You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/hw/misc/mps2-scc.c

503 lines
14 KiB
C

/*
* ARM MPS2 SCC emulation
*
* Copyright (c) 2017 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
/* This is a model of the SCC (Serial Communication Controller)
* found in the FPGA images of MPS2 development boards.
*
* Documentation of it can be found in the MPS2 TRM:
* https://developer.arm.com/documentation/100112/latest/
* and also in the Application Notes documenting individual FPGA images.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/bitops.h"
#include "trace.h"
#include "hw/sysbus.h"
#include "hw/irq.h"
#include "migration/vmstate.h"
#include "hw/registerfields.h"
#include "hw/misc/mps2-scc.h"
#include "hw/misc/led.h"
#include "hw/qdev-properties.h"
REG32(CFG0, 0)
REG32(CFG1, 4)
REG32(CFG2, 8)
REG32(CFG3, 0xc)
REG32(CFG4, 0x10)
REG32(CFG5, 0x14)
REG32(CFG6, 0x18)
REG32(CFG7, 0x1c)
REG32(CFGDATA_RTN, 0xa0)
REG32(CFGDATA_OUT, 0xa4)
REG32(CFGCTRL, 0xa8)
FIELD(CFGCTRL, DEVICE, 0, 12)
FIELD(CFGCTRL, RES1, 12, 8)
FIELD(CFGCTRL, FUNCTION, 20, 6)
FIELD(CFGCTRL, RES2, 26, 4)
FIELD(CFGCTRL, WRITE, 30, 1)
FIELD(CFGCTRL, START, 31, 1)
REG32(CFGSTAT, 0xac)
FIELD(CFGSTAT, DONE, 0, 1)
FIELD(CFGSTAT, ERROR, 1, 1)
REG32(DLL, 0x100)
REG32(AID, 0xFF8)
REG32(ID, 0xFFC)
static int scc_partno(MPS2SCC *s)
{
/* Return the partno field of the SCC_ID (0x524, 0x511, etc) */
return extract32(s->id, 4, 8);
}
/* Is CFG_REG2 present? */
static bool have_cfg2(MPS2SCC *s)
{
return scc_partno(s) == 0x524 || scc_partno(s) == 0x547 ||
scc_partno(s) == 0x536;
}
/* Is CFG_REG3 present? */
static bool have_cfg3(MPS2SCC *s)
{
return scc_partno(s) != 0x524 && scc_partno(s) != 0x547 &&
scc_partno(s) != 0x536;
}
/* Is CFG_REG5 present? */
static bool have_cfg5(MPS2SCC *s)
{
return scc_partno(s) == 0x524 || scc_partno(s) == 0x547 ||
scc_partno(s) == 0x536;
}
/* Is CFG_REG6 present? */
static bool have_cfg6(MPS2SCC *s)
{
return scc_partno(s) == 0x524 || scc_partno(s) == 0x536;
}
/* Is CFG_REG7 present? */
static bool have_cfg7(MPS2SCC *s)
{
return scc_partno(s) == 0x536;
}
/* Does CFG_REG0 drive the 'remap' GPIO output? */
static bool cfg0_is_remap(MPS2SCC *s)
{
return scc_partno(s) != 0x536;
}
/* Is CFG_REG1 driving a set of LEDs? */
static bool cfg1_is_leds(MPS2SCC *s)
{
return scc_partno(s) != 0x536;
}
/* Handle a write via the SYS_CFG channel to the specified function/device.
* Return false on error (reported to guest via SYS_CFGCTRL ERROR bit).
*/
static bool scc_cfg_write(MPS2SCC *s, unsigned function,
unsigned device, uint32_t value)
{
trace_mps2_scc_cfg_write(function, device, value);
if (function != 1 || device >= s->num_oscclk) {
qemu_log_mask(LOG_GUEST_ERROR,
"MPS2 SCC config write: bad function %d device %d\n",
function, device);
return false;
}
s->oscclk[device] = value;
return true;
}
/* Handle a read via the SYS_CFG channel to the specified function/device.
* Return false on error (reported to guest via SYS_CFGCTRL ERROR bit),
* or set *value on success.
*/
static bool scc_cfg_read(MPS2SCC *s, unsigned function,
unsigned device, uint32_t *value)
{
if (function != 1 || device >= s->num_oscclk) {
qemu_log_mask(LOG_GUEST_ERROR,
"MPS2 SCC config read: bad function %d device %d\n",
function, device);
return false;
}
*value = s->oscclk[device];
trace_mps2_scc_cfg_read(function, device, *value);
return true;
}
static uint64_t mps2_scc_read(void *opaque, hwaddr offset, unsigned size)
{
MPS2SCC *s = MPS2_SCC(opaque);
uint64_t r;
switch (offset) {
case A_CFG0:
r = s->cfg0;
break;
case A_CFG1:
r = s->cfg1;
break;
case A_CFG2:
if (!have_cfg2(s)) {
goto bad_offset;
}
r = s->cfg2;
break;
case A_CFG3:
if (!have_cfg3(s)) {
goto bad_offset;
}
/*
* These are user-settable DIP switches on the board. We don't
* model that, so just return zeroes.
