You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
xserver/hw/xfree86/modes/xf86Modes.c

826 lines
23 KiB
C

/*
* Copyright (c) 1997-2003 by The XFree86 Project, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of the copyright holder(s)
* and author(s) shall not be used in advertising or otherwise to promote
* the sale, use or other dealings in this Software without prior written
* authorization from the copyright holder(s) and author(s).
*/
#ifdef HAVE_XORG_CONFIG_H
#include <xorg-config.h>
#endif
#include <libxcvt/libxcvt.h>
#include "xf86Modes.h"
#include "xf86Priv.h"
extern XF86ConfigPtr xf86configptr;
/**
* Calculates the horizontal sync rate of a mode.
*/
double
xf86ModeHSync(const DisplayModeRec * mode)
{
double hsync = 0.0;
if (mode->HSync > 0.0)
hsync = mode->HSync;
else if (mode->HTotal > 0)
hsync = (float) mode->Clock / (float) mode->HTotal;
return hsync;
}
/**
* Calculates the vertical refresh rate of a mode.
*/
double
xf86ModeVRefresh(const DisplayModeRec * mode)
{
double refresh = 0.0;
if (mode->VRefresh > 0.0)
refresh = mode->VRefresh;
else if (mode->HTotal > 0 && mode->VTotal > 0) {
refresh = mode->Clock * 1000.0 / mode->HTotal / mode->VTotal;
if (mode->Flags & V_INTERLACE)
refresh *= 2.0;
if (mode->Flags & V_DBLSCAN)
refresh /= 2.0;
if (mode->VScan > 1)
refresh /= (float) (mode->VScan);
}
return refresh;
}
int
xf86ModeWidth(const DisplayModeRec * mode, Rotation rotation)
{
switch (rotation & 0xf) {
case RR_Rotate_0:
case RR_Rotate_180:
return mode->HDisplay;
case RR_Rotate_90:
case RR_Rotate_270:
return mode->VDisplay;
default:
return 0;
}
}
int
xf86ModeHeight(const DisplayModeRec * mode, Rotation rotation)
{
switch (rotation & 0xf) {
case RR_Rotate_0:
case RR_Rotate_180:
return mode->VDisplay;
case RR_Rotate_90:
case RR_Rotate_270:
return mode->HDisplay;
default:
return 0;
}
}
/** Calculates the memory bandwidth (in MiB/sec) of a mode. */
unsigned int
xf86ModeBandwidth(DisplayModePtr mode, int depth)
{
float a_active, a_total, active_percent, pixels_per_second;
int bytes_per_pixel = bits_to_bytes(depth);
if (!mode->HTotal || !mode->VTotal || !mode->Clock)
return 0;
a_active = mode->HDisplay * mode->VDisplay;
a_total = mode->HTotal * mode->VTotal;
active_percent = a_active / a_total;
pixels_per_second = active_percent * mode->Clock * 1000.0;
return (unsigned int) (pixels_per_second * bytes_per_pixel / (1024 * 1024));
}
/** Sets a default mode name of <width>x<height> on a mode. */
void
xf86SetModeDefaultName(DisplayModePtr mode)
{
Bool interlaced = ! !(mode->Flags & V_INTERLACE);
char *tmp;
free((void *) mode->name);
XNFasprintf(&tmp, "%dx%d%s", mode->HDisplay, mode->VDisplay,
interlaced ? "i" : "");
mode->name = tmp;
}
/*
* xf86SetModeCrtc
*
* Initialises the Crtc parameters for a mode. The initialisation includes
* adjustments for interlaced and double scan modes.
