|
switch (target_el) {
|
|
case 2:
|
|
/*
|
|
* According to ARM DDI 0487H.a, an interrupt can be masked
|
|
* when HCR_E2H and HCR_TGE are both set regardless of the
|
|
* current Security state. Note that we need to revisit this
|
|
* part again once we need to support NMI.
|
|
*/
|
|
if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
|
|
unmasked = true;
|
|
}
|
|
break;
|
|
case 3:
|
|
/* Interrupt cannot be masked when the target EL is 3 */
|
|
unmasked = true;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
} else {
|
|
/*
|
|
* The old 32-bit-only environment has a more complicated
|
|
* masking setup. HCR and SCR bits not only affect interrupt
|
|
* routing but also change the behaviour of masking.
|
|
*/
|
|
bool hcr, scr;
|
|
|
|
switch (excp_idx) {
|
|
case EXCP_FIQ:
|
|
/*
|
|
* If FIQs are routed to EL3 or EL2 then there are cases where
|
|
* we override the CPSR.F in determining if the exception is
|
|
* masked or not. If neither of these are set then we fall back
|
|
* to the CPSR.F setting otherwise we further assess the state
|
|
* below.
|
|
*/
|
|
hcr = hcr_el2 & HCR_FMO;
|
|
scr = (env->cp15.scr_el3 & SCR_FIQ);
|
|
|
|
/*
|
|
* When EL3 is 32-bit, the SCR.FW bit controls whether the
|
|
* CPSR.F bit masks FIQ interrupts when taken in non-secure
|
|
* state. If SCR.FW is set then FIQs can be masked by CPSR.F
|
|
* when non-secure but only when FIQs are only routed to EL3.
|
|
*/
|
|
scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
|
|
break;
|
|
case EXCP_IRQ:
|
|
/*
|
|
* When EL3 execution state is 32-bit, if HCR.IMO is set then
|
|
* we may override the CPSR.I masking when in non-secure state.
|
|
* The SCR.IRQ setting has already been taken into consideration
|
|
* when setting the target EL, so it does not have a further
|
|
* affect here.
|
|
*/
|
|
hcr = hcr_el2 & HCR_IMO;
|
|
scr = false;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if ((scr || hcr) && !secure) {
|
|
unmasked = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The PSTATE bits only mask the interrupt if we have not overridden the
|
|
* ability above.
|
|
*/
|
|
return unmasked || pstate_unmasked;
|
|
}
|
|
|
|
static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
|
|
{
|
|
CPUClass *cc = CPU_GET_CLASS(cs);
|
|
CPUARMState *env = cpu_env(cs);
|
|
uint32_t cur_el = arm_current_el(env);
|
|
bool secure = arm_is_secure(env);
|
|
uint64_t hcr_el2 = arm_hcr_el2_eff(env);
|
|
uint32_t target_el;
|
|
uint32_t excp_idx;
|
|
|
|
/* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
|
|
|
|
if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
|
|
(arm_sctlr(env, cur_el) & SCTLR_NMI)) {
|
|
if (interrupt_request & CPU_INTERRUPT_NMI) {
|
|
excp_idx = EXCP_NMI;
|
|
target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
|
|
if (arm_excp_unmasked(cs, excp_idx, target_el,
|
|
cur_el, secure, hcr_el2)) {
|
|
goto found;
|
|
}
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_VINMI) {
|
|
excp_idx = EXCP_VINMI;
|
|
target_el = 1;
|
|
if (arm_excp_unmasked(cs, excp_idx, target_el,
|
|
cur_el, secure, hcr_el2)) {
|
|
goto found;
|
|
}
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_VFNMI) {
|
|
excp_idx = EXCP_VFNMI;
|
|
target_el = 1;
|
|
if (arm_excp_unmasked(cs, excp_idx, target_el,
|
|
cur_el, secure, hcr_el2)) {
|
|
goto found;
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* NMI disabled: interrupts with superpriority are handled
|
|
* as if they didn't have it
|
|
*/
|
|
if (interrupt_request & CPU_INTERRUPT_NMI) {
|
|
interrupt_request |= CPU_INTERRUPT_HARD;
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_VINMI) {
|
|
interrupt_request |= CPU_INTERRUPT_VIRQ;
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_VFNMI) {
|
|
interrupt_request |= CPU_INTERRUPT_VFIQ;
|
|
}
|
|
}
|
|
|
|
if (interrupt_request & CPU_INTERRUPT_FIQ) {
|
|
excp_idx = EXCP_FIQ;
|
|
target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
|
|
if (arm_excp_unmasked(cs, excp_idx, target_el,
|
|
cur_el, secure, hcr_el2)) {
|
|
goto found;
|
|
}
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
|
excp_idx = EXCP_IRQ;
|
|
target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
|
|
if (arm_excp_unmasked(cs, excp_idx, target_el,
|
|
cur_el, secure, hcr_el2)) {
|
|
goto found;
|
|
}
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_VIRQ) {
|
|
excp_idx = EXCP_VIRQ;
|
|
target_el = 1;
|
|
if (arm_excp_unmasked(cs, excp_idx, target_el,
|
|
cur_el, secure, hcr_el2)) {
|
|
goto found;
|
|
}
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_VFIQ) {
|
|
excp_idx = EXCP_VFIQ;
|
|
target_el = 1;
|
|
if (arm_excp_unmasked(cs, excp_idx, target_el,
|
|
cur_el, secure, hcr_el2)) {
|
|
goto found;
|
|
}
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_VSERR) {
|
|
excp_idx = EXCP_VSERR;
|
|
target_el = 1;
|
|
if (arm_excp_unmasked(cs, excp_idx, target_el,
|
|
cur_el, secure, hcr_el2)) {
|
|
/* Taking a virtual abort clears HCR_EL2.VSE */
|
|
env->cp15.hcr_el2 &= ~HCR_VSE;
|
|
cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
|
|
goto found;
|
|
}
|
|
}
|
|
return false;
|
|
|
|
found:
|
|
cs->exception_index = excp_idx;
|
|
env->exception.target_el = target_el;
|
|
cc->tcg_ops->do_interrupt(cs);
|
|
return true;
|
|
}
|
|
|
|
#endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
|
|
|
|
void arm_cpu_update_virq(ARMCPU *cpu)
|
|
{
|
|
/*
|
|
* Update the interrupt level for VIRQ, which is the logical OR of
|
|
* the HCR_EL2.VI bit and the input line level from the GIC.
|
|
*/
|
|
CPUARMState *env = &cpu->env;
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
|
|
!(arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
|
|
(env->irq_line_state & CPU_INTERRUPT_VIRQ);
|
|
|
|
if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
|
|
if (new_state) {
|
|
cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
|
|
} else {
|
|
cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
|
|
}
|
|
}
|
|
}
|
|
|
|
void arm_cpu_update_vfiq(ARMCPU *cpu)
|
|
{
|
|
/*
|
|
* Update the interrupt level for VFIQ, which is the logical OR of
|
|
* the HCR_EL2.VF bit and the input line level from the GIC.
|
|
*/
|
|
CPUARMState *env = &cpu->env;
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
bool new_state = ((arm_hcr_el2_eff(env) & HCR_VF) &&
|
|
!(arm_hcrx_el2_eff(env) & HCRX_VFNMI)) ||
|
|
(env->irq_line_state & CPU_INTERRUPT_VFIQ);
|
|
|
|
if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
|
|
if (new_state) {
|
|
cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
|
|
} else {
|
|
cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
|
|
}
|
|
}
|
|
}
|
|
|
|
void arm_cpu_update_vinmi(ARMCPU *cpu)
|
|
{
|
|
/*
|
|
* Update the interrupt level for VINMI, which is the logical OR of
|
|
* the HCRX_EL2.VINMI bit and the input line level from the GIC.
|
|
*/
|
|
CPUARMState *env = &cpu->env;
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
|
|
(arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
|
|
(env->irq_line_state & CPU_INTERRUPT_VINMI);
|
|
|
|
if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VINMI) != 0)) {
|
|
if (new_state) {
|
|
cpu_interrupt(cs, CPU_INTERRUPT_VINMI);
|
|
} else {
|
|
cpu_reset_interrupt(cs, CPU_INTERRUPT_VINMI);
|
|
}
|
|
}
|
|
}
|
|
|
|
void arm_cpu_update_vfnmi(ARMCPU *cpu)
|
|
{
|
|
/*
|
|
* Update the interrupt level for VFNMI, which is the HCRX_EL2.VFNMI bit.
