xserver

xserver with xephyr scale patch
git clone https://git.neptards.moe/u3shit/xserver.git
Log | Files | Refs | README | LICENSE

gtf.c (21958B)


      1 /* gtf.c  Generate mode timings using the GTF Timing Standard
      2  *
      3  * gcc gtf.c -o gtf -lm -Wall
      4  *
      5  * Copyright (c) 2001, Andy Ritger  aritger@nvidia.com
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * o Redistributions of source code must retain the above copyright
     13  *   notice, this list of conditions and the following disclaimer.
     14  * o Redistributions in binary form must reproduce the above copyright
     15  *   notice, this list of conditions and the following disclaimer
     16  *   in the documentation and/or other materials provided with the
     17  *   distribution.
     18  * o Neither the name of NVIDIA nor the names of its contributors
     19  *   may be used to endorse or promote products derived from this
     20  *   software without specific prior written permission.
     21  *
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
     25  * NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
     26  * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     27  * THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
     31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34  * POSSIBILITY OF SUCH DAMAGE.
     35  *
     36  *
     37  *
     38  * This program is based on the Generalized Timing Formula(GTF TM)
     39  * Standard Version: 1.0, Revision: 1.0
     40  *
     41  * The GTF Document contains the following Copyright information:
     42  *
     43  * Copyright (c) 1994, 1995, 1996 - Video Electronics Standards
     44  * Association. Duplication of this document within VESA member
     45  * companies for review purposes is permitted. All other rights
     46  * reserved.
     47  *
     48  * While every precaution has been taken in the preparation
     49  * of this standard, the Video Electronics Standards Association and
     50  * its contributors assume no responsibility for errors or omissions,
     51  * and make no warranties, expressed or implied, of functionality
     52  * of suitability for any purpose. The sample code contained within
     53  * this standard may be used without restriction.
     54  *
     55  *
     56  *
     57  * The GTF EXCEL(TM) SPREADSHEET, a sample (and the definitive)
     58  * implementation of the GTF Timing Standard, is available at:
     59  *
     60  * ftp://ftp.vesa.org/pub/GTF/GTF_V1R1.xls
     61  *
     62  *
     63  *
     64  * This program takes a desired resolution and vertical refresh rate,
     65  * and computes mode timings according to the GTF Timing Standard.
     66  * These mode timings can then be formatted as an XServer modeline
     67  * or a mode description for use by fbset(8).
     68  *
     69  *
     70  *
     71  * NOTES:
     72  *
     73  * The GTF allows for computation of "margins" (the visible border
     74  * surrounding the addressable video); on most non-overscan type
     75  * systems, the margin period is zero.  I've implemented the margin
     76  * computations but not enabled it because 1) I don't really have
     77  * any experience with this, and 2) neither XServer modelines nor
     78  * fbset fb.modes provide an obvious way for margin timings to be
     79  * included in their mode descriptions (needs more investigation).
     80  *
     81  * The GTF provides for computation of interlaced mode timings;
     82  * I've implemented the computations but not enabled them, yet.
     83  * I should probably enable and test this at some point.
     84  *
     85  *
     86  *
     87  * TODO:
     88  *
     89  * o Add support for interlaced modes.
     90  *
     91  * o Implement the other portions of the GTF: compute mode timings
     92  *   given either the desired pixel clock or the desired horizontal
     93  *   frequency.
     94  *
     95  * o It would be nice if this were more general purpose to do things
     96  *   outside the scope of the GTF: like generate double scan mode
     97  *   timings, for example.
     98  *
     99  * o Printing digits to the right of the decimal point when the
    100  *   digits are 0 annoys me.
    101  *
    102  * o Error checking.