*/
void
xf86SetModeCrtc(DisplayModePtr p, int adjustFlags)
{
if ((p == NULL) || ((p->type & M_T_CRTC_C) == M_T_BUILTIN))
return;
p->CrtcHDisplay = p->HDisplay;
p->CrtcHSyncStart = p->HSyncStart;
p->CrtcHSyncEnd = p->HSyncEnd;
p->CrtcHTotal = p->HTotal;
p->CrtcHSkew = p->HSkew;
p->CrtcVDisplay = p->VDisplay;
p->CrtcVSyncStart = p->VSyncStart;
p->CrtcVSyncEnd = p->VSyncEnd;
p->CrtcVTotal = p->VTotal;
if (p->Flags & V_INTERLACE) {
if (adjustFlags & INTERLACE_HALVE_V) {
p->CrtcVDisplay /= 2;
p->CrtcVSyncStart /= 2;
p->CrtcVSyncEnd /= 2;
p->CrtcVTotal /= 2;
}
/* Force interlaced modes to have an odd VTotal */
/* maybe we should only do this when INTERLACE_HALVE_V is set? */
p->CrtcVTotal |= 1;
}
if (p->Flags & V_DBLSCAN) {
p->CrtcVDisplay *= 2;
p->CrtcVSyncStart *= 2;
p->CrtcVSyncEnd *= 2;
p->CrtcVTotal *= 2;
}
if (p->VScan > 1) {
p->CrtcVDisplay *= p->VScan;
p->CrtcVSyncStart *= p->VScan;
p->CrtcVSyncEnd *= p->VScan;
p->CrtcVTotal *= p->VScan;
}
p->CrtcVBlankStart = min(p->CrtcVSyncStart, p->CrtcVDisplay);
p->CrtcVBlankEnd = max(p->CrtcVSyncEnd, p->CrtcVTotal);
p->CrtcHBlankStart = min(p->CrtcHSyncStart, p->CrtcHDisplay);
p->CrtcHBlankEnd = max(p->CrtcHSyncEnd, p->CrtcHTotal);
p->CrtcHAdjusted = FALSE;
p->CrtcVAdjusted = FALSE;
}
/**
* Fills in a copy of mode, removing all stale pointer references.
* xf86ModesEqual will return true when comparing with original mode.
*/
void
xf86SaveModeContents(DisplayModePtr intern, const DisplayModeRec *mode)
{
*intern = *mode;
intern->prev = intern->next = NULL;
intern->name = NULL;
intern->PrivSize = 0;
intern->PrivFlags = 0;
intern->Private = NULL;
}
/**
* Allocates and returns a copy of pMode, including pointers within pMode.
*/
DisplayModePtr
xf86DuplicateMode(const DisplayModeRec * pMode)
{
DisplayModePtr pNew;
pNew = xnfalloc(sizeof(DisplayModeRec));
*pNew = *pMode;
pNew->next = NULL;
pNew->prev = NULL;
if (pMode->name == NULL)
xf86SetModeDefaultName(pNew);
else
pNew->name = xnfstrdup(pMode->name);
return pNew;
}
/**
* Duplicates every mode in the given list and returns a pointer to the first
* mode.
*
* \param modeList doubly-linked mode list
*/
DisplayModePtr
xf86DuplicateModes(ScrnInfoPtr pScrn, DisplayModePtr modeList)
{
DisplayModePtr first = NULL, last = NULL;
DisplayModePtr mode;
for (mode = modeList; mode != NULL; mode = mode->next) {
DisplayModePtr new;
new = xf86DuplicateMode(mode);
/* Insert pNew into modeList */
if (last) {
last->next = new;
new->prev = last;
}
else {
first = new;
new->prev = NULL;
}
new->next = NULL;
last = new;
}
return first;
}
/**
* Returns true if the given modes should program to the same timings.
*
* This doesn't use Crtc values, as it might be used on ModeRecs without the
* Crtc values set. So, it's assumed that the other numbers are enough.
*/
Bool
xf86ModesEqual(const DisplayModeRec * pMode1, const DisplayModeRec * pMode2)
{
if (pMode1->Clock == pMode2->Clock &&
pMode1->HDisplay == pMode2->HDisplay &&
pMode1->HSyncStart == pMode2->HSyncStart &&
pMode1->HSyncEnd == pMode2->HSyncEnd &&
pMode1->HTotal == pMode2->HTotal &&
pMode1->HSkew == pMode2->HSkew &&
pMode1->VDisplay == pMode2->VDisplay &&
pMode1->VSyncStart == pMode2->VSyncStart &&
pMode1->VSyncEnd == pMode2->VSyncEnd &&
pMode1->VTotal == pMode2->VTotal &&
pMode1->VScan == pMode2->VScan && pMode1->Flags == pMode2->Flags) {
return TRUE;
}
else {
return FALSE;
}
}
static void
add(char **p, const char *new)
{
*p = xnfrealloc(*p, strlen(*p) + strlen(new) + 2);
strcat(*p, " ");
strcat(*p, new);
}
/**
* Print out a modeline.
