You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/target/arm/cpu-irq.c

382 lines
12 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* QEMU ARM CPU - interrupt_request handling
*
* Copyright (c) 2003-2025 QEMU contributors
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "accel/tcg/cpu-ops.h"
#include "internals.h"
#ifdef CONFIG_TCG
static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
unsigned int target_el,
unsigned int cur_el, bool secure,
uint64_t hcr_el2)
{
CPUARMState *env = cpu_env(cs);
bool pstate_unmasked;
bool unmasked = false;
bool allIntMask = false;
/*
* Don't take exceptions if they target a lower EL.
* This check should catch any exceptions that would not be taken
* but left pending.
*/
if (cur_el > target_el) {
return false;
}
if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
env->cp15.sctlr_el[target_el] & SCTLR_NMI && cur_el == target_el) {
allIntMask = env->pstate & PSTATE_ALLINT ||
((env->cp15.sctlr_el[target_el] & SCTLR_SPINTMASK) &&
(env->pstate & PSTATE_SP));
}
switch (excp_idx) {
case EXCP_NMI:
pstate_unmasked = !allIntMask;
break;
case EXCP_VINMI:
if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
/* VINMIs are only taken when hypervized. */
return false;
}
return !allIntMask;
case EXCP_VFNMI:
if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
/* VFNMIs are only taken when hypervized. */
return false;
}
return !allIntMask;
case EXCP_FIQ:
pstate_unmasked = (!(env->daif & PSTATE_F)) && (!allIntMask);
break;
case EXCP_IRQ:
pstate_unmasked = (!(env->daif & PSTATE_I)) && (!allIntMask);
break;
case EXCP_VFIQ:
if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
/* VFIQs are only taken when hypervized. */
return false;
}
return !(env->daif & PSTATE_F) && (!allIntMask);
case EXCP_VIRQ:
if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
/* VIRQs are only taken when hypervized. */
return false;
}
return !(env->daif & PSTATE_I) && (!allIntMask);
case EXCP_VSERR:
if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
/* VIRQs are only taken when hypervized. */
return false;
}
return !(env->daif & PSTATE_A);
default:
g_assert_not_reached();
}
/*
* Use the target EL, current execution state and SCR/HCR settings to
* determine whether the corresponding CPSR bit is used to mask the
* interrupt.
*/
if ((target_el > cur_el) && (target_el != 1)) {
/* Exceptions targeting a higher EL may not be maskable */
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
switch (target_el) {
case 2:
/*
* According to ARM DDI 0487H.a, an interrupt can be masked
* when HCR_E2H and HCR_TGE are both set regardless of the
* current Security state. Note that we need to revisit this
* part again once we need to support NMI.
*/
if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
unmasked = true;
}
break;
case 3:
/* Interrupt cannot be masked when the target EL is 3 */
unmasked = true;
break;
default:
g_assert_not_reached();
}
} else {
/*
* The old 32-bit-only environment has a more complicated
* masking setup. HCR and SCR bits not only affect interrupt
* routing but also change the behaviour of masking.
*/
bool hcr, scr;
switch (excp_idx) {
case EXCP_FIQ:
/*
* If FIQs are routed to EL3 or EL2 then there are cases where
* we override the CPSR.F in determining if the exception is
* masked or not. If neither of these are set then we fall back
* to the CPSR.F setting otherwise we further assess the state
* below.
*/
hcr = hcr_el2 & HCR_FMO;
scr = (env->cp15.scr_el3 & SCR_FIQ);
/*
* When EL3 is 32-bit, the SCR.FW bit controls whether the
* CPSR.F bit masks FIQ interrupts when taken in non-secure
* state. If SCR.FW is set then FIQs can be masked by CPSR.F
* when non-secure but only when FIQs are only routed to EL3.
*/
scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
break;
case EXCP_IRQ:
/*
* When EL3 execution state is 32-bit, if HCR.IMO is set then
* we may override the CPSR.I masking when in non-secure state.
* The SCR.IRQ setting has already been taken into consideration
* when setting the target EL, so it does not have a further
* affect here.
*/
hcr = hcr_el2 & HCR_IMO;
scr = false;
break;
default:
g_assert_not_reached();
}
if ((scr || hcr) && !secure) {
unmasked = true;
}
}
}
/*
* The PSTATE bits only mask the interrupt if we have not overridden the
* ability above.
