xserver

xserver with xephyr scale patch
git clone https://git.neptards.moe/u3shit/xserver.git
Log | Files | Refs | README | LICENSE

xf86gtf.c (13275B)


      1 /*
      2  * gtf.c  Generate mode timings using the GTF Timing Standard
      3  *
      4  * gcc gtf.c -o gtf -lm -Wall
      5  *
      6  * Copyright (c) 2001, Andy Ritger  aritger@nvidia.com
      7  * All rights reserved.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  *
     13  * o Redistributions of source code must retain the above copyright
     14  *   notice, this list of conditions and the following disclaimer.
     15  * o Redistributions in binary form must reproduce the above copyright
     16  *   notice, this list of conditions and the following disclaimer
     17  *   in the documentation and/or other materials provided with the
     18  *   distribution.
     19  * o Neither the name of NVIDIA nor the names of its contributors
     20  *   may be used to endorse or promote products derived from this
     21  *   software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
     25  * NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
     26  * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     27  * THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
     31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34  * POSSIBILITY OF SUCH DAMAGE.
     35  *
     36  * This program is based on the Generalized Timing Formula(GTF TM)
     37  * Standard Version: 1.0, Revision: 1.0
     38  *
     39  * The GTF Document contains the following Copyright information:
     40  *
     41  * Copyright (c) 1994, 1995, 1996 - Video Electronics Standards
     42  * Association. Duplication of this document within VESA member
     43  * companies for review purposes is permitted. All other rights
     44  * reserved.
     45  *
     46  * While every precaution has been taken in the preparation
     47  * of this standard, the Video Electronics Standards Association and
     48  * its contributors assume no responsibility for errors or omissions,
     49  * and make no warranties, expressed or implied, of functionality
     50  * of suitability for any purpose. The sample code contained within
     51  * this standard may be used without restriction.
     52  *
     53  *
     54  *
     55  * The GTF EXCEL(TM) SPREADSHEET, a sample (and the definitive)
     56  * implementation of the GTF Timing Standard, is available at:
     57  *
     58  * ftp://ftp.vesa.org/pub/GTF/GTF_V1R1.xls
     59  */
     60 
     61 /* Ruthlessly converted to server code by Adam Jackson <ajax@redhat.com> */
     62 
     63 #ifdef HAVE_XORG_CONFIG_H
     64 #include <xorg-config.h>
     65 #endif
     66 
     67 #include "xf86.h"
     68 #include "xf86Modes.h"
     69 #include <string.h>
     70 
     71 #define MARGIN_PERCENT    1.8   /* % of active vertical image                */
     72 #define CELL_GRAN         8.0   /* assumed character cell granularity        */
     73 #define MIN_PORCH         1     /* minimum front porch                       */
     74 #define V_SYNC_RQD        3     /* width of vsync in lines                   */
     75 #define H_SYNC_PERCENT    8.0   /* width of hsync as % of total line         */
     76 #define MIN_VSYNC_PLUS_BP 550.0 /* min time of vsync + back porch (microsec) */
     77 #define M                 600.0 /* blanking formula gradient                 */
     78 #define C                 40.0  /* blanking formula offset                   */
     79 #define K                 128.0 /* blanking formula scaling factor           */
     80 #define J                 20.0  /* blanking formula scaling factor           */
     81 
     82 /* C' and M' are part of the Blanking Duty Cycle computation */
     83 
     84 #define C_PRIME           (((C - J) * K/256.0) + J)
     85 #define M_PRIME           (K/256.0 * M)
     86 
     87 /*
     88  * xf86GTFMode() - as defined by the GTF Timing Standard, compute the
     89  * Stage 1 Parameters using the vertical refresh frequency.  In other
     90  * words: input a desired resolution and desired refresh rate, and
     91  * output the GTF mode timings.
     92  *
     93  * XXX All the code is in place to compute interlaced modes, but I don't
     94  * feel like testing it right now.
     95  *
     96  * XXX margin computations are implemented but not tested (nor used by
     97  * XServer of fbset mode descriptions, from what I can tell).