*
* The mode type bits are informational except for the capitalized U
* and P bits which give sort order priority. Letter map:
*
* USERPREF, U, user preferred is set from the xorg.conf Monitor
* Option "PreferredMode" or from the Screen Display Modes statement.
* This unique modeline is moved to the head of the list after sorting.
*
* DRIVER, e, is set by the video driver, EDID or flat panel native.
*
* USERDEF, z, a configured zoom mode Ctrl+Alt+Keypad-{Plus,Minus}.
*
* DEFAULT, d, a compiled-in default.
*
* PREFERRED, P, driver preferred is set by the video device driver,
* e.g. the EDID detailed timing modeline. This is a true sort
* priority and multiple P modes form a sorted sublist at the list
* head.
*
* BUILTIN, b, a hardware fixed CRTC mode.
*
* See modes/xf86Crtc.c: xf86ProbeOutputModes().
*/
void
xf86PrintModeline(int scrnIndex, DisplayModePtr mode)
{
char tmp[256];
char *flags = xnfcalloc(1, 1);
#define TBITS 6
const char tchar[TBITS + 1] = "UezdPb";
int tbit[TBITS] = {
M_T_USERPREF, M_T_DRIVER, M_T_USERDEF,
M_T_DEFAULT, M_T_PREFERRED, M_T_BUILTIN
};
char type[TBITS + 2]; /* +1 for leading space */
#undef TBITS
int tlen = 0;
if (mode->type) {
int i;
type[tlen++] = ' ';
for (i = 0; tchar[i]; i++)
if (mode->type & tbit[i])
type[tlen++] = tchar[i];
}
type[tlen] = '\0';
if (mode->HSkew) {
snprintf(tmp, 256, "hskew %i", mode->HSkew);
add(&flags, tmp);
}
if (mode->VScan) {
snprintf(tmp, 256, "vscan %i", mode->VScan);
add(&flags, tmp);
}
if (mode->Flags & V_INTERLACE)
add(&flags, "interlace");
if (mode->Flags & V_CSYNC)
add(&flags, "composite");
if (mode->Flags & V_DBLSCAN)
add(&flags, "doublescan");
if (mode->Flags & V_BCAST)
add(&flags, "bcast");
if (mode->Flags & V_PHSYNC)
add(&flags, "+hsync");
if (mode->Flags & V_NHSYNC)
add(&flags, "-hsync");
if (mode->Flags & V_PVSYNC)
add(&flags, "+vsync");
if (mode->Flags & V_NVSYNC)
add(&flags, "-vsync");
if (mode->Flags & V_PCSYNC)
add(&flags, "+csync");
if (mode->Flags & V_NCSYNC)
add(&flags, "-csync");
#if 0
if (mode->Flags & V_CLKDIV2)
add(&flags, "vclk/2");
#endif
xf86DrvMsg(scrnIndex, X_INFO,
"Modeline \"%s\"x%.01f %6.2f %i %i %i %i %i %i %i %i%s"
" (%.01f kHz%s)\n",
mode->name, mode->VRefresh, mode->Clock / 1000.,
mode->HDisplay, mode->HSyncStart, mode->HSyncEnd, mode->HTotal,
mode->VDisplay, mode->VSyncStart, mode->VSyncEnd, mode->VTotal,
flags, xf86ModeHSync(mode), type);
free(flags);
}
/**
* Marks as bad any modes with unsupported flags.
*
* \param modeList doubly-linked list of modes.
* \param flags flags supported by the driver.
*
* \bug only V_INTERLACE and V_DBLSCAN are supported. Is that enough?
*/
void
xf86ValidateModesFlags(ScrnInfoPtr pScrn, DisplayModePtr modeList, int flags)
{
DisplayModePtr mode;
if (flags == (V_INTERLACE | V_DBLSCAN))
return;
for (mode = modeList; mode != NULL; mode = mode->next) {
if (mode->Flags & V_INTERLACE && !(flags & V_INTERLACE))
mode->status = MODE_NO_INTERLACE;
if (mode->Flags & V_DBLSCAN && !(flags & V_DBLSCAN))
mode->status = MODE_NO_DBLESCAN;
}
}
/**
* Marks as bad any modes extending beyond the given max X, Y, or pitch.