*/
return unmasked || pstate_unmasked;
}
bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
CPUARMState *env = cpu_env(cs);
uint32_t cur_el = arm_current_el(env);
bool secure = arm_is_secure(env);
uint64_t hcr_el2 = arm_hcr_el2_eff(env);
uint32_t target_el;
uint32_t excp_idx;
/* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
(arm_sctlr(env, cur_el) & SCTLR_NMI)) {
if (interrupt_request & CPU_INTERRUPT_NMI) {
excp_idx = EXCP_NMI;
target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
goto found;
}
}
if (interrupt_request & CPU_INTERRUPT_VINMI) {
excp_idx = EXCP_VINMI;
target_el = 1;
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
goto found;
}
}
if (interrupt_request & CPU_INTERRUPT_VFNMI) {
excp_idx = EXCP_VFNMI;
target_el = 1;
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
goto found;
}
}
} else {
/*
* NMI disabled: interrupts with superpriority are handled
* as if they didn't have it
*/
if (interrupt_request & CPU_INTERRUPT_NMI) {
interrupt_request |= CPU_INTERRUPT_HARD;
}
if (interrupt_request & CPU_INTERRUPT_VINMI) {
interrupt_request |= CPU_INTERRUPT_VIRQ;
}
if (interrupt_request & CPU_INTERRUPT_VFNMI) {
interrupt_request |= CPU_INTERRUPT_VFIQ;
}
}
if (interrupt_request & CPU_INTERRUPT_FIQ) {
excp_idx = EXCP_FIQ;
target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
goto found;
}
}
if (interrupt_request & CPU_INTERRUPT_HARD) {
excp_idx = EXCP_IRQ;
target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
goto found;
}
}
if (interrupt_request & CPU_INTERRUPT_VIRQ) {
excp_idx = EXCP_VIRQ;
target_el = 1;
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
goto found;
}
}
if (interrupt_request & CPU_INTERRUPT_VFIQ) {
excp_idx = EXCP_VFIQ;
target_el = 1;
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
goto found;
}
}
if (interrupt_request & CPU_INTERRUPT_VSERR) {
excp_idx = EXCP_VSERR;
target_el = 1;
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
/* Taking a virtual abort clears HCR_EL2.VSE */
env->cp15.hcr_el2 &= ~HCR_VSE;
cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
goto found;
}
}
return false;
found:
cs->exception_index = excp_idx;
env->exception.target_el = target_el;
cs->cc->tcg_ops->do_interrupt(cs);
return true;
}
#endif /* CONFIG_TCG */
void arm_cpu_update_virq(ARMCPU *cpu)
{
/*
* Update the interrupt level for VIRQ, which is the logical OR of
* the HCR_EL2.VI bit and the input line level from the GIC.
*/
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
!(arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
(env->irq_line_state & CPU_INTERRUPT_VIRQ);
if (new_state != cpu_test_interrupt(cs, CPU_INTERRUPT_VIRQ)) {
if (new_state) {
cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
}
}
}
void arm_cpu_update_vfiq(ARMCPU *cpu)
{
/*
* Update the interrupt level for VFIQ, which is the logical OR of
* the HCR_EL2.VF bit and the input line level from the GIC.
*/
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
bool new_state = ((arm_hcr_el2_eff(env) & HCR_VF) &&
!(arm_hcrx_el2_eff(env) & HCRX_VFNMI)) ||
(env->irq_line_state & CPU_INTERRUPT_VFIQ);
if (new_state != cpu_test_interrupt(cs, CPU_INTERRUPT_VFIQ)) {
if (new_state) {
cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
}
}
}
void arm_cpu_update_vinmi(ARMCPU *cpu)
{
/*
* Update the interrupt level for VINMI, which is the logical OR of
* the HCRX_EL2.VINMI bit and the input line level from the GIC.
*/
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
(arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
(env->irq_line_state & CPU_INTERRUPT_VINMI);
if (new_state != cpu_test_interrupt(cs, CPU_INTERRUPT_VINMI)) {
if (new_state) {
cpu_interrupt(cs, CPU_INTERRUPT_VINMI);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_VINMI);
}
}
}
void arm_cpu_update_vfnmi(ARMCPU *cpu)
{
/*
* Update the interrupt level for VFNMI, which is the HCRX_EL2.VFNMI bit.
*/
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
bool new_state = (arm_hcr_el2_eff(env) & HCR_VF) &&
(arm_hcrx_el2_eff(env) & HCRX_VFNMI);
if (new_state != cpu_test_interrupt(cs, CPU_INTERRUPT_VFNMI)) {
if (new_state) {
cpu_interrupt(cs, CPU_INTERRUPT_VFNMI);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_VFNMI);
}
}
}
void arm_cpu_update_vserr(ARMCPU *cpu)
{
/*
* Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
*/
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
bool new_state = env->cp15.hcr_el2 & HCR_VSE;
if (new_state != cpu_test_interrupt(cs, CPU_INTERRUPT_VSERR)) {
if (new_state) {
cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
}
}
}