    103  *
    104  */
    105 
    106 #ifdef HAVE_XORG_CONFIG_H
    107 #include <xorg-config.h>
    108 #endif
    109 
    110 #include <stdio.h>
    111 #include <stdlib.h>
    112 #include <string.h>
    113 #include <math.h>
    114 
    115 #define MARGIN_PERCENT    1.8   /* % of active vertical image                */
    116 #define CELL_GRAN         8.0   /* assumed character cell granularity        */
    117 #define MIN_PORCH         1     /* minimum front porch                       */
    118 #define V_SYNC_RQD        3     /* width of vsync in lines                   */
    119 #define H_SYNC_PERCENT    8.0   /* width of hsync as % of total line         */
    120 #define MIN_VSYNC_PLUS_BP 550.0 /* min time of vsync + back porch (microsec) */
    121 #define M                 600.0 /* blanking formula gradient                 */
    122 #define C                 40.0  /* blanking formula offset                   */
    123 #define K                 128.0 /* blanking formula scaling factor           */
    124 #define J                 20.0  /* blanking formula scaling factor           */
    125 
    126 /* C' and M' are part of the Blanking Duty Cycle computation */
    127 
    128 #define C_PRIME           (((C - J) * K/256.0) + J)
    129 #define M_PRIME           (K/256.0 * M)
    130 
    131 /* struct definitions */
    132 
    133 typedef struct __mode {
    134     int hr, hss, hse, hfl;
    135     int vr, vss, vse, vfl;
    136     float pclk, h_freq, v_freq;
    137 } mode;
    138 
    139 typedef struct __options {
    140     int x, y;
    141     int xorgmode, fbmode;
    142     float v_freq;
    143 } options;
    144 
    145 /* prototypes */
    146 
    147 void print_value(int n, const char *name, float val);
    148 void print_xf86_mode(mode * m);
    149 void print_fb_mode(mode * m);
    150 mode *vert_refresh(int h_pixels, int v_lines, float freq,
    151                    int interlaced, int margins);
    152 options *parse_command_line(int argc, char *argv[]);
    153 
    154 /*
    155  * print_value() - print the result of the named computation; this is
    156  * useful when comparing against the GTF EXCEL spreadsheet.
    157  */
    158 
    159 int global_verbose = 0;
    160 
    161 void
    162 print_value(int n, const char *name, float val)
    163 {
    164     if (global_verbose) {
    165         printf("%2d: %-27s: %15f\n", n, name, val);
    166     }
    167 }
    168 
    169 /* print_xf86_mode() - print the XServer modeline, given mode timings. */
    170 
    171 void
    172 print_xf86_mode(mode * m)
    173 {
    174     printf("\n");
    175     printf("  # %dx%d @ %.2f Hz (GTF) hsync: %.2f kHz; pclk: %.2f MHz\n",
    176            m->hr, m->vr, m->v_freq, m->h_freq, m->pclk);
    177 
    178     printf("  Modeline \"%dx%d_%.2f\"  %.2f"
    179            "  %d %d %d %d"
    180            "  %d %d %d %d"
    181            "  -HSync +Vsync\n\n",
    182            m->hr, m->vr, m->v_freq, m->pclk,
    183            m->hr, m->hss, m->hse, m->hfl, m->vr, m->vss, m->vse, m->vfl);
    184 
    185 }
    186 
    187 /*
    188  * print_fb_mode() - print a mode description in fbset(8) format;
    189  * see the fb.modes(8) manpage.  The timing description used in
    190  * this is rather odd; they use "left and right margin" to refer
    191  * to the portion of the hblank before and after the sync pulse
    192  * by conceptually wrapping the portion of the blank after the pulse
    193  * to infront of the visible region; ie:
    194  *
    195  *
    196  * Timing description I'm accustomed to:
    197  *
    198  *
    199  *
    200  *     <--------1--------> <--2--> <--3--> <--4-->
    201  *                                _________
    202  *    |-------------------|_______|       |_______
    203  *
    204  *                        R       SS      SE     FL
    205  *
    206  * 1: visible image
    207  * 2: blank before sync (aka front porch)
    208  * 3: sync pulse
    209  * 4: blank after sync (aka back porch)
    210  * R: Resolution
    211  * SS: Sync Start
    212  * SE: Sync End
    213  * FL: Frame Length
    214  *
    215  *
    216  * But the fb.modes format is:
    217  *
    218  *
    219  *    <--4--> <--------1--------> <--2--> <--3-->
    220  *                                       _________
    221  *    _______|-------------------|_______|       |
    222  *
    223  * The fb.modes(8) manpage refers to <4> and <2> as the left and
    224  * right "margin" (as well as upper and lower margin in the vertical
    225  * direction) -- note that this has nothing to do with the term
    226  * "margin" used in the GTF Timing Standard.