*
* \param modeList doubly-linked list of modes.
*/
void
xf86ValidateModesSize(ScrnInfoPtr pScrn, DisplayModePtr modeList,
int maxX, int maxY, int maxPitch)
{
DisplayModePtr mode;
if (maxPitch <= 0)
maxPitch = MAXINT;
if (maxX <= 0)
maxX = MAXINT;
if (maxY <= 0)
maxY = MAXINT;
for (mode = modeList; mode != NULL; mode = mode->next) {
if ((xf86ModeWidth(mode, RR_Rotate_0) > maxPitch ||
xf86ModeWidth(mode, RR_Rotate_0) > maxX ||
xf86ModeHeight(mode, RR_Rotate_0) > maxY) &&
(xf86ModeWidth(mode, RR_Rotate_90) > maxPitch ||
xf86ModeWidth(mode, RR_Rotate_90) > maxX ||
xf86ModeHeight(mode, RR_Rotate_90) > maxY)) {
if (xf86ModeWidth(mode, RR_Rotate_0) > maxPitch ||
xf86ModeWidth(mode, RR_Rotate_90) > maxPitch)
mode->status = MODE_BAD_WIDTH;
if (xf86ModeWidth(mode, RR_Rotate_0) > maxX ||
xf86ModeWidth(mode, RR_Rotate_90) > maxX)
mode->status = MODE_VIRTUAL_X;
if (xf86ModeHeight(mode, RR_Rotate_0) > maxY ||
xf86ModeHeight(mode, RR_Rotate_90) > maxY)
mode->status = MODE_VIRTUAL_Y;
}
if (mode->next == modeList)
break;
}
}
/**
* Marks as bad any modes that aren't supported by the given monitor's
* hsync and vrefresh ranges.
*
* \param modeList doubly-linked list of modes.
*/
void
xf86ValidateModesSync(ScrnInfoPtr pScrn, DisplayModePtr modeList, MonPtr mon)
{
DisplayModePtr mode;
for (mode = modeList; mode != NULL; mode = mode->next) {
Bool bad;
int i;
bad = TRUE;
for (i = 0; i < mon->nHsync; i++) {
if (xf86ModeHSync(mode) >= mon->hsync[i].lo * (1 - SYNC_TOLERANCE)
&& xf86ModeHSync(mode) <=
mon->hsync[i].hi * (1 + SYNC_TOLERANCE)) {
bad = FALSE;
}
}
if (bad)
mode->status = MODE_HSYNC;
bad = TRUE;
for (i = 0; i < mon->nVrefresh; i++) {
if (xf86ModeVRefresh(mode) >=
mon->vrefresh[i].lo * (1 - SYNC_TOLERANCE) &&
xf86ModeVRefresh(mode) <=
mon->vrefresh[i].hi * (1 + SYNC_TOLERANCE)) {
bad = FALSE;
}
}
if (bad)
mode->status = MODE_VSYNC;
if (mode->next == modeList)
break;
}
}
/**
* Marks as bad any modes extending beyond outside of the given clock ranges.
*
* \param modeList doubly-linked list of modes.
* \param min pointer to minimums of clock ranges
* \param max pointer to maximums of clock ranges
* \param n_ranges number of ranges.
*/
void
xf86ValidateModesClocks(ScrnInfoPtr pScrn, DisplayModePtr modeList,
int *min, int *max, int n_ranges)
{
DisplayModePtr mode;
int i;
for (mode = modeList; mode != NULL; mode = mode->next) {
Bool good = FALSE;
for (i = 0; i < n_ranges; i++) {
if (mode->Clock >= min[i] * (1 - SYNC_TOLERANCE) &&
mode->Clock <= max[i] * (1 + SYNC_TOLERANCE)) {
good = TRUE;
break;
}
}
if (!good)
mode->status = MODE_CLOCK_RANGE;
}
}
/**
* If the user has specified a set of mode names to use, mark as bad any modes
* not listed.
*
* The user mode names specified are prefixes to names of modes, so "1024x768"
* will match modes named "1024x768", "1024x768x75", "1024x768-good", but
* "1024x768x75" would only match "1024x768x75" from that list.
*
* MODE_BAD is used as the rejection flag, for lack of a better flag.