|
|
*/
|
|
CPUARMState *env = &cpu->env;
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
bool new_state = (arm_hcr_el2_eff(env) & HCR_VF) &&
|
|
(arm_hcrx_el2_eff(env) & HCRX_VFNMI);
|
|
|
|
if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFNMI) != 0)) {
|
|
if (new_state) {
|
|
cpu_interrupt(cs, CPU_INTERRUPT_VFNMI);
|
|
} else {
|
|
cpu_reset_interrupt(cs, CPU_INTERRUPT_VFNMI);
|
|
}
|
|
}
|
|
}
|
|
|
|
void arm_cpu_update_vserr(ARMCPU *cpu)
|
|
{
|
|
/*
|
|
* Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
|
|
*/
|
|
CPUARMState *env = &cpu->env;
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
bool new_state = env->cp15.hcr_el2 & HCR_VSE;
|
|
|
|
if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
|
|
if (new_state) {
|
|
cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
|
|
} else {
|
|
cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
static void arm_cpu_set_irq(void *opaque, int irq, int level)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
CPUARMState *env = &cpu->env;
|
|
CPUState *cs = CPU(cpu);
|
|
static const int mask[] = {
|
|
[ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
|
|
[ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
|
|
[ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
|
|
[ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ,
|
|
[ARM_CPU_NMI] = CPU_INTERRUPT_NMI,
|
|
[ARM_CPU_VINMI] = CPU_INTERRUPT_VINMI,
|
|
};
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_EL2) &&
|
|
(irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
|
|
/*
|
|
* The GIC might tell us about VIRQ and VFIQ state, but if we don't
|
|
* have EL2 support we don't care. (Unless the guest is doing something
|
|
* silly this will only be calls saying "level is still 0".)
|
|
*/
|
|
return;
|
|
}
|
|
|
|
if (level) {
|
|
env->irq_line_state |= mask[irq];
|
|
} else {
|
|
env->irq_line_state &= ~mask[irq];
|
|
}
|
|
|
|
switch (irq) {
|
|
case ARM_CPU_VIRQ:
|
|
arm_cpu_update_virq(cpu);
|
|
break;
|
|
case ARM_CPU_VFIQ:
|
|
arm_cpu_update_vfiq(cpu);
|
|
break;
|
|
case ARM_CPU_VINMI:
|
|
arm_cpu_update_vinmi(cpu);
|
|
break;
|
|
case ARM_CPU_IRQ:
|
|
case ARM_CPU_FIQ:
|
|
case ARM_CPU_NMI:
|
|
if (level) {
|
|
cpu_interrupt(cs, mask[irq]);
|
|
} else {
|
|
cpu_reset_interrupt(cs, mask[irq]);
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
|
|
{
|
|
#ifdef CONFIG_KVM
|
|
ARMCPU *cpu = opaque;
|
|
CPUARMState *env = &cpu->env;
|
|
CPUState *cs = CPU(cpu);
|
|
uint32_t linestate_bit;
|
|
int irq_id;
|
|
|
|
switch (irq) {
|
|
case ARM_CPU_IRQ:
|
|
irq_id = KVM_ARM_IRQ_CPU_IRQ;
|
|
linestate_bit = CPU_INTERRUPT_HARD;
|
|
break;
|
|
case ARM_CPU_FIQ:
|
|
irq_id = KVM_ARM_IRQ_CPU_FIQ;
|
|
linestate_bit = CPU_INTERRUPT_FIQ;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (level) {
|
|
env->irq_line_state |= linestate_bit;
|
|
} else {
|
|
env->irq_line_state &= ~linestate_bit;
|
|
}
|
|
kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
|
|
#endif
|
|
}
|
|
|
|
static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
cpu_synchronize_state(cs);
|
|
return arm_cpu_data_is_big_endian(env);
|
|
}
|
|
|
|
#ifdef CONFIG_TCG
|
|
bool arm_cpu_exec_halt(CPUState *cs)
|
|
{
|
|
bool leave_halt = cpu_has_work(cs);
|
|
|
|
if (leave_halt) {
|
|
/* We're about to come out of WFI/WFE: disable the WFxT timer */
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
if (cpu->wfxt_timer) {
|
|
timer_del(cpu->wfxt_timer);
|
|
}
|
|
}
|
|
return leave_halt;
|
|
}
|
|
#endif
|
|
|
|
static void arm_wfxt_timer_cb(void *opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
/*
|
|
* We expect the CPU to be halted; this will cause arm_cpu_is_work()
|
|
* to return true (so we will come out of halt even with no other
|
|
* pending interrupt), and the TCG accelerator's cpu_exec_interrupt()
|
|
* function auto-clears the CPU_INTERRUPT_EXITTB flag for us.
|
|
*/
|
|
cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
|
|
}
|
|
#endif
|
|
|
|
static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
|
|
{
|
|
ARMCPU *ac = ARM_CPU(cpu);
|
|
CPUARMState *env = &ac->env;
|
|
bool sctlr_b;
|
|
|
|
if (is_a64(env)) {
|
|
info->cap_arch = CS_ARCH_ARM64;
|
|
info->cap_insn_unit = 4;
|
|
info->cap_insn_split = 4;
|
|
} else {
|
|
int cap_mode;
|
|
if (env->thumb) {
|
|
info->cap_insn_unit = 2;
|
|
info->cap_insn_split = 4;
|
|
cap_mode = CS_MODE_THUMB;
|
|
} else {
|
|
info->cap_insn_unit = 4;
|
|
info->cap_insn_split = 4;
|
|
cap_mode = CS_MODE_ARM;
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
cap_mode |= CS_MODE_V8;
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
cap_mode |= CS_MODE_MCLASS;
|
|
}
|
|
info->cap_arch = CS_ARCH_ARM;
|
|
info->cap_mode = cap_mode;
|
|
}
|
|
|
|
sctlr_b = arm_sctlr_b(env);
|
|
if (bswap_code(sctlr_b)) {
|
|
#if TARGET_BIG_ENDIAN
|
|
info->endian = BFD_ENDIAN_LITTLE;
|
|
#else
|
|
info->endian = BFD_ENDIAN_BIG;
|
|
#endif
|
|
}
|
|
info->flags &= ~INSN_ARM_BE32;
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (sctlr_b) {
|
|
info->flags |= INSN_ARM_BE32;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef TARGET_AARCH64
|
|
|
|
static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
uint32_t psr = pstate_read(env);
|
|
int i, j;
|
|
int el = arm_current_el(env);
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
const char *ns_status;
|
|
bool sve;
|
|
|
|
qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
|
|
for (i = 0; i < 32; i++) {
|
|
if (i == 31) {
|
|
qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
|
|
} else {
|
|
qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
|
|
(i + 2) % 3 ? " " : "\n");
|
|
}
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
|
|
ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
|
|
} else {
|
|
ns_status = "";
|
|
}
|
|
qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
|
|
psr,
|
|
psr & PSTATE_N ? 'N' : '-',
|
|
psr & PSTATE_Z ? 'Z' : '-',
|
|
psr & PSTATE_C ? 'C' : '-',
|
|
psr & PSTATE_V ? 'V' : '-',
|
|
ns_status,
|
|
el,
|
|
psr & PSTATE_SP ? 'h' : 't');
|
|
|
|
if (cpu_isar_feature(aa64_sme, cpu)) {
|
|
qemu_fprintf(f, " SVCR=%08" PRIx64 " %c%c",
|
|
env->svcr,
|
|
(FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
|
|
(FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
|
|
}
|
|
if (cpu_isar_feature(aa64_bti, cpu)) {
|
|
qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
|
|
}
|
|
qemu_fprintf(f, "%s%s%s",
|
|
(hcr & HCR_NV) ? " NV" : "",
|
|
(hcr & HCR_NV1) ? " NV1" : "",
|
|
(hcr & HCR_NV2) ? " NV2" : "");
|
|
if (!(flags & CPU_DUMP_FPU)) {
|
|
qemu_fprintf(f, "\n");
|
|
return;
|
|
}
|
|
if (fp_exception_el(env, el) != 0) {
|
|
qemu_fprintf(f, " FPU disabled\n");
|
|
return;
|
|
}
|
|
qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
|
|
vfp_get_fpcr(env), vfp_get_fpsr(env));
|
|
|
|
if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
|
|
sve = sme_exception_el(env, el) == 0;
|
|
} else if (cpu_isar_feature(aa64_sve, cpu)) {
|
|
sve = sve_exception_el(env, el) == 0;
|
|
} else {
|
|
sve = false;
|
|
}
|
|
|
|
if (sve) {
|
|
int zcr_len = sve_vqm1_for_el(env, el);
|
|
|
|
for (i = 0; i <= FFR_PRED_NUM; i++) {
|
|
bool eol;
|
|
if (i == FFR_PRED_NUM) {
|
|
qemu_fprintf(f, "FFR=");
|
|
/* It's last, so end the line. */
|
|
eol = true;
|
|
} else {
|
|
qemu_fprintf(f, "P%02d=", i);
|
|
switch (zcr_len) {
|
|
case 0:
|
|
eol = i % 8 == 7;
|
|
break;
|
|
case 1:
|
|
eol = i % 6 == 5;
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
eol = i % 3 == 2;
|
|
break;
|
|
default:
|
|
/* More than one quadword per predicate. */
|
|
eol = true;
|
|
break;
|
|
}
|
|
}
|
|
for (j = zcr_len / 4; j >= 0; j--) {
|
|
int digits;
|
|
if (j * 4 + 4 <= zcr_len + 1) {
|
|
digits = 16;
|
|
} else {
|
|
digits = (zcr_len % 4 + 1) * 4;
|
|
}
|
|
qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
|
|
env->vfp.pregs[i].p[j],
|
|
j ? ":" : eol ? "\n" : " ");
|
|
}
|
|
}
|
|
|
|
if (zcr_len == 0) {
|
|
/*
|
|
* With vl=16, there are only 37 columns per register,
|
|
* so output two registers per line.