    227  *
    228  * XXX always prints the 32 bit mode -- should I provide a command
    229  * line option to specify the bpp?  It's simple enough for a user
    230  * to edit the mode description after it's generated.
    231  */
    232 
    233 void
    234 print_fb_mode(mode * m)
    235 {
    236     printf("\n");
    237     printf("mode \"%dx%d %.2fHz 32bit (GTF)\"\n", m->hr, m->vr, m->v_freq);
    238     printf("    # PCLK: %.2f MHz, H: %.2f kHz, V: %.2f Hz\n",
    239            m->pclk, m->h_freq, m->v_freq);
    240     printf("    geometry %d %d %d %d 32\n", m->hr, m->vr, m->hr, m->vr);
    241     printf("    timings %d %d %d %d %d %d %d\n", (int)lrint(1000000.0 / m->pclk),       /* pixclock in picoseconds */
    242            m->hfl - m->hse,     /* left margin (in pixels) */
    243            m->hss - m->hr,      /* right margin (in pixels) */
    244            m->vfl - m->vse,     /* upper margin (in pixel lines) */
    245            m->vss - m->vr,      /* lower margin (in pixel lines) */
    246            m->hse - m->hss,     /* horizontal sync length (pixels) */
    247            m->vse - m->vss);    /* vert sync length (pixel lines) */
    248     printf("    hsync low\n");
    249     printf("    vsync high\n");
    250     printf("endmode\n\n");
    251 
    252 }
    253 
    254 /*
    255  * vert_refresh() - as defined by the GTF Timing Standard, compute the
    256  * Stage 1 Parameters using the vertical refresh frequency.  In other
    257  * words: input a desired resolution and desired refresh rate, and
    258  * output the GTF mode timings.
    259  *
    260  * XXX All the code is in place to compute interlaced modes, but I don't
    261  * feel like testing it right now.
    262  *
    263  * XXX margin computations are implemented but not tested (nor used by
    264  * XServer of fbset mode descriptions, from what I can tell).
    265  */
    266 
    267 mode *
    268 vert_refresh(int h_pixels, int v_lines, float freq, int interlaced, int margins)
    269 {
    270     float h_pixels_rnd;
    271     float v_lines_rnd;
    272     float v_field_rate_rqd;
    273     float top_margin;
    274     float bottom_margin;
    275     float interlace;
    276     float h_period_est;
    277     float vsync_plus_bp;
    278     float v_back_porch;
    279     float total_v_lines;
    280     float v_field_rate_est;
    281     float h_period;
    282     float v_field_rate;
    283     float v_frame_rate;
    284     float left_margin;
    285     float right_margin;
    286     float total_active_pixels;
    287     float ideal_duty_cycle;
    288     float h_blank;
    289     float total_pixels;
    290     float pixel_freq;
    291     float h_freq;
    292 
    293     float h_sync;
    294     float h_front_porch;
    295     float v_odd_front_porch_lines;
    296 
    297     mode *m = (mode *) malloc(sizeof(mode));
    298 
    299     /*  1. In order to give correct results, the number of horizontal
    300      *  pixels requested is first processed to ensure that it is divisible
    301      *  by the character size, by rounding it to the nearest character
    302      *  cell boundary:
    303      *
    304      *  [H PIXELS RND] = ((ROUND([H PIXELS]/[CELL GRAN RND],0))*[CELLGRAN RND])
    305      */
    306 
    307     h_pixels_rnd = rint((float) h_pixels / CELL_GRAN) * CELL_GRAN;
    308 
    309     print_value(1, "[H PIXELS RND]", h_pixels_rnd);
    310 
    311     /*  2. If interlace is requested, the number of vertical lines assumed
    312      *  by the calculation must be halved, as the computation calculates
    313      *  the number of vertical lines per field. In either case, the
    314      *  number of lines is rounded to the nearest integer.