*
* \param modeList doubly-linked list of modes.
*/
void
xf86ValidateModesUserConfig(ScrnInfoPtr pScrn, DisplayModePtr modeList)
{
DisplayModePtr mode;
if (pScrn->display->modes[0] == NULL)
return;
for (mode = modeList; mode != NULL; mode = mode->next) {
int i;
Bool good = FALSE;
for (i = 0; pScrn->display->modes[i] != NULL; i++) {
if (strncmp(pScrn->display->modes[i], mode->name,
strlen(pScrn->display->modes[i])) == 0) {
good = TRUE;
break;
}
}
if (!good)
mode->status = MODE_BAD;
}
}
/**
* Marks as bad any modes exceeding the given bandwidth.
*
* \param modeList doubly-linked list of modes.
* \param bandwidth bandwidth in MHz.
* \param depth color depth.
*/
void
xf86ValidateModesBandwidth(ScrnInfoPtr pScrn, DisplayModePtr modeList,
unsigned int bandwidth, int depth)
{
DisplayModePtr mode;
for (mode = modeList; mode != NULL; mode = mode->next) {
if (xf86ModeBandwidth(mode, depth) > bandwidth)
mode->status = MODE_BANDWIDTH;
}
}
Bool
xf86ModeIsReduced(const DisplayModeRec * mode)
{
if ((((mode->HDisplay * 5 / 4) & ~0x07) > mode->HTotal) &&
((mode->HTotal - mode->HDisplay) == 160) &&
((mode->HSyncEnd - mode->HDisplay) == 80) &&
((mode->HSyncEnd - mode->HSyncStart) == 32) &&
((mode->VSyncStart - mode->VDisplay) == 3))
return TRUE;
return FALSE;
}
/**
* Marks as bad any reduced-blanking modes.
*
* \param modeList doubly-linked list of modes.
*/
void
xf86ValidateModesReducedBlanking(ScrnInfoPtr pScrn, DisplayModePtr modeList)
{
for (; modeList != NULL; modeList = modeList->next)
if (xf86ModeIsReduced(modeList))
modeList->status = MODE_NO_REDUCED;
}
/**
* Frees any modes from the list with a status other than MODE_OK.
*
* \param modeList pointer to a doubly-linked or circular list of modes.
* \param verbose determines whether the reason for mode invalidation is
* printed.
*/
void
xf86PruneInvalidModes(ScrnInfoPtr pScrn, DisplayModePtr * modeList,
Bool verbose)
{
DisplayModePtr mode;
for (mode = *modeList; mode != NULL;) {
DisplayModePtr next = mode->next, first = *modeList;
if (mode->status != MODE_OK) {
if (verbose) {
const char *type = "";
if (mode->type & M_T_BUILTIN)
type = "built-in ";
else if (mode->type & M_T_DEFAULT)
type = "default ";
xf86DrvMsg(pScrn->scrnIndex, X_INFO,
"Not using %smode \"%s\" (%s)\n", type, mode->name,
xf86ModeStatusToString(mode->status));
}
xf86DeleteMode(modeList, mode);
}
if (next == first)
break;
mode = next;
}
}
/**
* Adds the new mode into the mode list, and returns the new list
*
* \param modes doubly-linked mode list.