     98  */
     99 
    100 DisplayModePtr
    101 xf86GTFMode(int h_pixels, int v_lines, float freq, int interlaced, int margins)
    102 {
    103     DisplayModeRec *mode = xnfcalloc(1, sizeof(DisplayModeRec));
    104 
    105     float h_pixels_rnd;
    106     float v_lines_rnd;
    107     float v_field_rate_rqd;
    108     float top_margin;
    109     float bottom_margin;
    110     float interlace;
    111     float h_period_est;
    112     float vsync_plus_bp;
    113     float v_back_porch;
    114     float total_v_lines;
    115     float v_field_rate_est;
    116     float h_period;
    117     float v_field_rate;
    118     float v_frame_rate;
    119     float left_margin;
    120     float right_margin;
    121     float total_active_pixels;
    122     float ideal_duty_cycle;
    123     float h_blank;
    124     float total_pixels;
    125     float pixel_freq;
    126     float h_freq;
    127 
    128     float h_sync;
    129     float h_front_porch;
    130     float v_odd_front_porch_lines;
    131 
    132     /*  1. In order to give correct results, the number of horizontal
    133      *  pixels requested is first processed to ensure that it is divisible
    134      *  by the character size, by rounding it to the nearest character
    135      *  cell boundary:
    136      *
    137      *  [H PIXELS RND] = ((ROUND([H PIXELS]/[CELL GRAN RND],0))*[CELLGRAN RND])
    138      */
    139 
    140     h_pixels_rnd = rint((float) h_pixels / CELL_GRAN) * CELL_GRAN;
    141 
    142     /*  2. If interlace is requested, the number of vertical lines assumed
    143      *  by the calculation must be halved, as the computation calculates
    144      *  the number of vertical lines per field. In either case, the
    145      *  number of lines is rounded to the nearest integer.
    146      *
    147      *  [V LINES RND] = IF([INT RQD?]="y", ROUND([V LINES]/2,0),
    148      *                                     ROUND([V LINES],0))
    149      */
    150 
    151     v_lines_rnd = interlaced ?
    152         rint((float) v_lines) / 2.0 : rint((float) v_lines);
    153 
    154     /*  3. Find the frame rate required:
    155      *
    156      *  [V FIELD RATE RQD] = IF([INT RQD?]="y", [I/P FREQ RQD]*2,
    157      *                                          [I/P FREQ RQD])
    158      */
    159 
    160     v_field_rate_rqd = interlaced ? (freq * 2.0) : (freq);
    161 
    162     /*  4. Find number of lines in Top margin:
    163      *
    164      *  [TOP MARGIN (LINES)] = IF([MARGINS RQD?]="Y",
    165      *          ROUND(([MARGIN%]/100*[V LINES RND]),0),
    166      *          0)
    167      */
    168 
    169     top_margin = margins ? rint(MARGIN_PERCENT / 100.0 * v_lines_rnd) : (0.0);
    170 
    171     /*  5. Find number of lines in Bottom margin:
    172      *
    173      *  [BOT MARGIN (LINES)] = IF([MARGINS RQD?]="Y",
    174      *          ROUND(([MARGIN%]/100*[V LINES RND]),0),
    175      *          0)
    176      */
    177 
    178     bottom_margin =
    179         margins ? rint(MARGIN_PERCENT / 100.0 * v_lines_rnd) : (0.0);
    180 
    181     /*  6. If interlace is required, then set variable [INTERLACE]=0.5:
    182      *
    183      *  [INTERLACE]=(IF([INT RQD?]="y",0.5,0))
    184      */
    185 
    186     interlace = interlaced ? 0.5 : 0.0;
    187 
    188     /*  7. Estimate the Horizontal period
    189      *
    190      *  [H PERIOD EST] = ((1/[V FIELD RATE RQD]) - [MIN VSYNC+BP]/1000000) /
    191      *                    ([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
    192      *                     [MIN PORCH RND]+[INTERLACE]) * 1000000
    193      */
    194 
    195     h_period_est = (((1.0 / v_field_rate_rqd) - (MIN_VSYNC_PLUS_BP / 1000000.0))
    196                     / (v_lines_rnd + (2 * top_margin) + MIN_PORCH + interlace)
    197                     * 1000000.0);
    198 
    199     /*  8. Find the number of lines in V sync + back porch:
    200      *
    201      *  [V SYNC+BP] = ROUND(([MIN VSYNC+BP]/[H PERIOD EST]),0)
    202      */
    203 
    204     vsync_plus_bp = rint(MIN_VSYNC_PLUS_BP / h_period_est);
    205 
    206     /*  9. Find the number of lines in V back porch alone:
    207      *
    208      *  [V BACK PORCH] = [V SYNC+BP] - [V SYNC RND]
    209      *
    210      *  XXX is "[V SYNC RND]" a typo? should be [V SYNC RQD]?