|
|
*/
|
|
for (i = 0; i < 32; i++) {
|
|
qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
|
|
i, env->vfp.zregs[i].d[1],
|
|
env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
|
|
}
|
|
} else {
|
|
for (i = 0; i < 32; i++) {
|
|
qemu_fprintf(f, "Z%02d=", i);
|
|
for (j = zcr_len; j >= 0; j--) {
|
|
qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
|
|
env->vfp.zregs[i].d[j * 2 + 1],
|
|
env->vfp.zregs[i].d[j * 2 + 0],
|
|
j ? ":" : "\n");
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (i = 0; i < 32; i++) {
|
|
uint64_t *q = aa64_vfp_qreg(env, i);
|
|
qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
|
|
i, q[1], q[0], (i & 1 ? "\n" : " "));
|
|
}
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_sme, cpu) &&
|
|
FIELD_EX64(env->svcr, SVCR, ZA) &&
|
|
sme_exception_el(env, el) == 0) {
|
|
int zcr_len = sve_vqm1_for_el_sm(env, el, true);
|
|
int svl = (zcr_len + 1) * 16;
|
|
int svl_lg10 = svl < 100 ? 2 : 3;
|
|
|
|
for (i = 0; i < svl; i++) {
|
|
qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
|
|
for (j = zcr_len; j >= 0; --j) {
|
|
qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
|
|
env->zarray[i].d[2 * j + 1],
|
|
env->zarray[i].d[2 * j],
|
|
j ? ':' : '\n');
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
|
|
{
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
#endif
|
|
|
|
static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
int i;
|
|
|
|
if (is_a64(env)) {
|
|
aarch64_cpu_dump_state(cs, f, flags);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
|
|
if ((i % 4) == 3) {
|
|
qemu_fprintf(f, "\n");
|
|
} else {
|
|
qemu_fprintf(f, " ");
|
|
}
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
uint32_t xpsr = xpsr_read(env);
|
|
const char *mode;
|
|
const char *ns_status = "";
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
ns_status = env->v7m.secure ? "S " : "NS ";
|
|
}
|
|
|
|
if (xpsr & XPSR_EXCP) {
|
|
mode = "handler";
|
|
} else {
|
|
if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
|
|
mode = "unpriv-thread";
|
|
} else {
|
|
mode = "priv-thread";
|
|
}
|
|
}
|
|
|
|
qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
|
|
xpsr,
|
|
xpsr & XPSR_N ? 'N' : '-',
|
|
xpsr & XPSR_Z ? 'Z' : '-',
|
|
xpsr & XPSR_C ? 'C' : '-',
|
|
xpsr & XPSR_V ? 'V' : '-',
|
|
xpsr & XPSR_T ? 'T' : 'A',
|
|
ns_status,
|
|
mode);
|
|
} else {
|
|
uint32_t psr = cpsr_read(env);
|
|
const char *ns_status = "";
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL3) &&
|
|
(psr & CPSR_M) != ARM_CPU_MODE_MON) {
|
|
ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
|
|
}
|
|
|
|
qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
|
|
psr,
|
|
psr & CPSR_N ? 'N' : '-',
|
|
psr & CPSR_Z ? 'Z' : '-',
|
|
psr & CPSR_C ? 'C' : '-',
|
|
psr & CPSR_V ? 'V' : '-',
|
|
psr & CPSR_T ? 'T' : 'A',
|
|
ns_status,
|
|
aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
|
|
}
|
|
|
|
if (flags & CPU_DUMP_FPU) {
|
|
int numvfpregs = 0;
|
|
if (cpu_isar_feature(aa32_simd_r32, cpu)) {
|
|
numvfpregs = 32;
|
|
} else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
|
|
numvfpregs = 16;
|
|
}
|
|
for (i = 0; i < numvfpregs; i++) {
|
|
uint64_t v = *aa32_vfp_dreg(env, i);
|
|
qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
|
|
i * 2, (uint32_t)v,
|
|
i * 2 + 1, (uint32_t)(v >> 32),
|
|
i, v);
|
|
}
|
|
qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
|
|
if (cpu_isar_feature(aa32_mve, cpu)) {
|
|
qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
|
|
}
|
|
}
|
|
}
|
|
|
|
uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz)
|
|
{
|
|
uint32_t Aff1 = idx / clustersz;
|
|
uint32_t Aff0 = idx % clustersz;
|
|
return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
|
|
}
|
|
|
|
uint64_t arm_cpu_mp_affinity(ARMCPU *cpu)
|
|
{
|
|
return cpu->mp_affinity;
|
|
}
|
|
|
|
static void arm_cpu_initfn(Object *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
|
|
NULL, g_free);
|
|
|
|
QLIST_INIT(&cpu->pre_el_change_hooks);
|
|
QLIST_INIT(&cpu->el_change_hooks);
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
# ifdef TARGET_AARCH64
|
|
/*
|
|
* The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
|
|
* These values were chosen to fit within the default signal frame.
|
|
* See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
|
|
* and our corresponding cpu property.
|
|
*/
|
|
cpu->sve_default_vq = 4;
|
|
cpu->sme_default_vq = 2;
|
|
# endif
|
|
#else
|
|
/* Our inbound IRQ and FIQ lines */
|
|
if (kvm_enabled()) {
|
|
/*
|
|
* VIRQ, VFIQ, NMI, VINMI are unused with KVM but we add
|
|
* them to maintain the same interface as non-KVM CPUs.
|
|
*/
|
|
qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 6);
|
|
} else {
|
|
qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 6);
|
|
}
|
|
|
|
qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
|
|
ARRAY_SIZE(cpu->gt_timer_outputs));
|
|
|
|
qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
|
|
"gicv3-maintenance-interrupt", 1);
|
|
qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
|
|
"pmu-interrupt", 1);
|
|
#endif
|
|
|
|
/* DTB consumers generally don't in fact care what the 'compatible'
|
|
* string is, so always provide some string and trust that a hypothetical
|
|
* picky DTB consumer will also provide a helpful error message.