*
* TODO: for AN536 this is MCC_MSB_ADDR "additional MCC addressing
* bits". These change which part of the DDR4 the motherboard
* configuration controller can see in its memory map (see the
* appnote section 2.4). QEMU doesn't model the MCC at all, so these
* bits are not interesting to us; read-as-zero is as good as anything
* else.
*/
r = 0;
break;
case A_CFG4:
r = s->cfg4;
break;
case A_CFG5:
if (!have_cfg5(s)) {
goto bad_offset;
}
r = s->cfg5;
break;
case A_CFG6:
if (!have_cfg6(s)) {
goto bad_offset;
}
r = s->cfg6;
break;
case A_CFG7:
if (!have_cfg7(s)) {
goto bad_offset;
}
r = s->cfg7;
break;
case A_CFGDATA_RTN:
r = s->cfgdata_rtn;
break;
case A_CFGDATA_OUT:
r = s->cfgdata_out;
break;
case A_CFGCTRL:
r = s->cfgctrl;
break;
case A_CFGSTAT:
r = s->cfgstat;
break;
case A_DLL:
r = s->dll;
break;
case A_AID:
r = s->aid;
break;
case A_ID:
r = s->id;
break;
default:
bad_offset:
qemu_log_mask(LOG_GUEST_ERROR,
"MPS2 SCC read: bad offset %x\n", (int) offset);
r = 0;
break;
}
trace_mps2_scc_read(offset, r, size);
return r;
}
static void mps2_scc_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
MPS2SCC *s = MPS2_SCC(opaque);
trace_mps2_scc_write(offset, value, size);
switch (offset) {
case A_CFG0:
/*
* On some boards bit 0 controls board-specific remapping;
* we always reflect bit 0 in the 'remap' GPIO output line,
* and let the board wire it up or not as it chooses.
* TODO on some boards bit 1 is CPU_WAIT.
*
* TODO: on the AN536 this register controls reset and halt
* for both CPUs. For the moment we don't implement this, so the
* register just reads as written.
*/
s->cfg0 = value;
if (cfg0_is_remap(s)) {
qemu_set_irq(s->remap, s->cfg0 & 1);
}
break;
case A_CFG1:
s->cfg1 = value;
/*
* On most boards this register drives LEDs.
*
* TODO: for AN536 this controls whether flash and ATCM are
* enabled or disabled on reset. QEMU doesn't model this, and
* always wires up RAM in the ATCM area and ROM in the flash area.
*/
if (cfg1_is_leds(s)) {
for (size_t i = 0; i < ARRAY_SIZE(s->led); i++) {
led_set_state(s->led[i], extract32(value, i, 1));
}
}
break;
case A_CFG2:
if (!have_cfg2(s)) {
goto bad_offset;
}
/* AN524, AN536: QSPI Select signal */
s->cfg2 = value;
break;
case A_CFG5:
if (!have_cfg5(s)) {
goto bad_offset;
}
/* AN524, AN536: ACLK frequency in Hz */
s->cfg5 = value;
break;
case A_CFG6:
if (!have_cfg6(s)) {
goto bad_offset;
}
/* AN524: Clock divider for BRAM */
/* AN536: Core 0 vector table base address */
s->cfg6 = value;
break;
case A_CFG7:
if (!have_cfg7(s)) {
goto bad_offset;
}
/* AN536: Core 1 vector table base address */
s->cfg6 = value;
break;
case A_CFGDATA_OUT:
s->cfgdata_out = value;
break;
case A_CFGCTRL:
/* Writing to CFGCTRL clears SYS_CFGSTAT */
s->cfgstat = 0;
s->cfgctrl = value & ~(R_CFGCTRL_RES1_MASK |
R_CFGCTRL_RES2_MASK |
R_CFGCTRL_START_MASK);
if (value & R_CFGCTRL_START_MASK) {
/* Start bit set -- do a read or write (instantaneously) */
int device = extract32(s->cfgctrl, R_CFGCTRL_DEVICE_SHIFT,
R_CFGCTRL_DEVICE_LENGTH);
int function = extract32(s->cfgctrl, R_CFGCTRL_FUNCTION_SHIFT,
R_CFGCTRL_FUNCTION_LENGTH);
s->cfgstat = R_CFGSTAT_DONE_MASK;
if (s->cfgctrl & R_CFGCTRL_WRITE_MASK) {
if (!scc_cfg_write(s, function, device, s->cfgdata_out)) {
s->cfgstat |= R_CFGSTAT_ERROR_MASK;
}
} else {
uint32_t result;
if (!scc_cfg_read(s, function, device, &result)) {
s->cfgstat |= R_CFGSTAT_ERROR_MASK;
} else {
s->cfgdata_rtn = result;
}
}
}
break;
case A_DLL:
/* DLL stands for Digital Locked Loop.
* Bits [31:24] (DLL_LOCK_MASK) are writable, and indicate a
* mask of which of the DLL_LOCKED bits [16:23] should be ORed
* together to determine the ALL_UNMASKED_DLLS_LOCKED bit [0].