    315      *
    316      *  [V LINES RND] = IF([INT RQD?]="y", ROUND([V LINES]/2,0),
    317      *                                     ROUND([V LINES],0))
    318      */
    319 
    320     v_lines_rnd = interlaced ?
    321         rint((float) v_lines) / 2.0 : rint((float) v_lines);
    322 
    323     print_value(2, "[V LINES RND]", v_lines_rnd);
    324 
    325     /*  3. Find the frame rate required:
    326      *
    327      *  [V FIELD RATE RQD] = IF([INT RQD?]="y", [I/P FREQ RQD]*2,
    328      *                                          [I/P FREQ RQD])
    329      */
    330 
    331     v_field_rate_rqd = interlaced ? (freq * 2.0) : (freq);
    332 
    333     print_value(3, "[V FIELD RATE RQD]", v_field_rate_rqd);
    334 
    335     /*  4. Find number of lines in Top margin:
    336      *
    337      *  [TOP MARGIN (LINES)] = IF([MARGINS RQD?]="Y",
    338      *          ROUND(([MARGIN%]/100*[V LINES RND]),0),
    339      *          0)
    340      */
    341 
    342     top_margin = margins ? rint(MARGIN_PERCENT / 100.0 * v_lines_rnd) : (0.0);
    343 
    344     print_value(4, "[TOP MARGIN (LINES)]", top_margin);
    345 
    346     /*  5. Find number of lines in Bottom margin:
    347      *
    348      *  [BOT MARGIN (LINES)] = IF([MARGINS RQD?]="Y",
    349      *          ROUND(([MARGIN%]/100*[V LINES RND]),0),
    350      *          0)
    351      */
    352 
    353     bottom_margin =
    354         margins ? rint(MARGIN_PERCENT / 100.0 * v_lines_rnd) : (0.0);
    355 
    356     print_value(5, "[BOT MARGIN (LINES)]", bottom_margin);
    357 
    358     /*  6. If interlace is required, then set variable [INTERLACE]=0.5:
    359      *
    360      *  [INTERLACE]=(IF([INT RQD?]="y",0.5,0))
    361      */
    362 
    363     interlace = interlaced ? 0.5 : 0.0;
    364 
    365     print_value(6, "[INTERLACE]", interlace);
    366 
    367     /*  7. Estimate the Horizontal period
    368      *
    369      *  [H PERIOD EST] = ((1/[V FIELD RATE RQD]) - [MIN VSYNC+BP]/1000000) /
    370      *                    ([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
    371      *                     [MIN PORCH RND]+[INTERLACE]) * 1000000
    372      */
    373 
    374     h_period_est = (((1.0 / v_field_rate_rqd) - (MIN_VSYNC_PLUS_BP / 1000000.0))
    375                     / (v_lines_rnd + (2 * top_margin) + MIN_PORCH + interlace)
    376                     * 1000000.0);
    377 
    378     print_value(7, "[H PERIOD EST]", h_period_est);
    379 
    380     /*  8. Find the number of lines in V sync + back porch:
    381      *
    382      *  [V SYNC+BP] = ROUND(([MIN VSYNC+BP]/[H PERIOD EST]),0)
    383      */
    384 
    385     vsync_plus_bp = rint(MIN_VSYNC_PLUS_BP / h_period_est);
    386 
    387     print_value(8, "[V SYNC+BP]", vsync_plus_bp);
    388 
    389     /*  9. Find the number of lines in V back porch alone:
    390      *
    391      *  [V BACK PORCH] = [V SYNC+BP] - [V SYNC RND]
    392      *
    393      *  XXX is "[V SYNC RND]" a typo? should be [V SYNC RQD]?