|
|
*/
|
|
cpu->dtb_compatible = "qemu,unknown";
|
|
cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
|
|
cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
|
|
|
|
if (tcg_enabled() || hvf_enabled()) {
|
|
/* TCG and HVF implement PSCI 1.1 */
|
|
cpu->psci_version = QEMU_PSCI_VERSION_1_1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 0 means "unset, use the default value". That default might vary depending
|
|
* on the CPU type, and is set in the realize fn.
|
|
*/
|
|
static Property arm_cpu_gt_cntfrq_property =
|
|
DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, 0);
|
|
|
|
static Property arm_cpu_reset_cbar_property =
|
|
DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
|
|
|
|
static Property arm_cpu_reset_hivecs_property =
|
|
DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
static Property arm_cpu_has_el2_property =
|
|
DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
|
|
|
|
static Property arm_cpu_has_el3_property =
|
|
DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
|
|
#endif
|
|
|
|
static Property arm_cpu_cfgend_property =
|
|
DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
|
|
|
|
static Property arm_cpu_has_vfp_property =
|
|
DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
|
|
|
|
static Property arm_cpu_has_vfp_d32_property =
|
|
DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
|
|
|
|
static Property arm_cpu_has_neon_property =
|
|
DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
|
|
|
|
static Property arm_cpu_has_dsp_property =
|
|
DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
|
|
|
|
static Property arm_cpu_has_mpu_property =
|
|
DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
|
|
|
|
/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
|
|
* because the CPU initfn will have already set cpu->pmsav7_dregion to
|
|
* the right value for that particular CPU type, and we don't want
|
|
* to override that with an incorrect constant value.
|
|
*/
|
|
static Property arm_cpu_pmsav7_dregion_property =
|
|
DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
|
|
pmsav7_dregion,
|
|
qdev_prop_uint32, uint32_t);
|
|
|
|
static bool arm_get_pmu(Object *obj, Error **errp)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
return cpu->has_pmu;
|
|
}
|
|
|
|
static void arm_set_pmu(Object *obj, bool value, Error **errp)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
if (value) {
|
|
if (kvm_enabled() && !kvm_arm_pmu_supported()) {
|
|
error_setg(errp, "'pmu' feature not supported by KVM on this host");
|
|
return;
|
|
}
|
|
set_feature(&cpu->env, ARM_FEATURE_PMU);
|
|
} else {
|
|
unset_feature(&cpu->env, ARM_FEATURE_PMU);
|
|
}
|
|
cpu->has_pmu = value;
|
|
}
|
|
|
|
unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
|
|
{
|
|
/*
|
|
* The exact approach to calculating guest ticks is:
|
|
*
|
|
* muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
|
|
* NANOSECONDS_PER_SECOND);
|
|
*
|
|
* We don't do that. Rather we intentionally use integer division
|
|
* truncation below and in the caller for the conversion of host monotonic
|
|
* time to guest ticks to provide the exact inverse for the semantics of
|
|
* the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
|
|
* it loses precision when representing frequencies where
|
|
* `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
|
|
* provide an exact inverse leads to scheduling timers with negative
|
|
* periods, which in turn leads to sticky behaviour in the guest.
|
|
*
|
|
* Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
|
|
* cannot become zero.
|
|
*/
|
|
return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
|
|
NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
|
|
}
|
|
|
|
static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
|
|
{
|
|
CPUARMState *env = &cpu->env;
|
|
bool no_aa32 = false;
|
|
|
|
/*
|
|
* Some features automatically imply others: set the feature
|
|
* bits explicitly for these cases.
|
|
*/
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
set_feature(env, ARM_FEATURE_PMSA);
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
set_feature(env, ARM_FEATURE_V7);
|
|
} else {
|
|
set_feature(env, ARM_FEATURE_V7VE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* There exist AArch64 cpus without AArch32 support. When KVM
|
|
* queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
|
|
* Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
|
|
* As a general principle, we also do not make ID register
|
|
* consistency checks anywhere unless using TCG, because only
|
|
* for TCG would a consistency-check failure be a QEMU bug.
|
|
*/
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_V7VE)) {
|
|
/*
|
|
* v7 Virtualization Extensions. In real hardware this implies
|
|
* EL2 and also the presence of the Security Extensions.
|
|
* For QEMU, for backwards-compatibility we implement some
|
|
* CPUs or CPU configs which have no actual EL2 or EL3 but do
|
|
* include the various other features that V7VE implies.
|
|
* Presence of EL2 itself is ARM_FEATURE_EL2, and of the
|
|
* Security Extensions is ARM_FEATURE_EL3.
|
|
*/
|
|
assert(!tcg_enabled() || no_aa32 ||
|
|
cpu_isar_feature(aa32_arm_div, cpu));
|
|
set_feature(env, ARM_FEATURE_LPAE);
|
|
set_feature(env, ARM_FEATURE_V7);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V7)) {
|
|
set_feature(env, ARM_FEATURE_VAPA);
|
|
set_feature(env, ARM_FEATURE_THUMB2);
|
|
set_feature(env, ARM_FEATURE_MPIDR);
|
|
if (!arm_feature(env, ARM_FEATURE_M)) {
|
|
set_feature(env, ARM_FEATURE_V6K);
|
|
} else {
|
|
set_feature(env, ARM_FEATURE_V6);
|
|
}
|
|
|
|
/*
|
|
* Always define VBAR for V7 CPUs even if it doesn't exist in
|
|
* non-EL3 configs. This is needed by some legacy boards.
|
|
*/
|
|
set_feature(env, ARM_FEATURE_VBAR);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V6K)) {
|
|
set_feature(env, ARM_FEATURE_V6);
|
|
set_feature(env, ARM_FEATURE_MVFR);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V6)) {
|
|
set_feature(env, ARM_FEATURE_V5);
|
|
if (!arm_feature(env, ARM_FEATURE_M)) {
|
|
assert(!tcg_enabled() || no_aa32 ||
|
|
cpu_isar_feature(aa32_jazelle, cpu));
|
|
set_feature(env, ARM_FEATURE_AUXCR);
|
|
}
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V5)) {
|
|
set_feature(env, ARM_FEATURE_V4T);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_LPAE)) {
|
|
set_feature(env, ARM_FEATURE_V7MP);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
|
|
set_feature(env, ARM_FEATURE_CBAR);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_THUMB2) &&
|
|
!arm_feature(env, ARM_FEATURE_M)) {
|
|
set_feature(env, ARM_FEATURE_THUMB_DSP);
|
|
}
|
|
}
|
|
|
|
void arm_cpu_post_init(Object *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
/*
|
|
* Some features imply others. Figure this out now, because we
|
|
* are going to look at the feature bits in deciding which
|
|
* properties to add.
|
|
*/
|
|
arm_cpu_propagate_feature_implications(cpu);
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
|
|
arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
|
|
qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
|
|
}
|
|
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
|
|
qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
|
|
}
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
object_property_add_uint64_ptr(obj, "rvbar",
|
|
&cpu->rvbar_prop,
|
|
OBJ_PROP_FLAG_READWRITE);
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
|
|
/* Add the has_el3 state CPU property only if EL3 is allowed. This will
|
|
* prevent "has_el3" from existing on CPUs which cannot support EL3.
|
|
*/
|
|
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
|
|
|
|
object_property_add_link(obj, "secure-memory",
|
|
TYPE_MEMORY_REGION,
|
|
(Object **)&cpu->secure_memory,
|
|
qdev_prop_allow_set_link_before_realize,
|
|
OBJ_PROP_LINK_STRONG);
|
|
}
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
|
|
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
|
|
}
|
|
#endif
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
|
|
cpu->has_pmu = true;
|
|
object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
|
|
}
|
|
|
|
/*
|
|
* Allow user to turn off VFP and Neon support, but only for TCG --
|
|
* KVM does not currently allow us to lie to the guest about its
|
|
* ID/feature registers, so the guest always sees what the host has.