    211      */
    212 
    213     v_back_porch = vsync_plus_bp - V_SYNC_RQD;
    214     (void) v_back_porch;
    215 
    216     /*  10. Find the total number of lines in Vertical field period:
    217      *
    218      *  [TOTAL V LINES] = [V LINES RND] + [TOP MARGIN (LINES)] +
    219      *                    [BOT MARGIN (LINES)] + [V SYNC+BP] + [INTERLACE] +
    220      *                    [MIN PORCH RND]
    221      */
    222 
    223     total_v_lines = v_lines_rnd + top_margin + bottom_margin + vsync_plus_bp +
    224         interlace + MIN_PORCH;
    225 
    226     /*  11. Estimate the Vertical field frequency:
    227      *
    228      *  [V FIELD RATE EST] = 1 / [H PERIOD EST] / [TOTAL V LINES] * 1000000
    229      */
    230 
    231     v_field_rate_est = 1.0 / h_period_est / total_v_lines * 1000000.0;
    232 
    233     /*  12. Find the actual horizontal period:
    234      *
    235      *  [H PERIOD] = [H PERIOD EST] / ([V FIELD RATE RQD] / [V FIELD RATE EST])
    236      */
    237 
    238     h_period = h_period_est / (v_field_rate_rqd / v_field_rate_est);
    239 
    240     /*  13. Find the actual Vertical field frequency:
    241      *
    242      *  [V FIELD RATE] = 1 / [H PERIOD] / [TOTAL V LINES] * 1000000
    243      */
    244 
    245     v_field_rate = 1.0 / h_period / total_v_lines * 1000000.0;
    246 
    247     /*  14. Find the Vertical frame frequency:
    248      *
    249      *  [V FRAME RATE] = (IF([INT RQD?]="y", [V FIELD RATE]/2, [V FIELD RATE]))
    250      */
    251 
    252     v_frame_rate = interlaced ? v_field_rate / 2.0 : v_field_rate;
    253     (void) v_frame_rate;
    254 
    255     /*  15. Find number of pixels in left margin:
    256      *
    257      *  [LEFT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y",
    258      *          (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 /
    259      *                   [CELL GRAN RND]),0)) * [CELL GRAN RND],
    260      *          0))
    261      */
    262 
    263     left_margin = margins ?
    264         rint(h_pixels_rnd * MARGIN_PERCENT / 100.0 / CELL_GRAN) * CELL_GRAN :
    265         0.0;
    266 
    267     /*  16. Find number of pixels in right margin:
    268      *
    269      *  [RIGHT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y",
    270      *          (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 /
    271      *                   [CELL GRAN RND]),0)) * [CELL GRAN RND],
    272      *          0))
    273      */
    274 
    275     right_margin = margins ?