    394      */
    395 
    396     v_back_porch = vsync_plus_bp - V_SYNC_RQD;
    397 
    398     print_value(9, "[V BACK PORCH]", v_back_porch);
    399 
    400     /*  10. Find the total number of lines in Vertical field period:
    401      *
    402      *  [TOTAL V LINES] = [V LINES RND] + [TOP MARGIN (LINES)] +
    403      *                    [BOT MARGIN (LINES)] + [V SYNC+BP] + [INTERLACE] +
    404      *                    [MIN PORCH RND]
    405      */
    406 
    407     total_v_lines = v_lines_rnd + top_margin + bottom_margin + vsync_plus_bp +
    408         interlace + MIN_PORCH;
    409 
    410     print_value(10, "[TOTAL V LINES]", total_v_lines);
    411 
    412     /*  11. Estimate the Vertical field frequency:
    413      *
    414      *  [V FIELD RATE EST] = 1 / [H PERIOD EST] / [TOTAL V LINES] * 1000000
    415      */
    416 
    417     v_field_rate_est = 1.0 / h_period_est / total_v_lines * 1000000.0;
    418 
    419     print_value(11, "[V FIELD RATE EST]", v_field_rate_est);
    420 
    421     /*  12. Find the actual horizontal period:
    422      *
    423      *  [H PERIOD] = [H PERIOD EST] / ([V FIELD RATE RQD] / [V FIELD RATE EST])
    424      */
    425 
    426     h_period = h_period_est / (v_field_rate_rqd / v_field_rate_est);
    427 
    428     print_value(12, "[H PERIOD]", h_period);
    429 
    430     /*  13. Find the actual Vertical field frequency:
    431      *
    432      *  [V FIELD RATE] = 1 / [H PERIOD] / [TOTAL V LINES] * 1000000
    433      */
    434 
    435     v_field_rate = 1.0 / h_period / total_v_lines * 1000000.0;
    436 
    437     print_value(13, "[V FIELD RATE]", v_field_rate);
    438 
    439     /*  14. Find the Vertical frame frequency:
    440      *
    441      *  [V FRAME RATE] = (IF([INT RQD?]="y", [V FIELD RATE]/2, [V FIELD RATE]))
    442      */
    443 
    444     v_frame_rate = interlaced ? v_field_rate / 2.0 : v_field_rate;
    445 
    446     print_value(14, "[V FRAME RATE]", v_frame_rate);
    447 
    448     /*  15. Find number of pixels in left margin:
    449      *
    450      *  [LEFT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y",
    451      *          (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 /
    452      *                   [CELL GRAN RND]),0)) * [CELL GRAN RND],
    453      *          0))
    454      */
    455 
    456     left_margin = margins ?
    457         rint(h_pixels_rnd * MARGIN_PERCENT / 100.0 / CELL_GRAN) * CELL_GRAN :
    458         0.0;
    459 
    460     print_value(15, "[LEFT MARGIN (PIXELS)]", left_margin);
    461 
    462     /*  16. Find number of pixels in right margin:
    463      *
    464      *  [RIGHT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y",
    465      *          (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 /
    466      *                   [CELL GRAN RND]),0)) * [CELL GRAN RND],
    467      *          0))
    468      */
    469 
    470     right_margin = margins ?