|
|
*/
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
if (cpu_isar_feature(aa64_fp_simd, cpu)) {
|
|
cpu->has_vfp = true;
|
|
cpu->has_vfp_d32 = true;
|
|
if (tcg_enabled() || qtest_enabled()) {
|
|
qdev_property_add_static(DEVICE(obj),
|
|
&arm_cpu_has_vfp_property);
|
|
}
|
|
}
|
|
} else if (cpu_isar_feature(aa32_vfp, cpu)) {
|
|
cpu->has_vfp = true;
|
|
if (tcg_enabled() || qtest_enabled()) {
|
|
qdev_property_add_static(DEVICE(obj),
|
|
&arm_cpu_has_vfp_property);
|
|
}
|
|
if (cpu_isar_feature(aa32_simd_r32, cpu)) {
|
|
cpu->has_vfp_d32 = true;
|
|
/*
|
|
* The permitted values of the SIMDReg bits [3:0] on
|
|
* Armv8-A are either 0b0000 and 0b0010. On such CPUs,
|
|
* make sure that has_vfp_d32 can not be set to false.
|
|
*/
|
|
if ((tcg_enabled() || qtest_enabled())
|
|
&& !(arm_feature(&cpu->env, ARM_FEATURE_V8)
|
|
&& !arm_feature(&cpu->env, ARM_FEATURE_M))) {
|
|
qdev_property_add_static(DEVICE(obj),
|
|
&arm_cpu_has_vfp_d32_property);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
|
|
cpu->has_neon = true;
|
|
if (!kvm_enabled()) {
|
|
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
|
|
}
|
|
}
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
|
|
arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
|
|
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
|
|
}
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
|
|
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
|
|
qdev_property_add_static(DEVICE(obj),
|
|
&arm_cpu_pmsav7_dregion_property);
|
|
}
|
|
}
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
|
|
object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
|
|
qdev_prop_allow_set_link_before_realize,
|
|
OBJ_PROP_LINK_STRONG);
|
|
/*
|
|
* M profile: initial value of the Secure VTOR. We can't just use
|
|
* a simple DEFINE_PROP_UINT32 for this because we want to permit
|
|
* the property to be set after realize.
|
|
*/
|
|
object_property_add_uint32_ptr(obj, "init-svtor",
|
|
&cpu->init_svtor,
|
|
OBJ_PROP_FLAG_READWRITE);
|
|
}
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
|
|
/*
|
|
* Initial value of the NS VTOR (for cores without the Security
|
|
* extension, this is the only VTOR)
|
|
*/
|
|
object_property_add_uint32_ptr(obj, "init-nsvtor",
|
|
&cpu->init_nsvtor,
|
|
OBJ_PROP_FLAG_READWRITE);
|
|
}
|
|
|
|
/* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
|
|
object_property_add_uint32_ptr(obj, "psci-conduit",
|
|
&cpu->psci_conduit,
|
|
OBJ_PROP_FLAG_READWRITE);
|
|
|
|
qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
|
|
qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
|
|
}
|
|
|
|
if (kvm_enabled()) {
|
|
kvm_arm_add_vcpu_properties(cpu);
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
|
|
cpu_isar_feature(aa64_mte, cpu)) {
|
|
object_property_add_link(obj, "tag-memory",
|
|
TYPE_MEMORY_REGION,
|
|
(Object **)&cpu->tag_memory,
|
|
qdev_prop_allow_set_link_before_realize,
|
|
OBJ_PROP_LINK_STRONG);
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
|
|
object_property_add_link(obj, "secure-tag-memory",
|
|
TYPE_MEMORY_REGION,
|
|
(Object **)&cpu->secure_tag_memory,
|
|
qdev_prop_allow_set_link_before_realize,
|
|
OBJ_PROP_LINK_STRONG);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void arm_cpu_finalizefn(Object *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
ARMELChangeHook *hook, *next;
|
|
|
|
g_hash_table_destroy(cpu->cp_regs);
|
|
|
|
QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
|
|
QLIST_REMOVE(hook, node);
|
|
g_free(hook);
|
|
}
|
|
QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
|
|
QLIST_REMOVE(hook, node);
|
|
g_free(hook);
|
|
}
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (cpu->pmu_timer) {
|
|
timer_free(cpu->pmu_timer);
|
|
}
|
|
if (cpu->wfxt_timer) {
|
|
timer_free(cpu->wfxt_timer);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
|
|
{
|
|
Error *local_err = NULL;
|
|
|
|
#ifdef TARGET_AARCH64
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
arm_cpu_sve_finalize(cpu, &local_err);
|
|
if (local_err != NULL) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* FEAT_SME is not architecturally dependent on FEAT_SVE (unless
|
|
* FEAT_SME_FA64 is present). However our implementation currently
|
|
* assumes it, so if the user asked for sve=off then turn off SME also.
|
|
* (KVM doesn't currently support SME at all.)
|
|
*/
|
|
if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) {
|
|
object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort);
|
|
}
|
|
|
|
arm_cpu_sme_finalize(cpu, &local_err);
|
|
if (local_err != NULL) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
|
|
arm_cpu_pauth_finalize(cpu, &local_err);
|
|
if (local_err != NULL) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
|
|
arm_cpu_lpa2_finalize(cpu, &local_err);
|
|
if (local_err != NULL) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (kvm_enabled()) {
|
|
kvm_arm_steal_time_finalize(cpu, &local_err);
|
|
if (local_err != NULL) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
|
|
{
|
|
CPUState *cs = CPU(dev);
|
|
ARMCPU *cpu = ARM_CPU(dev);
|
|
ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
|
|
CPUARMState *env = &cpu->env;
|
|
Error *local_err = NULL;
|
|
|
|
#if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
|
|
/* Use pc-relative instructions in system-mode */
|
|
tcg_cflags_set(cs, CF_PCREL);
|
|
#endif
|
|
|
|
/* If we needed to query the host kernel for the CPU features
|
|
* then it's possible that might have failed in the initfn, but
|
|
* this is the first point where we can report it.
|
|
*/
|
|
if (cpu->host_cpu_probe_failed) {
|
|
if (!kvm_enabled() && !hvf_enabled()) {
|
|
error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
|
|
} else {
|
|
error_setg(errp, "Failed to retrieve host CPU features");
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!cpu->gt_cntfrq_hz) {
|
|
/*
|
|
* 0 means "the board didn't set a value, use the default". (We also
|
|
* get here for the CONFIG_USER_ONLY case.)
|
|
* ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
|
|
* that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
|
|
* which gives a 16ns tick period.
|
|
*
|
|
* We will use the back-compat value:
|
|
* - for QEMU CPU types added before we standardized on 1GHz
|
|
* - for versioned machine types with a version of 9.0 or earlier
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_BACKCOMPAT_CNTFRQ) ||
|
|
cpu->backcompat_cntfrq) {
|
|
cpu->gt_cntfrq_hz = GTIMER_BACKCOMPAT_HZ;
|
|
} else {
|
|
cpu->gt_cntfrq_hz = GTIMER_DEFAULT_HZ;
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* The NVIC and M-profile CPU are two halves of a single piece of
|
|
* hardware; trying to use one without the other is a command line
|
|
* error and will result in segfaults if not caught here.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
if (!env->nvic) {
|
|
error_setg(errp, "This board cannot be used with Cortex-M CPUs");
|
|
return;
|
|
}
|
|
} else {
|
|
if (env->nvic) {
|
|
error_setg(errp, "This board can only be used with Cortex-M CPUs");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!tcg_enabled() && !qtest_enabled()) {
|
|
/*
|
|
* We assume that no accelerator except TCG (and the "not really an
|
|
* accelerator" qtest) can handle these features, because Arm hardware
|
|
* virtualization can't virtualize them.
|
|
*
|
|
* Catch all the cases which might cause us to create more than one
|
|
* address space for the CPU (otherwise we will assert() later in
|
|
* cpu_address_space_init()).
