You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/hw/display/dm163.c

350 lines
11 KiB
C

/*
* QEMU DM163 8x3-channel constant current led driver
* driving columns of associated 8x8 RGB matrix.
*
* Copyright (C) 2024 Samuel Tardieu <sam@rfc1149.net>
* Copyright (C) 2024 Arnaud Minier <arnaud.minier@telecom-paris.fr>
* Copyright (C) 2024 Inès Varhol <ines.varhol@telecom-paris.fr>
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
/*
* The reference used for the DM163 is the following :
* http://www.siti.com.tw/product/spec/LED/DM163.pdf
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "migration/vmstate.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "hw/display/dm163.h"
#include "ui/console.h"
#include "trace.h"
#define LED_SQUARE_SIZE 100
/* Number of frames a row stays visible after being turned off. */
#define ROW_PERSISTENCE 3
#define TURNED_OFF_ROW (COLOR_BUFFER_SIZE - 1)
static const VMStateDescription vmstate_dm163 = {
.name = TYPE_DM163,
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_UINT64_ARRAY(bank0_shift_register, DM163State, 3),
VMSTATE_UINT64_ARRAY(bank1_shift_register, DM163State, 3),
VMSTATE_UINT16_ARRAY(latched_outputs, DM163State, DM163_NUM_LEDS),
VMSTATE_UINT16_ARRAY(outputs, DM163State, DM163_NUM_LEDS),
VMSTATE_UINT8(dck, DM163State),
VMSTATE_UINT8(en_b, DM163State),
VMSTATE_UINT8(lat_b, DM163State),
VMSTATE_UINT8(rst_b, DM163State),
VMSTATE_UINT8(selbk, DM163State),
VMSTATE_UINT8(sin, DM163State),
VMSTATE_UINT8(activated_rows, DM163State),
VMSTATE_UINT32_2DARRAY(buffer, DM163State, COLOR_BUFFER_SIZE,
RGB_MATRIX_NUM_COLS),
VMSTATE_UINT8(last_buffer_idx, DM163State),
VMSTATE_UINT8_ARRAY(buffer_idx_of_row, DM163State, RGB_MATRIX_NUM_ROWS),
VMSTATE_UINT8_ARRAY(row_persistence_delay, DM163State,
RGB_MATRIX_NUM_ROWS),
VMSTATE_END_OF_LIST()
}
};
static void dm163_reset_hold(Object *obj, ResetType type)
{
DM163State *s = DM163(obj);
s->sin = 0;
s->dck = 0;
s->rst_b = 0;
/* Ensuring the first falling edge of lat_b isn't missed */
s->lat_b = 1;
s->selbk = 0;
s->en_b = 0;
/* Reset stops the PWM, not the shift and latched registers. */
memset(s->outputs, 0, sizeof(s->outputs));
s->activated_rows = 0;
s->redraw = 0;
trace_dm163_redraw(s->redraw);
for (unsigned i = 0; i < COLOR_BUFFER_SIZE; i++) {
memset(s->buffer[i], 0, sizeof(s->buffer[0]));
}
s->last_buffer_idx = 0;
memset(s->buffer_idx_of_row, TURNED_OFF_ROW, sizeof(s->buffer_idx_of_row));
memset(s->row_persistence_delay, 0, sizeof(s->row_persistence_delay));
}
static void dm163_dck_gpio_handler(void *opaque, int line, int new_state)
{
DM163State *s = opaque;
if (new_state && !s->dck) {
/*
* On raising dck, sample selbk to get the bank to use, and
* sample sin for the bit to enter into the bank shift buffer.
