xserver

xserver with xephyr scale patch
git clone https://git.neptards.moe/u3shit/xserver.git
Log | Files | Refs | README | LICENSE

xf86RandR12.c (75203B)


      1 /*
      2  * Copyright © 2002 Keith Packard, member of The XFree86 Project, Inc.
      3  *
      4  * Permission to use, copy, modify, distribute, and sell this software and its
      5  * documentation for any purpose is hereby granted without fee, provided that
      6  * the above copyright notice appear in all copies and that both that copyright
      7  * notice and this permission notice appear in supporting documentation, and
      8  * that the name of the copyright holders not be used in advertising or
      9  * publicity pertaining to distribution of the software without specific,
     10  * written prior permission.  The copyright holders make no representations
     11  * about the suitability of this software for any purpose.  It is provided "as
     12  * is" without express or implied warranty.
     13  *
     14  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
     15  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
     16  * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
     17  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
     18  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
     19  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
     20  * OF THIS SOFTWARE.
     21  */
     22 
     23 #ifdef HAVE_XORG_CONFIG_H
     24 #include <xorg-config.h>
     25 #endif
     26 
     27 #include "xf86.h"
     28 #include "os.h"
     29 #include "globals.h"
     30 #include "xf86Modes.h"
     31 #include "xf86Priv.h"
     32 #include "xf86DDC.h"
     33 #include "mipointer.h"
     34 #include "windowstr.h"
     35 #include "inputstr.h"
     36 #include <randrstr.h>
     37 #include <X11/extensions/render.h>
     38 
     39 #include "xf86cmap.h"
     40 #include "xf86Crtc.h"
     41 #include "xf86RandR12.h"
     42 
     43 typedef struct _xf86RandR12Info {
     44     int virtualX;
     45     int virtualY;
     46     int mmWidth;
     47     int mmHeight;
     48     int maxX;
     49     int maxY;
     50     int pointerX;
     51     int pointerY;
     52     Rotation rotation;          /* current mode */
     53     Rotation supported_rotations;       /* driver supported */
     54 
     55     /* Compatibility with colormaps and XF86VidMode's gamma */
     56     int palette_red_size;
     57     int palette_green_size;
     58     int palette_blue_size;
     59     int palette_size;
     60     LOCO *palette;
     61 
     62     /* Used to wrap EnterVT so we can re-probe the outputs when a laptop unsuspends
     63      * (actually, any time that we switch back into our VT).
     64      *
     65      * See https://bugs.freedesktop.org/show_bug.cgi?id=21554
     66      */
     67     xf86EnterVTProc *orig_EnterVT;
     68 
     69     Bool                         panning;
     70     ConstrainCursorHarderProcPtr orig_ConstrainCursorHarder;
     71 } XF86RandRInfoRec, *XF86RandRInfoPtr;
     72 
     73 #ifdef RANDR_12_INTERFACE
     74 static Bool xf86RandR12Init12(ScreenPtr pScreen);
     75 static Bool xf86RandR12CreateScreenResources12(ScreenPtr pScreen);
     76 #endif
     77 
     78 static int xf86RandR12Generation;
     79 
     80 static DevPrivateKeyRec xf86RandR12KeyRec;
     81 
     82 #define XF86RANDRINFO(p) ((XF86RandRInfoPtr) \
     83     dixLookupPrivate(&(p)->devPrivates, &xf86RandR12KeyRec))
     84 
     85 static int
     86 xf86RandR12ModeRefresh(DisplayModePtr mode)
     87 {
     88     if (mode->VRefresh)
     89         return (int) (mode->VRefresh + 0.5);
     90     else
     91         return (int) (mode->Clock * 1000.0 / mode->HTotal / mode->VTotal + 0.5);
     92 }
     93 
     94 /* Adapt panning area; return TRUE if panning area was valid without adaption */
     95 static int
     96 xf86RandR13VerifyPanningArea(xf86CrtcPtr crtc, int screenWidth,
     97                              int screenHeight)
     98 {
     99     int ret = TRUE;
    100 
    101     if (crtc->version < 2)
    102         return FALSE;
    103 
    104     if (crtc->panningTotalArea.x2 <= crtc->panningTotalArea.x1) {
    105         /* Panning in X is disabled */
    106         if (crtc->panningTotalArea.x1 || crtc->panningTotalArea.x2)
    107             /* Illegal configuration -> fail/disable */
    108             ret = FALSE;
    109         crtc->panningTotalArea.x1 = crtc->panningTotalArea.x2 = 0;
    110         crtc->panningTrackingArea.x1 = crtc->panningTrackingArea.x2 = 0;
    111         crtc->panningBorder[0] = crtc->panningBorder[2] = 0;
    112     }
    113     else {
    114         /* Panning in X is enabled */
    115         if (crtc->panningTotalArea.x1 < 0) {
    116             /* Panning region outside screen -> move inside */
    117             crtc->panningTotalArea.x2 -= crtc->panningTotalArea.x1;
    118             crtc->panningTotalArea.x1 = 0;
    119             ret = FALSE;
    120         }
    121         if (crtc->panningTotalArea.x2 <