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
error_setg(errp,
|
|
"Cannot enable %s when using an M-profile guest CPU",
|
|
current_accel_name());
|
|
return;
|
|
}
|
|
if (cpu->has_el3) {
|
|
error_setg(errp,
|
|
"Cannot enable %s when guest CPU has EL3 enabled",
|
|
current_accel_name());
|
|
return;
|
|
}
|
|
if (cpu->tag_memory) {
|
|
error_setg(errp,
|
|
"Cannot enable %s when guest CPUs has MTE enabled",
|
|
current_accel_name());
|
|
return;
|
|
}
|
|
}
|
|
|
|
{
|
|
uint64_t scale = gt_cntfrq_period_ns(cpu);
|
|
|
|
cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
|
|
arm_gt_ptimer_cb, cpu);
|
|
cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
|
|
arm_gt_vtimer_cb, cpu);
|
|
cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
|
|
arm_gt_htimer_cb, cpu);
|
|
cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
|
|
arm_gt_stimer_cb, cpu);
|
|
cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
|
|
arm_gt_hvtimer_cb, cpu);
|
|
}
|
|
#endif
|
|
|
|
cpu_exec_realizefn(cs, &local_err);
|
|
if (local_err != NULL) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
|
|
arm_cpu_finalize_features(cpu, &local_err);
|
|
if (local_err != NULL) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
/*
|
|
* User mode relies on IC IVAU instructions to catch modification of
|
|
* dual-mapped code.
|
|
*
|
|
* Clear CTR_EL0.DIC to ensure that software that honors these flags uses
|
|
* IC IVAU even if the emulated processor does not normally require it.
|
|
*/
|
|
cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
|
|
#endif
|
|
|
|
if (arm_feature(env, ARM_FEATURE_AARCH64) &&
|
|
cpu->has_vfp != cpu->has_neon) {
|
|
/*
|
|
* This is an architectural requirement for AArch64; AArch32 is
|
|
* more flexible and permits VFP-no-Neon and Neon-no-VFP.
|
|
*/
|
|
error_setg(errp,
|
|
"AArch64 CPUs must have both VFP and Neon or neither");
|
|
return;
|
|
}
|
|
|
|
if (cpu->has_vfp_d32 != cpu->has_neon) {
|
|
error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
|
|
return;
|
|
}
|
|
|
|
if (!cpu->has_vfp_d32) {
|
|
uint32_t u;
|
|
|
|
u = cpu->isar.mvfr0;
|
|
u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
|
|
cpu->isar.mvfr0 = u;
|
|
}
|
|
|
|
if (!cpu->has_vfp) {
|
|
uint64_t t;
|
|
uint32_t u;
|
|
|
|
t = cpu->isar.id_aa64isar1;
|
|
t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
|
|
cpu->isar.id_aa64isar1 = t;
|
|
|
|
t = cpu->isar.id_aa64pfr0;
|
|
t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
|
|
cpu->isar.id_aa64pfr0 = t;
|
|
|
|
u = cpu->isar.id_isar6;
|
|
u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
|
|
u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
|
|
cpu->isar.id_isar6 = u;
|
|
|
|
u = cpu->isar.mvfr0;
|
|
u = FIELD_DP32(u, MVFR0, FPSP, 0);
|
|
u = FIELD_DP32(u, MVFR0, FPDP, 0);
|
|
u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
|
|
u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
|
|
u = FIELD_DP32(u, MVFR0, FPROUND, 0);
|
|
if (!arm_feature(env, ARM_FEATURE_M)) {
|
|
u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
|
|
u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
|
|
}
|
|
cpu->isar.mvfr0 = u;
|
|
|
|
u = cpu->isar.mvfr1;
|
|
u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
|
|
u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
|
|
u = FIELD_DP32(u, MVFR1, FPHP, 0);
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
u = FIELD_DP32(u, MVFR1, FP16, 0);
|
|
}
|
|
cpu->isar.mvfr1 = u;
|
|
|
|
u = cpu->isar.mvfr2;
|
|
u = FIELD_DP32(u, MVFR2, FPMISC, 0);
|
|
cpu->isar.mvfr2 = u;
|
|
}
|
|
|
|
if (!cpu->has_neon) {
|
|
uint64_t t;
|
|
uint32_t u;
|
|
|
|
unset_feature(env, ARM_FEATURE_NEON);
|
|
|
|
t = cpu->isar.id_aa64isar0;
|
|
t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
|
|
t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
|
|
t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
|
|
t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
|
|
t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
|
|
t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
|
|
t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
|
|
cpu->isar.id_aa64isar0 = t;
|
|
|
|
t = cpu->isar.id_aa64isar1;
|
|
t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
|
|
t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
|
|
t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
|
|
cpu->isar.id_aa64isar1 = t;
|
|
|
|
t = cpu->isar.id_aa64pfr0;
|
|
t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
|
|
cpu->isar.id_aa64pfr0 = t;
|
|
|
|
u = cpu->isar.id_isar5;
|
|
u = FIELD_DP32(u, ID_ISAR5, AES, 0);
|
|
u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
|
|
u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
|
|
u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
|
|
u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
|
|
cpu->isar.id_isar5 = u;
|
|
|
|
u = cpu->isar.id_isar6;
|
|
u = FIELD_DP32(u, ID_ISAR6, DP, 0);
|
|
u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
|
|
u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
|
|
u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
|
|
cpu->isar.id_isar6 = u;
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_M)) {
|
|
u = cpu->isar.mvfr1;
|
|
u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
|
|
u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
|
|
u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
|
|
u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
|
|
cpu->isar.mvfr1 = u;
|
|
|
|
u = cpu->isar.mvfr2;
|
|
u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
|
|
cpu->isar.mvfr2 = u;
|
|
}
|
|
}
|
|
|
|
if (!cpu->has_neon && !cpu->has_vfp) {
|
|
uint64_t t;
|
|
uint32_t u;
|
|
|
|
t = cpu->isar.id_aa64isar0;
|
|
t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
|
|
cpu->isar.id_aa64isar0 = t;
|
|
|
|
t = cpu->isar.id_aa64isar1;
|
|
t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
|
|
cpu->isar.id_aa64isar1 = t;
|
|
|
|
u = cpu->isar.mvfr0;
|
|
u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
|
|
cpu->isar.mvfr0 = u;
|
|
|
|
/* Despite the name, this field covers both VFP and Neon */
|
|
u = cpu->isar.mvfr1;
|
|
u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
|
|
cpu->isar.mvfr1 = u;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
|
|
uint32_t u;
|
|
|
|
unset_feature(env, ARM_FEATURE_THUMB_DSP);
|
|
|
|
u = cpu->isar.id_isar1;
|
|
u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
|
|
cpu->isar.id_isar1 = u;
|
|
|
|
u = cpu->isar.id_isar2;
|
|
u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
|
|
u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
|
|
cpu->isar.id_isar2 = u;
|
|
|
|
u = cpu->isar.id_isar3;
|
|
u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
|
|
u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
|
|
cpu->isar.id_isar3 = u;
|
|
}
|
|
|
|
|
|
/*
|
|
* We rely on no XScale CPU having VFP so we can use the same bits in the
|
|
* TB flags field for VECSTRIDE and XSCALE_CPAR.
|
|
*/
|
|
assert(arm_feature(env, ARM_FEATURE_AARCH64) ||
|
|
!cpu_isar_feature(aa32_vfp_simd, cpu) ||
|
|
!arm_feature(env, ARM_FEATURE_XSCALE));
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
{
|
|
int pagebits;
|
|
if (arm_feature(env, ARM_FEATURE_V7) &&
|
|
!arm_feature(env, ARM_FEATURE_M) &&
|
|
!arm_feature(env, ARM_FEATURE_PMSA)) {
|
|
/*
|
|
* v7VMSA drops support for the old ARMv5 tiny pages,
|
|
* so we can use 4K pages.
|
|
*/
|
|
pagebits = 12;
|
|
} else {
|
|
/*
|
|
* For CPUs which might have tiny 1K pages, or which have an
|
|
* MPU and might have small region sizes, stick with 1K pages.
|
|
*/
|
|
pagebits = 10;
|
|
}
|
|
if (!set_preferred_target_page_bits(pagebits)) {
|
|
/*
|
|
* This can only ever happen for hotplugging a CPU, or if
|
|
* the board code incorrectly creates a CPU which it has
|
|
* promised via minimum_page_size that it will not.
|
|
*/
|
|
error_setg(errp, "This CPU requires a smaller page size "
|
|
"than the system is using");
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
|
|
* We don't support setting cluster ID ([16..23]) (known as Aff2
|
|
* in later ARM ARM versions), or any of the higher affinity level fields,
|
|
* so these bits always RAZ.