* For QEMU, our DLLs are always locked, so we can leave bit 0
* as 1 always and don't need to recalculate it.
*/
s->dll = deposit32(s->dll, 24, 8, extract32(value, 24, 8));
break;
default:
bad_offset:
qemu_log_mask(LOG_GUEST_ERROR,
"MPS2 SCC write: bad offset 0x%x\n", (int) offset);
break;
}
}
static const MemoryRegionOps mps2_scc_ops = {
.read = mps2_scc_read,
.write = mps2_scc_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void mps2_scc_reset(DeviceState *dev)
{
MPS2SCC *s = MPS2_SCC(dev);
int i;
trace_mps2_scc_reset();
s->cfg0 = s->cfg0_reset;
s->cfg1 = 0;
s->cfg2 = 0;
s->cfg5 = 0;
s->cfg6 = 0;
s->cfgdata_rtn = 0;
s->cfgdata_out = 0;
s->cfgctrl = 0x100000;
s->cfgstat = 0;
s->dll = 0xffff0001;
for (i = 0; i < s->num_oscclk; i++) {
s->oscclk[i] = s->oscclk_reset[i];
}
for (i = 0; i < ARRAY_SIZE(s->led); i++) {
device_cold_reset(DEVICE(s->led[i]));
}
}
static void mps2_scc_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
MPS2SCC *s = MPS2_SCC(obj);
memory_region_init_io(&s->iomem, obj, &mps2_scc_ops, s, "mps2-scc", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
qdev_init_gpio_out_named(DEVICE(obj), &s->remap, "remap", 1);
}
static void mps2_scc_realize(DeviceState *dev, Error **errp)
{
MPS2SCC *s = MPS2_SCC(dev);
for (size_t i = 0; i < ARRAY_SIZE(s->led); i++) {
char *name = g_strdup_printf("SCC LED%zu", i);
s->led[i] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH,
LED_COLOR_GREEN, name);
g_free(name);
}
s->oscclk = g_new0(uint32_t, s->num_oscclk);
}
static void mps2_scc_finalize(Object *obj)
{
MPS2SCC *s = MPS2_SCC(obj);
g_free(s->oscclk_reset);
}
static bool cfg7_needed(void *opaque)
{
MPS2SCC *s = opaque;
return have_cfg7(s);
}
static const VMStateDescription vmstate_cfg7 = {
.name = "mps2-scc/cfg7",
.version_id = 1,
.minimum_version_id = 1,
.needed = cfg7_needed,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(cfg7, MPS2SCC),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription mps2_scc_vmstate = {
.name = "mps2-scc",
.version_id = 3,
.minimum_version_id = 3,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(cfg0, MPS2SCC),
VMSTATE_UINT32(cfg1, MPS2SCC),
VMSTATE_UINT32(cfg2, MPS2SCC),
/* cfg3, cfg4 are read-only so need not be migrated */
VMSTATE_UINT32(cfg5, MPS2SCC),
VMSTATE_UINT32(cfg6, MPS2SCC),
VMSTATE_UINT32(cfgdata_rtn, MPS2SCC),
VMSTATE_UINT32(cfgdata_out, MPS2SCC),
VMSTATE_UINT32(cfgctrl, MPS2SCC),
VMSTATE_UINT32(cfgstat, MPS2SCC),
VMSTATE_UINT32(dll, MPS2SCC),
VMSTATE_VARRAY_UINT32(oscclk, MPS2SCC, num_oscclk,
0, vmstate_info_uint32, uint32_t),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription * const []) {
&vmstate_cfg7,
NULL
}
};
static Property mps2_scc_properties[] = {
/* Values for various read-only ID registers (which are specific
* to the board model or FPGA image)
*/
DEFINE_PROP_UINT32("scc-cfg4", MPS2SCC, cfg4, 0),
DEFINE_PROP_UINT32("scc-aid", MPS2SCC, aid, 0),
DEFINE_PROP_UINT32("scc-id", MPS2SCC, id, 0),
/* Reset value for CFG0 register */
DEFINE_PROP_UINT32("scc-cfg0", MPS2SCC, cfg0_reset, 0),
/*
* These are the initial settings for the source clocks on the board.
* In hardware they can be configured via a config file read by the
* motherboard configuration controller to suit the FPGA image.
*/
DEFINE_PROP_ARRAY("oscclk", MPS2SCC, num_oscclk, oscclk_reset,
qdev_prop_uint32, uint32_t),
DEFINE_PROP_END_OF_LIST(),
};
static void mps2_scc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = mps2_scc_realize;
dc->vmsd = &mps2_scc_vmstate;
device_class_set_legacy_reset(dc, mps2_scc_reset);
device_class_set_props(dc, mps2_scc_properties);
}
static const TypeInfo mps2_scc_info = {
.name = TYPE_MPS2_SCC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(MPS2SCC),
.instance_init = mps2_scc_init,
.instance_finalize = mps2_scc_finalize,
.class_init = mps2_scc_class_init,
};
static void mps2_scc_register_types(void)
{
type_register_static(&mps2_scc_info);
}
type_init(mps2_scc_register_types);