    471         rint(h_pixels_rnd * MARGIN_PERCENT / 100.0 / CELL_GRAN) * CELL_GRAN :
    472         0.0;
    473 
    474     print_value(16, "[RIGHT MARGIN (PIXELS)]", right_margin);
    475 
    476     /*  17. Find total number of active pixels in image and left and right
    477      *  margins:
    478      *
    479      *  [TOTAL ACTIVE PIXELS] = [H PIXELS RND] + [LEFT MARGIN (PIXELS)] +
    480      *                          [RIGHT MARGIN (PIXELS)]
    481      */
    482 
    483     total_active_pixels = h_pixels_rnd + left_margin + right_margin;
    484 
    485     print_value(17, "[TOTAL ACTIVE PIXELS]", total_active_pixels);
    486 
    487     /*  18. Find the ideal blanking duty cycle from the blanking duty cycle
    488      *  equation:
    489      *
    490      *  [IDEAL DUTY CYCLE] = [C'] - ([M']*[H PERIOD]/1000)
    491      */
    492 
    493     ideal_duty_cycle = C_PRIME - (M_PRIME * h_period / 1000.0);
    494 
    495     print_value(18, "[IDEAL DUTY CYCLE]", ideal_duty_cycle);
    496 
    497     /*  19. Find the number of pixels in the blanking time to the nearest
    498      *  double character cell:
    499      *
    500      *  [H BLANK (PIXELS)] = (ROUND(([TOTAL ACTIVE PIXELS] *
    501      *                               [IDEAL DUTY CYCLE] /
    502      *                               (100-[IDEAL DUTY CYCLE]) /
    503      *                               (2*[CELL GRAN RND])), 0))
    504      *                       * (2*[CELL GRAN RND])
    505      */
    506 
    507     h_blank = rint(total_active_pixels *
    508                    ideal_duty_cycle /
    509                    (100.0 - ideal_duty_cycle) /
    510                    (2.0 * CELL_GRAN)) * (2.0 * CELL_GRAN);
    511 
    512     print_value(19, "[H BLANK (PIXELS)]", h_blank);
    513 
    514     /*  20. Find total number of pixels:
    515      *
    516      *  [TOTAL PIXELS] = [TOTAL ACTIVE PIXELS] + [H BLANK (PIXELS)]
    517      */
    518 
    519     total_pixels = total_active_pixels + h_blank;
    520 
    521     print_value(20, "[TOTAL PIXELS]", total_pixels);
    522 
    523     /*  21. Find pixel clock frequency:
    524      *
    525      *  [PIXEL FREQ] = [TOTAL PIXELS] / [H PERIOD]
    526      */
    527 
    528     pixel_freq = total_pixels / h_period;
    529 
    530     print_value(21, "[PIXEL FREQ]", pixel_freq);
    531 
    532     /*  22. Find horizontal frequency:
    533      *
    534      *  [H FREQ] = 1000 / [H PERIOD]
    535      */
    536 
    537     h_freq = 1000.0 / h_period;
    538 
    539     print_value(22, "[H FREQ]", h_freq);
    540 
    541     /* Stage 1 computations are now complete; I should really pass
    542        the results to another function and do the Stage 2
    543        computations, but I only need a few more values so I'll just
    544        append the computations here for now */
    545 
    546     /*  17. Find the number of pixels in the horizontal sync period:
    547      *
    548      *  [H SYNC (PIXELS)] =(ROUND(([H SYNC%] / 100 * [TOTAL PIXELS] /
    549      *                             [CELL GRAN RND]),0))*[CELL GRAN RND]
    550      */
    551 
    552     h_sync =
    553         rint(H_SYNC_PERCENT / 100.0 * total_pixels / CELL_GRAN) * CELL_GRAN;
    554 
    555     print_value(17, "[H SYNC (PIXELS)]", h_sync);
    556 
    557     /*  18. Find the number of pixels in the horizontal front porch period:
    558      *
    559      *  [H FRONT PORCH (PIXELS)] = ([H BLANK (PIXELS)]/2)-[H SYNC (PIXELS)]
    560      */
    561 
    562     h_front_porch = (h_blank / 2.0) - h_sync;
    563 
    564     print_value(18, "[H FRONT PORCH (PIXELS)]", h_front_porch);
    565 
    566     /*  36. Find the number of lines in the odd front porch period:
    567      *
    568      *  [V ODD FRONT PORCH(LINES)]=([MIN PORCH RND]+[INTERLACE])
    569      */
    570 
    571     v_odd_front_porch_lines = MIN_PORCH + interlace;
    572 
    573     print_value(36, "[V ODD FRONT PORCH(LINES)]", v_odd_front_porch_lines);
    574 
    575     /* finally, pack the results in the mode struct */
    576 
    577     m->hr = (int) (h_pixels_rnd);
    578     m->hss = (int) (h_pixels_rnd + h_front_porch);
    579     m->hse = (int) (h_pixels_rnd + h_front_porch + h_sync);
    580     m->hfl = (int) (total_pixels);
    581 
    582     m->vr = (int) (v_lines_rnd);
    583     m->vss = (int) (v_lines_rnd + v_odd_front_porch_lines);
    584     m->vse = (int) (int) (v_lines_rnd + v_odd_front_porch_lines + V_SYNC_RQD);
    585     m->vfl = (int) (total_v_lines);
    586 
    587     m->pclk = pixel_freq;
    588     m->h_freq = h_freq;
    589     m->v_freq = freq;
    590 
    591     return m;
    592 
    593 }
    594 
    595 /*
    596  * parse_command_line() - parse the command line and return an
    597  * alloced structure containing the results.  On error print usage
    598  * and return NULL.