|
|
*/
|
|
if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
|
|
cpu->mp_affinity = arm_build_mp_affinity(cs->cpu_index,
|
|
ARM_DEFAULT_CPUS_PER_CLUSTER);
|
|
}
|
|
|
|
if (cpu->reset_hivecs) {
|
|
cpu->reset_sctlr |= (1 << 13);
|
|
}
|
|
|
|
if (cpu->cfgend) {
|
|
if (arm_feature(env, ARM_FEATURE_V7)) {
|
|
cpu->reset_sctlr |= SCTLR_EE;
|
|
} else {
|
|
cpu->reset_sctlr |= SCTLR_B;
|
|
}
|
|
}
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
|
|
/* If the has_el3 CPU property is disabled then we need to disable the
|
|
* feature.
|
|
*/
|
|
unset_feature(env, ARM_FEATURE_EL3);
|
|
|
|
/*
|
|
* Disable the security extension feature bits in the processor
|
|
* feature registers as well.
|
|
*/
|
|
cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
|
|
cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
|
|
cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
|
|
ID_AA64PFR0, EL3, 0);
|
|
|
|
/* Disable the realm management extension, which requires EL3. */
|
|
cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
|
|
ID_AA64PFR0, RME, 0);
|
|
}
|
|
|
|
if (!cpu->has_el2) {
|
|
unset_feature(env, ARM_FEATURE_EL2);
|
|
}
|
|
|
|
if (!cpu->has_pmu) {
|
|
unset_feature(env, ARM_FEATURE_PMU);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_PMU)) {
|
|
pmu_init(cpu);
|
|
|
|
if (!kvm_enabled()) {
|
|
arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
|
|
arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
|
|
cpu);
|
|
#endif
|
|
} else {
|
|
cpu->isar.id_aa64dfr0 =
|
|
FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
|
|
cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
|
|
cpu->pmceid0 = 0;
|
|
cpu->pmceid1 = 0;
|
|
}
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_EL2)) {
|
|
/*
|
|
* Disable the hypervisor feature bits in the processor feature
|
|
* registers if we don't have EL2.
|
|
*/
|
|
cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
|
|
ID_AA64PFR0, EL2, 0);
|
|
cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
|
|
ID_PFR1, VIRTUALIZATION, 0);
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_mte, cpu)) {
|
|
/*
|
|
* The architectural range of GM blocksize is 2-6, however qemu
|
|
* doesn't support blocksize of 2 (see HELPER(ldgm)).
|
|
*/
|
|
if (tcg_enabled()) {
|
|
assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
/*
|
|
* If we run with TCG and do not have tag-memory provided by
|
|
* the machine, then reduce MTE support to instructions enabled at EL0.
|
|
* This matches Cortex-A710 BROADCASTMTE input being LOW.
|
|
*/
|
|
if (tcg_enabled() && cpu->tag_memory == NULL) {
|
|
cpu->isar.id_aa64pfr1 =
|
|
FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
|
|
}
|
|
|
|
/*
|
|
* If MTE is supported by the host, however it should not be
|
|
* enabled on the guest (i.e mte=off), clear guest's MTE bits."
|
|
*/
|
|
if (kvm_enabled() && !cpu->kvm_mte) {
|
|
FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (tcg_enabled() && cpu_isar_feature(aa64_wfxt, cpu)) {
|
|
cpu->wfxt_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
|
|
arm_wfxt_timer_cb, cpu);
|
|
}
|
|
#endif
|
|
|
|
if (tcg_enabled()) {
|
|
/*
|
|
* Don't report some architectural features in the ID registers
|
|
* where TCG does not yet implement it (not even a minimal
|
|
* stub version). This avoids guests falling over when they
|
|
* try to access the non-existent system registers for them.
|
|
*/
|
|
/* FEAT_SPE (Statistical Profiling Extension) */
|
|
cpu->isar.id_aa64dfr0 =
|
|
FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
|
|
/* FEAT_TRBE (Trace Buffer Extension) */
|
|
cpu->isar.id_aa64dfr0 =
|
|
FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
|
|
/* FEAT_TRF (Self-hosted Trace Extension) */
|
|
cpu->isar.id_aa64dfr0 =
|
|
FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
|
|
cpu->isar.id_dfr0 =
|
|
FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
|
|
/* Trace Macrocell system register access */
|
|
cpu->isar.id_aa64dfr0 =
|
|
FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
|
|
cpu->isar.id_dfr0 =
|
|
FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
|
|
/* Memory mapped trace */
|
|
cpu->isar.id_dfr0 =
|
|
FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
|
|
/* FEAT_AMU (Activity Monitors Extension) */
|
|
cpu->isar.id_aa64pfr0 =
|
|
FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
|
|
cpu->isar.id_pfr0 =
|
|
FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
|
|
/* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
|
|
cpu->isar.id_aa64pfr0 =
|
|
FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
|
|
}
|
|
|
|
/* MPU can be configured out of a PMSA CPU either by setting has-mpu
|
|
* to false or by setting pmsav7-dregion to 0.
|
|
*/
|
|
if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
|
|
cpu->has_mpu = false;
|
|
cpu->pmsav7_dregion = 0;
|
|
cpu->pmsav8r_hdregion = 0;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_PMSA) &&
|
|
arm_feature(env, ARM_FEATURE_V7)) {
|
|
uint32_t nr = cpu->pmsav7_dregion;
|
|
|
|
if (nr > 0xff) {
|
|
error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
|
|
return;
|
|
}
|
|
|
|
if (nr) {
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
/* PMSAv8 */
|
|
env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
|
|
env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
|
|
env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
|
|
}
|
|
} else {
|
|
env->pmsav7.drbar = g_new0(uint32_t, nr);
|
|
env->pmsav7.drsr = g_new0(uint32_t, nr);
|
|
env->pmsav7.dracr = g_new0(uint32_t, nr);
|
|
}
|
|
}
|
|
|
|
if (cpu->pmsav8r_hdregion > 0xff) {
|
|
error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
|
|
cpu->pmsav8r_hdregion);
|
|
return;
|
|
}
|
|
|
|
if (cpu->pmsav8r_hdregion) {
|
|
env->pmsav8.hprbar = g_new0(uint32_t,
|
|
cpu->pmsav8r_hdregion);
|
|
env->pmsav8.hprlar = g_new0(uint32_t,
|
|
cpu->pmsav8r_hdregion);
|
|
}
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
uint32_t nr = cpu->sau_sregion;
|
|
|
|
if (nr > 0xff) {
|
|
error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
|
|
return;
|
|
}
|
|
|
|
if (nr) {
|
|
env->sau.rbar = g_new0(uint32_t, nr);
|
|
env->sau.rlar = g_new0(uint32_t, nr);
|
|
}
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
set_feature(env, ARM_FEATURE_VBAR);
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
|
|
arm_register_el_change_hook(cpu, >_rme_post_el_change, 0);
|
|
}
|
|
#endif
|
|
|
|
register_cp_regs_for_features(cpu);
|
|
arm_cpu_register_gdb_regs_for_features(cpu);
|
|
arm_cpu_register_gdb_commands(cpu);
|
|
|
|
init_cpreg_list(cpu);
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
MachineState *ms = MACHINE(qdev_get_machine());
|
|
unsigned int smp_cpus = ms->smp.cpus;
|
|
bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
|
|
|
|
/*
|
|
* We must set cs->num_ases to the final value before
|
|
* the first call to cpu_address_space_init.
|
|
*/
|
|
if (cpu->tag_memory != NULL) {
|
|
cs->num_ases = 3 + has_secure;
|
|
} else {
|
|
cs->num_ases = 1 + has_secure;
|
|
}
|
|
|
|
if (has_secure) {
|
|
if (!cpu->secure_memory) {
|
|
cpu->secure_memory = cs->memory;
|
|
}
|
|
cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
|
|
cpu->secure_memory);
|
|
}
|
|
|
|
if (cpu->tag_memory != NULL) {
|
|
cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
|
|
cpu->tag_memory);
|
|
if (has_secure) {
|
|
cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
|
|
cpu->secure_tag_memory);
|
|
}
|
|
}
|
|
|
|
cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
|
|
|
|
/* No core_count specified, default to smp_cpus. */
|
|
if (cpu->core_count == -1) {
|
|
cpu->core_count = smp_cpus;
|
|
}
|
|
#endif
|
|
|
|
if (tcg_enabled()) {
|
|
int dcz_blocklen = 4 << cpu->dcz_blocksize;
|
|
|
|
/*
|
|
* We only support DCZ blocklen that fits on one page.