*/
uint64_t *sb =
s->selbk ? s->bank1_shift_register : s->bank0_shift_register;
/* Output the outgoing bit on sout */
const bool sout = (s->selbk ? sb[2] & MAKE_64BIT_MASK(63, 1) :
sb[2] & MAKE_64BIT_MASK(15, 1)) != 0;
qemu_set_irq(s->sout, sout);
/* Enter sin into the shift buffer */
sb[2] = (sb[2] << 1) | ((sb[1] >> 63) & 1);
sb[1] = (sb[1] << 1) | ((sb[0] >> 63) & 1);
sb[0] = (sb[0] << 1) | s->sin;
}
s->dck = new_state;
trace_dm163_dck(new_state);
}
static void dm163_propagate_outputs(DM163State *s)
{
s->last_buffer_idx = (s->last_buffer_idx + 1) % RGB_MATRIX_NUM_ROWS;
/* Values are output when reset is high and enable is low. */
if (s->rst_b && !s->en_b) {
memcpy(s->outputs, s->latched_outputs, sizeof(s->outputs));
} else {
memset(s->outputs, 0, sizeof(s->outputs));
}
for (unsigned x = 0; x < RGB_MATRIX_NUM_COLS; x++) {
/* Grouping the 3 RGB channels in a pixel value */
const uint16_t b = extract16(s->outputs[3 * x + 0], 6, 8);
const uint16_t g = extract16(s->outputs[3 * x + 1], 6, 8);
const uint16_t r = extract16(s->outputs[3 * x + 2], 6, 8);
uint32_t rgba = 0;
trace_dm163_channels(3 * x + 2, r);
trace_dm163_channels(3 * x + 1, g);
trace_dm163_channels(3 * x + 0, b);
rgba = deposit32(rgba, 0, 8, r);
rgba = deposit32(rgba, 8, 8, g);
rgba = deposit32(rgba, 16, 8, b);
/* Led values are sent from the last one to the first one */
s->buffer[s->last_buffer_idx][RGB_MATRIX_NUM_COLS - x - 1] = rgba;
}
for (unsigned row = 0; row < RGB_MATRIX_NUM_ROWS; row++) {
if (s->activated_rows & (1 << row)) {
s->buffer_idx_of_row[row] = s->last_buffer_idx;
s->redraw |= (1 << row);
trace_dm163_redraw(s->redraw);
}
}
}
static void dm163_en_b_gpio_handler(void *opaque, int line, int new_state)
{
DM163State *s = opaque;
s->en_b = new_state;
dm163_propagate_outputs(s);
trace_dm163_en_b(new_state);
}
static uint8_t dm163_bank0(const DM163State *s, uint8_t led)
{
/*
* Bank 0 uses 6 bits per led, so a value may be stored accross
* two uint64_t entries.
*/
const uint8_t low_bit = 6 * led;
const uint8_t low_word = low_bit / 64;
const uint8_t high_word = (low_bit + 5) / 64;
const uint8_t low_shift = low_bit % 64;
if (low_word == high_word) {
/* Simple case: the value belongs to one entry. */
return extract64(s->bank0_shift_register[low_word], low_shift, 6);
}
const uint8_t nb_bits_in_low_word = 64 - low_shift;
const uint8_t nb_bits_in_high_word = 6 - nb_bits_in_low_word;
const uint64_t bits_in_low_word = \
extract64(s->bank0_shift_register[low_word], low_shift,
nb_bits_in_low_word);
const uint64_t bits_in_high_word = \
extract64(s->bank0_shift_register[high_word], 0,
nb_bits_in_high_word);
uint8_t val = 0;
val = deposit32(val, 0, nb_bits_in_low_word, bits_in_low_word);
val = deposit32(val, nb_bits_in_low_word, nb_bits_in_high_word,
bits_in_high_word);
return val;
}
static uint8_t dm163_bank1(const DM163State *s, uint8_t led)
{
const uint64_t entry = s->bank1_shift_register[led / RGB_MATRIX_NUM_COLS];
return extract64(entry, 8 * (led % RGB_MATRIX_NUM_COLS), 8);
}
static void dm163_lat_b_gpio_handler(void *opaque, int line, int new_state)
{
DM163State *s = opaque;
if (s->lat_b && !new_state) {
for (int led = 0; led < DM163_NUM_LEDS; led++) {
s->latched_outputs[led] = dm163_bank0(s, led) * dm163_bank1(s, led);
}
dm163_propagate_outputs(s);
}
s->lat_b = new_state;
trace_dm163_lat_b(new_state);
}
static void dm163_rst_b_gpio_handler(void *opaque, int line, int new_state)
{
DM163State *s = opaque;
s->rst_b = new_state;
dm163_propagate_outputs(s);
trace_dm163_rst_b(new_state);
}
static void dm163_selbk_gpio_handler(void *opaque, int line, int new_state)
{
DM163State *s = opaque;
s->selbk = new_state;
trace_dm163_selbk(new_state);
}
static void dm163_sin_gpio_handler(void *opaque, int line, int new_state)
{
DM163State *s = opaque;
s->sin = new_state;
trace_dm163_sin(new_state);
}
static void dm163_rows_gpio_handler(void *opaque, int line, int new_state)
{
DM163State *s = opaque;
if (new_state) {
s->activated_rows |= (1 << line);
s->buffer_idx_of_row[line] = s->last_buffer_idx;
s->redraw |= (1 << line);
trace_dm163_redraw(s->redraw);
} else {
s->activated_rows &= ~(1 << line);
s->row_persistence_delay[line] = ROW_PERSISTENCE;
}
trace_dm163_activated_rows(s->activated_rows);
}
static void dm163_invalidate_display(void *opaque)
{
DM163State *s = (DM163State *)opaque;
s->redraw = 0xFF;
trace_dm163_redraw(s->redraw);
}
static void update_row_persistence_delay(DM163State *s, unsigned row)
{
if (s->row_persistence_delay[row]) {
s->row_persistence_delay[row]--;
} else {
/*
* If the ROW_PERSISTENCE delay is up,
* the row is turned off.