    599  */
    600 
    601 options *
    602 parse_command_line(int argc, char *argv[])
    603 {
    604     int n;
    605 
    606     options *o = (options *) calloc(1, sizeof(options));
    607 
    608     if (argc < 4)
    609         goto bad_option;
    610 
    611     o->x = atoi(argv[1]);
    612     o->y = atoi(argv[2]);
    613     o->v_freq = atof(argv[3]);
    614 
    615     /* XXX should check for errors in the above */
    616 
    617     n = 4;
    618 
    619     while (n < argc) {
    620         if ((strcmp(argv[n], "-v") == 0) || (strcmp(argv[n], "--verbose") == 0)) {
    621             global_verbose = 1;
    622         }
    623         else if ((strcmp(argv[n], "-f") == 0) ||
    624                  (strcmp(argv[n], "--fbmode") == 0)) {
    625             o->fbmode = 1;
    626         }
    627         else if ((strcmp(argv[n], "-x") == 0) ||
    628                  (strcmp(argv[n], "--xorgmode") == 0) ||
    629                  (strcmp(argv[n], "--xf86mode") == 0)) {
    630             o->xorgmode = 1;
    631         }
    632         else {
    633             goto bad_option;
    634         }
    635 
    636         n++;
    637     }
    638 
    639     /* if neither xorgmode nor fbmode were requested, default to
    640        xorgmode */
    641 
    642     if (!o->fbmode && !o->xorgmode)
    643         o->xorgmode = 1;
    644 
    645     return o;
    646 
    647  bad_option:
    648 
    649     fprintf(stderr, "\n");
    650     fprintf(stderr, "usage: %s x y refresh [-v|--verbose] "
    651             "[-f|--fbmode] [-x|--xorgmode]\n", argv[0]);
    652 
    653     fprintf(stderr, "\n");
    654 
    655     fprintf(stderr, "            x : the desired horizontal "
    656             "resolution (required)\n");
    657     fprintf(stderr, "            y : the desired vertical "
    658             "resolution (required)\n");
    659     fprintf(stderr, "      refresh : the desired refresh " "rate (required)\n");
    660     fprintf(stderr, " -v|--verbose : enable verbose printouts "
    661             "(traces each step of the computation)\n");
    662     fprintf(stderr, "  -f|--fbmode : output an fbset(8)-style mode "
    663             "description\n");
    664     fprintf(stderr, " -x|--xorgmode : output an " __XSERVERNAME__ "-style mode "
    665             "description (this is the default\n"
    666             "                if no mode description is requested)\n");
    667 
    668     fprintf(stderr, "\n");
    669 
    670     free(o);
    671     return NULL;
    672 
    673 }
    674 
    675 int
    676 main(int argc, char *argv[])
    677 {
    678     mode *m;
    679     options *o;
    680 
    681     o = parse_command_line(argc, argv);
    682     if (!o)
    683         exit(1);
    684 
    685     m = vert_refresh(o->x, o->y, o->v_freq, 0, 0);
    686     if (!m)
    687         exit(1);
    688 
    689     if (o->xorgmode)
    690         print_xf86_mode(m);
    691 
    692     if (o->fbmode)
    693         print_fb_mode(m);
    694 
    695     free(m);
    696 
    697     return 0;
    698 
    699 }