    276         rint(h_pixels_rnd * MARGIN_PERCENT / 100.0 / CELL_GRAN) * CELL_GRAN :
    277         0.0;
    278 
    279     /*  17. Find total number of active pixels in image and left and right
    280      *  margins:
    281      *
    282      *  [TOTAL ACTIVE PIXELS] = [H PIXELS RND] + [LEFT MARGIN (PIXELS)] +
    283      *                          [RIGHT MARGIN (PIXELS)]
    284      */
    285 
    286     total_active_pixels = h_pixels_rnd + left_margin + right_margin;
    287 
    288     /*  18. Find the ideal blanking duty cycle from the blanking duty cycle
    289      *  equation:
    290      *
    291      *  [IDEAL DUTY CYCLE] = [C'] - ([M']*[H PERIOD]/1000)
    292      */
    293 
    294     ideal_duty_cycle = C_PRIME - (M_PRIME * h_period / 1000.0);
    295 
    296     /*  19. Find the number of pixels in the blanking time to the nearest
    297      *  double character cell:
    298      *
    299      *  [H BLANK (PIXELS)] = (ROUND(([TOTAL ACTIVE PIXELS] *
    300      *                               [IDEAL DUTY CYCLE] /
    301      *                               (100-[IDEAL DUTY CYCLE]) /
    302      *                               (2*[CELL GRAN RND])), 0))
    303      *                       * (2*[CELL GRAN RND])
    304      */
    305 
    306     h_blank = rint(total_active_pixels *
    307                    ideal_duty_cycle /
    308                    (100.0 - ideal_duty_cycle) /
    309                    (2.0 * CELL_GRAN)) * (2.0 * CELL_GRAN);
    310 
    311     /*  20. Find total number of pixels:
    312      *
    313      *  [TOTAL PIXELS] = [TOTAL ACTIVE PIXELS] + [H BLANK (PIXELS)]
    314      */
    315 
    316     total_pixels = total_active_pixels + h_blank;
    317 
    318     /*  21. Find pixel clock frequency:
    319      *
    320      *  [PIXEL FREQ] = [TOTAL PIXELS] / [H PERIOD]
    321      */
    322 
    323     pixel_freq = total_pixels / h_period;
    324 
    325     /*  22. Find horizontal frequency:
    326      *
    327      *  [H FREQ] = 1000 / [H PERIOD]
    328      */
    329 
    330     h_freq = 1000.0 / h_period;
    331 
    332     /* Stage 1 computations are now complete; I should really pass
    333        the results to another function and do the Stage 2
    334        computations, but I only need a few more values so I'll just
    335        append the computations here for now */
    336 
    337     /*  17. Find the number of pixels in the horizontal sync period:
    338      *
    339      *  [H SYNC (PIXELS)] =(ROUND(([H SYNC%] / 100 * [TOTAL PIXELS] /
    340      *                             [CELL GRAN RND]),0))*[CELL GRAN RND]
    341      */
    342 
    343     h_sync =
    344         rint(H_SYNC_PERCENT / 100.0 * total_pixels / CELL_GRAN) * CELL_GRAN;
    345 
    346     /*  18. Find the number of pixels in the horizontal front porch period:
    347      *
    348      *  [H FRONT PORCH (PIXELS)] = ([H BLANK (PIXELS)]/2)-[H SYNC (PIXELS)]
    349      */
    350 
    351     h_front_porch = (h_blank / 2.0) - h_sync;
    352 
    353     /*  36. Find the number of lines in the odd front porch period:
    354      *
    355      *  [V ODD FRONT PORCH(LINES)]=([MIN PORCH RND]+[INTERLACE])
    356      */
    357 
    358     v_odd_front_porch_lines = MIN_PORCH + interlace;
    359 
    360     /* finally, pack the results in the mode struct */
    361 
    362     mode->HDisplay = (int) (h_pixels_rnd);
    363     mode->HSyncStart = (int) (h_pixels_rnd + h_front_porch);
    364     mode->HSyncEnd = (int) (h_pixels_rnd + h_front_porch + h_sync);
    365     mode->HTotal = (int) (total_pixels);
    366     mode->VDisplay = (int) (v_lines_rnd);
    367     mode->VSyncStart = (int) (v_lines_rnd + v_odd_front_porch_lines);
    368     mode->VSyncEnd = (int) (v_lines_rnd + v_odd_front_porch_lines + V_SYNC_RQD);
    369     mode->VTotal = (int) (total_v_lines);
    370 
    371     mode->Clock = (int) (pixel_freq * 1000.0);
    372     mode->HSync = h_freq;
    373     mode->VRefresh = freq;
    374 
    375     xf86SetModeDefaultName(mode);
    376 
    377     mode->Flags = V_NHSYNC | V_PVSYNC;
    378     if (interlaced) {
    379         mode->VTotal *= 2;
    380         mode->Flags |= V_INTERLACE;
    381     }
    382 
    383     return mode;
    384 }