*/
s->buffer_idx_of_row[row] = TURNED_OFF_ROW;
s->redraw |= (1 << row);
trace_dm163_redraw(s->redraw);
}
}
static uint32_t *update_display_of_row(DM163State *s, uint32_t *dest,
unsigned row)
{
for (unsigned _ = 0; _ < LED_SQUARE_SIZE; _++) {
for (int x = RGB_MATRIX_NUM_COLS * LED_SQUARE_SIZE - 1; x >= 0; x--) {
/* UI layer guarantees that there's 32 bits per pixel (Mar 2024) */
*dest++ = s->buffer[s->buffer_idx_of_row[row]][x / LED_SQUARE_SIZE];
}
}
dpy_gfx_update(s->console, 0, LED_SQUARE_SIZE * row,
RGB_MATRIX_NUM_COLS * LED_SQUARE_SIZE, LED_SQUARE_SIZE);
s->redraw &= ~(1 << row);
trace_dm163_redraw(s->redraw);
return dest;
}
static void dm163_update_display(void *opaque)
{
DM163State *s = (DM163State *)opaque;
DisplaySurface *surface = qemu_console_surface(s->console);
uint32_t *dest;
dest = surface_data(surface);
for (unsigned row = 0; row < RGB_MATRIX_NUM_ROWS; row++) {
update_row_persistence_delay(s, row);
if (!extract8(s->redraw, row, 1)) {
dest += LED_SQUARE_SIZE * LED_SQUARE_SIZE * RGB_MATRIX_NUM_COLS;
continue;
}
dest = update_display_of_row(s, dest, row);
}
}
static const GraphicHwOps dm163_ops = {
.invalidate = dm163_invalidate_display,
.gfx_update = dm163_update_display,
};
static void dm163_realize(DeviceState *dev, Error **errp)
{
DM163State *s = DM163(dev);
qdev_init_gpio_in(dev, dm163_rows_gpio_handler, RGB_MATRIX_NUM_ROWS);
qdev_init_gpio_in(dev, dm163_sin_gpio_handler, 1);
qdev_init_gpio_in(dev, dm163_dck_gpio_handler, 1);
qdev_init_gpio_in(dev, dm163_rst_b_gpio_handler, 1);
qdev_init_gpio_in(dev, dm163_lat_b_gpio_handler, 1);
qdev_init_gpio_in(dev, dm163_selbk_gpio_handler, 1);
qdev_init_gpio_in(dev, dm163_en_b_gpio_handler, 1);
qdev_init_gpio_out_named(dev, &s->sout, "sout", 1);
s->console = graphic_console_init(dev, 0, &dm163_ops, s);
qemu_console_resize(s->console, RGB_MATRIX_NUM_COLS * LED_SQUARE_SIZE,
RGB_MATRIX_NUM_ROWS * LED_SQUARE_SIZE);
}
static void dm163_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
dc->desc = "DM163";
dc->vmsd = &vmstate_dm163;
dc->realize = dm163_realize;
rc->phases.hold = dm163_reset_hold;
set_bit(DEVICE_CATEGORY_DISPLAY, dc->categories);
}
static const TypeInfo dm163_types[] = {
{
.name = TYPE_DM163,
.parent = TYPE_DEVICE,
.instance_size = sizeof(DM163State),
.class_init = dm163_class_init
}
};
DEFINE_TYPES(dm163_types)