*/
DisplayModePtr
xf86ModesAdd(DisplayModePtr modes, DisplayModePtr new)
{
if (modes == NULL)
return new;
if (new) {
DisplayModePtr mode = modes;
while (mode->next)
mode = mode->next;
mode->next = new;
new->prev = mode;
}
return modes;
}
/**
* Build a mode list from a list of config file modes
*/
static DisplayModePtr
xf86GetConfigModes(XF86ConfModeLinePtr conf_mode)
{
DisplayModePtr head = NULL, prev = NULL, mode;
for (; conf_mode; conf_mode = (XF86ConfModeLinePtr) conf_mode->list.next) {
mode = calloc(1, sizeof(DisplayModeRec));
if (!mode)
continue;
mode->name = xstrdup(conf_mode->ml_identifier);
if (!mode->name) {
free(mode);
continue;
}
mode->type = 0;
mode->Clock = conf_mode->ml_clock;
mode->HDisplay = conf_mode->ml_hdisplay;
mode->HSyncStart = conf_mode->ml_hsyncstart;
mode->HSyncEnd = conf_mode->ml_hsyncend;
mode->HTotal = conf_mode->ml_htotal;
mode->VDisplay = conf_mode->ml_vdisplay;
mode->VSyncStart = conf_mode->ml_vsyncstart;
mode->VSyncEnd = conf_mode->ml_vsyncend;
mode->VTotal = conf_mode->ml_vtotal;
mode->Flags = conf_mode->ml_flags;
mode->HSkew = conf_mode->ml_hskew;
mode->VScan = conf_mode->ml_vscan;
mode->prev = prev;
mode->next = NULL;
if (prev)
prev->next = mode;
else
head = mode;
prev = mode;
}
return head;
}
/**
* Build a mode list from a monitor configuration
*/
DisplayModePtr
xf86GetMonitorModes(ScrnInfoPtr pScrn, XF86ConfMonitorPtr conf_monitor)
{
DisplayModePtr modes = NULL;
XF86ConfModesLinkPtr modes_link;
if (!conf_monitor)
return NULL;
/*
* first we collect the mode lines from the UseModes directive
*/
for (modes_link = conf_monitor->mon_modes_sect_lst;
modes_link; modes_link = modes_link->list.next) {
/* If this modes link hasn't been resolved, go look it up now */
if (!modes_link->ml_modes)
modes_link->ml_modes = xf86findModes(modes_link->ml_modes_str,
xf86configptr->conf_modes_lst);
if (modes_link->ml_modes)
modes = xf86ModesAdd(modes,
xf86GetConfigModes(modes_link->ml_modes->
mon_modeline_lst));
}
return xf86ModesAdd(modes,
xf86GetConfigModes(conf_monitor->mon_modeline_lst));
}
/**
* Build a mode list containing all of the default modes
*/
DisplayModePtr
xf86GetDefaultModes(void)
{
DisplayModePtr head = NULL, mode;
int i;
for (i = 0; i < xf86NumDefaultModes; i++) {
const DisplayModeRec *defMode = &xf86DefaultModes[i];
mode = xf86DuplicateMode(defMode);
head = xf86ModesAdd(head, mode);
}
return head;
}
/*
* Walk a mode list and prune out duplicates. Will preserve the preferred
* mode of an otherwise-duplicate pair.
*
* Probably best to call this on lists that are all of a single class
* (driver, default, user, etc.), otherwise, which mode gets deleted is
* not especially well defined.
*
* Returns the new list.
*/
DisplayModePtr
xf86PruneDuplicateModes(DisplayModePtr modes)
{
DisplayModePtr m, n, o;
top:
for (m = modes; m; m = m->next) {
for (n = m->next; n; n = o) {
o = n->next;
if (xf86ModesEqual(m, n)) {
if (n->type & M_T_PREFERRED) {
xf86DeleteMode(&modes, m);
goto top;
}
else
xf86DeleteMode(&modes, n);
}
}
}
return modes;
}
/*
* Generate a CVT standard mode from HDisplay, VDisplay and VRefresh.
*/
DisplayModePtr
xf86CVTMode(int HDisplay, int VDisplay, float VRefresh, Bool Reduced,
Bool Interlaced)
{
struct libxcvt_mode_info *libxcvt_mode_info;
DisplayModeRec *Mode = xnfcalloc(1, sizeof(DisplayModeRec));
libxcvt_mode_info =
libxcvt_gen_mode_info(HDisplay, VDisplay, VRefresh, Reduced, Interlaced);
Mode->VDisplay = libxcvt_mode_info->vdisplay;
Mode->HDisplay = libxcvt_mode_info->hdisplay;
Mode->Clock = libxcvt_mode_info->dot_clock;
Mode->HSyncStart = libxcvt_mode_info->hsync_start;
Mode->HSyncEnd = libxcvt_mode_info->hsync_end;
Mode->HTotal = libxcvt_mode_info->htotal;
Mode->VSyncStart = libxcvt_mode_info->vsync_start;
Mode->VSyncEnd = libxcvt_mode_info->vsync_end;
Mode->VTotal = libxcvt_mode_info->vtotal;
Mode->VRefresh = libxcvt_mode_info->vrefresh;
Mode->Flags = libxcvt_mode_info->mode_flags;
free(libxcvt_mode_info);
return Mode;
}