|
|
*
|
|
* Architectually this is always true. However TARGET_PAGE_SIZE
|
|
* is variable and, for compatibility with -machine virt-2.7,
|
|
* is only 1KiB, as an artifact of legacy ARMv5 subpage support.
|
|
* But even then, while the largest architectural DCZ blocklen
|
|
* is 2KiB, no cpu actually uses such a large blocklen.
|
|
*/
|
|
assert(dcz_blocklen <= TARGET_PAGE_SIZE);
|
|
|
|
/*
|
|
* We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
|
|
* both nibbles of each byte storing tag data may be written at once.
|
|
* Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
|
|
*/
|
|
if (cpu_isar_feature(aa64_mte, cpu)) {
|
|
assert(dcz_blocklen >= 2 * TAG_GRANULE);
|
|
}
|
|
}
|
|
|
|
qemu_init_vcpu(cs);
|
|
cpu_reset(cs);
|
|
|
|
acc->parent_realize(dev, errp);
|
|
}
|
|
|
|
static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
|
|
{
|
|
ObjectClass *oc;
|
|
char *typename;
|
|
char **cpuname;
|
|
const char *cpunamestr;
|
|
|
|
cpuname = g_strsplit(cpu_model, ",", 1);
|
|
cpunamestr = cpuname[0];
|
|
#ifdef CONFIG_USER_ONLY
|
|
/* For backwards compatibility usermode emulation allows "-cpu any",
|
|
* which has the same semantics as "-cpu max".
|
|
*/
|
|
if (!strcmp(cpunamestr, "any")) {
|
|
cpunamestr = "max";
|
|
}
|
|
#endif
|
|
typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
|
|
oc = object_class_by_name(typename);
|
|
g_strfreev(cpuname);
|
|
g_free(typename);
|
|
|
|
return oc;
|
|
}
|
|
|
|
static Property arm_cpu_properties[] = {
|
|
DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
|
|
DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
|
|
mp_affinity, ARM64_AFFINITY_INVALID),
|
|
DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
|
|
DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
|
|
/* True to default to the backward-compat old CNTFRQ rather than 1Ghz */
|
|
DEFINE_PROP_BOOL("backcompat-cntfrq", ARMCPU, backcompat_cntfrq, false),
|
|
DEFINE_PROP_END_OF_LIST()
|
|
};
|
|
|
|
static const gchar *arm_gdb_arch_name(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
|
|
return "iwmmxt";
|
|
}
|
|
return "arm";
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
#include "hw/core/sysemu-cpu-ops.h"
|
|
|
|
static const struct SysemuCPUOps arm_sysemu_ops = {
|
|
.get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
|
|
.asidx_from_attrs = arm_asidx_from_attrs,
|
|
.write_elf32_note = arm_cpu_write_elf32_note,
|
|
.write_elf64_note = arm_cpu_write_elf64_note,
|
|
.virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
|
|
.legacy_vmsd = &vmstate_arm_cpu,
|
|
};
|
|
#endif
|
|
|
|
#ifdef CONFIG_TCG
|
|
static const TCGCPUOps arm_tcg_ops = {
|
|
.initialize = arm_translate_init,
|
|
.synchronize_from_tb = arm_cpu_synchronize_from_tb,
|
|
.debug_excp_handler = arm_debug_excp_handler,
|
|
.restore_state_to_opc = arm_restore_state_to_opc,
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
.record_sigsegv = arm_cpu_record_sigsegv,
|
|
.record_sigbus = arm_cpu_record_sigbus,
|
|
#else
|
|
.tlb_fill_align = arm_cpu_tlb_fill_align,
|
|
.cpu_exec_interrupt = arm_cpu_exec_interrupt,
|
|
.cpu_exec_halt = arm_cpu_exec_halt,
|
|
.do_interrupt = arm_cpu_do_interrupt,
|
|
.do_transaction_failed = arm_cpu_do_transaction_failed,
|
|
.do_unaligned_access = arm_cpu_do_unaligned_access,
|
|
.adjust_watchpoint_address = arm_adjust_watchpoint_address,
|
|
.debug_check_watchpoint = arm_debug_check_watchpoint,
|
|
.debug_check_breakpoint = arm_debug_check_breakpoint,
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
};
|
|
#endif /* CONFIG_TCG */
|
|
|
|
static void arm_cpu_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
ARMCPUClass *acc = ARM_CPU_CLASS(oc);
|
|
CPUClass *cc = CPU_CLASS(acc);
|
|
DeviceClass *dc = DEVICE_CLASS(oc);
|
|
ResettableClass *rc = RESETTABLE_CLASS(oc);
|
|
|
|
device_class_set_parent_realize(dc, arm_cpu_realizefn,
|
|
&acc->parent_realize);
|
|
|
|
device_class_set_props(dc, arm_cpu_properties);
|
|
|
|
resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
|
|
&acc->parent_phases);
|
|
|
|
cc->class_by_name = arm_cpu_class_by_name;
|
|
cc->has_work = arm_cpu_has_work;
|
|
cc->mmu_index = arm_cpu_mmu_index;
|
|
cc->dump_state = arm_cpu_dump_state;
|
|
cc->set_pc = arm_cpu_set_pc;
|
|
cc->get_pc = arm_cpu_get_pc;
|
|
cc->gdb_read_register = arm_cpu_gdb_read_register;
|
|
cc->gdb_write_register = arm_cpu_gdb_write_register;
|
|
#ifndef CONFIG_USER_ONLY
|
|
cc->sysemu_ops = &arm_sysemu_ops;
|
|
#endif
|
|
cc->gdb_arch_name = arm_gdb_arch_name;
|
|
cc->gdb_stop_before_watchpoint = true;
|
|
cc->disas_set_info = arm_disas_set_info;
|
|
|
|
#ifdef CONFIG_TCG
|
|
cc->tcg_ops = &arm_tcg_ops;
|
|
#endif /* CONFIG_TCG */
|
|
}
|
|
|
|
static void arm_cpu_instance_init(Object *obj)
|
|
{
|
|
ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
|
|
|
|
acc->info->initfn(obj);
|
|
arm_cpu_post_init(obj);
|
|
}
|
|
|
|
static void cpu_register_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
ARMCPUClass *acc = ARM_CPU_CLASS(oc);
|
|
CPUClass *cc = CPU_CLASS(acc);
|
|
|
|
acc->info = data;
|
|
cc->gdb_core_xml_file = "arm-core.xml";
|
|
}
|
|
|
|
void arm_cpu_register(const ARMCPUInfo *info)
|
|
{
|
|
TypeInfo type_info = {
|
|
.parent = TYPE_ARM_CPU,
|
|
.instance_init = arm_cpu_instance_init,
|
|
.class_init = info->class_init ?: cpu_register_class_init,
|
|
.class_data = (void *)info,
|
|
};
|
|
|
|
type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
|
|
type_register(&type_info);
|
|
g_free((void *)type_info.name);
|
|
}
|
|
|
|
static const TypeInfo arm_cpu_type_info = {
|
|
.name = TYPE_ARM_CPU,
|
|
.parent = TYPE_CPU,
|
|
.instance_size = sizeof(ARMCPU),
|
|
.instance_align = __alignof__(ARMCPU),
|
|
.instance_init = arm_cpu_initfn,
|
|
.instance_finalize = arm_cpu_finalizefn,
|
|
.abstract = true,
|
|
.class_size = sizeof(ARMCPUClass),
|
|
.class_init = arm_cpu_class_init,
|
|
};
|
|
|
|
static void arm_cpu_register_types(void)
|
|
{
|
|
type_register_static(&arm_cpu_type_info);
|
|
}
|
|
|
|
type_init(arm_cpu_register_types)
|