    122             crtc->panningTotalArea.x1 + crtc->mode.HDisplay) {
    123             /* Panning region smaller than displayed area -> crop to displayed area */
    124             crtc->panningTotalArea.x2 =
    125                 crtc->panningTotalArea.x1 + crtc->mode.HDisplay;
    126             ret = FALSE;
    127         }
    128         if (crtc->panningTotalArea.x2 > screenWidth) {
    129             /* Panning region larger than screen -> move inside, then crop to screen */
    130             crtc->panningTotalArea.x1 -=
    131                 crtc->panningTotalArea.x2 - screenWidth;
    132             crtc->panningTotalArea.x2 = screenWidth;
    133             ret = FALSE;
    134             if (crtc->panningTotalArea.x1 < 0)
    135                 crtc->panningTotalArea.x1 = 0;
    136         }
    137         if (crtc->panningBorder[0] + crtc->panningBorder[2] >
    138             crtc->mode.HDisplay) {
    139             /* Borders too large -> set to 0 */
    140             crtc->panningBorder[0] = crtc->panningBorder[2] = 0;
    141             ret = FALSE;
    142         }
    143     }
    144 
    145     if (crtc->panningTotalArea.y2 <= crtc->panningTotalArea.y1) {
    146         /* Panning in Y is disabled */
    147         if (crtc->panningTotalArea.y1 || crtc->panningTotalArea.y2)
    148             /* Illegal configuration -> fail/disable */
    149             ret = FALSE;
    150         crtc->panningTotalArea.y1 = crtc->panningTotalArea.y2 = 0;
    151         crtc->panningTrackingArea.y1 = crtc->panningTrackingArea.y2 = 0;
    152         crtc->panningBorder[1] = crtc->panningBorder[3] = 0;
    153     }
    154     else {
    155         /* Panning in Y is enabled */
    156         if (crtc->panningTotalArea.y1 < 0) {
    157             /* Panning region outside screen -> move inside */
    158             crtc->panningTotalArea.y2 -= crtc->panningTotalArea.y1;
    159             crtc->panningTotalArea.y1 = 0;
    160             ret = FALSE;
    161         }
    162         if (crtc->panningTotalArea.y2 <
    163             crtc->panningTotalArea.y1 + crtc->mode.VDisplay) {
    164             /* Panning region smaller than displayed area -> crop to displayed area */
    165             crtc->panningTotalArea.y2 =
    166                 crtc->panningTotalArea.y1 + crtc->mode.VDisplay;
    167             ret = FALSE;
    168         }
    169         if (crtc->panningTotalArea.y2 > screenHeight) {
    170             /* Panning region larger than screen -> move inside, then crop to screen */
    171             crtc->panningTotalArea.y1 -=
    172                 crtc->panningTotalArea.y2 - screenHeight;
    173             crtc->panningTotalArea.y2 = screenHeight;
    174             ret = FALSE;
    175             if (crtc->panningTotalArea.y1 < 0)
    176                 crtc->panningTotalArea.y1 = 0;
    177         }
    178         if (crtc->panningBorder[1] + crtc->panningBorder[3] >
    179             crtc->mode.VDisplay) {
    180             /* Borders too large -> set to 0 */
    181             crtc->panningBorder[1] = crtc->panningBorder[3] = 0;
    182             ret = FALSE;
    183         }
    184     }
    185 
    186     return ret;
    187 }
    188 
    189 /*
    190  * The heart of the panning operation:
    191  *
    192  * Given a frame buffer position (fb_x, fb_y),
    193  * and a crtc position (crtc_x, crtc_y),
    194  * and a transform matrix which maps frame buffer to crtc,
    195  * compute a panning position (pan_x, pan_y) that
    196  * makes the resulting transform line those two up
    197  */
    198 
    199 static void
    200 xf86ComputeCrtcPan(Bool transform_in_use,
    201                    struct pixman_f_transform *m,
    202                    double screen_x, double screen_y,
    203                    double crtc_x, double crtc_y,
    204                    int old_pan_x, int old_pan_y, int *new_pan_x, int *new_pan_y)
    205 {
    206     if (transform_in_use) {
    207         /*
    208          * Given the current transform, M, the current position
    209          * on the Screen, S, and the desired position on the CRTC,
    210          * C, compute a translation, T, such that:
    211          *
    212          * M T S = C
    213          *
    214          * where T is of the form
    215          *
    216          * | 1 0 dx |
    217          * | 0 1 dy |
    218          * | 0 0 1  |
    219          *
    220          * M T S =
    221          *   | M00 Sx + M01 Sy + M00 dx + M01 dy + M02 |   | Cx F |
    222          *   | M10 Sx + M11 Sy + M10 dx + M11 dy + M12 | = | Cy F |
    223          *   | M20 Sx + M21 Sy + M20 dx + M21 dy + M22 |   |  F   |
    224          *
    225          * R = M S
    226          *
    227          *   Cx F = M00 dx + M01 dy + R0
    228          *   Cy F = M10 dx + M11 dy + R1
    229          *      F = M20 dx + M21 dy + R2
    230          *
    231          * Zero out dx, then dy
    232          *
    233          * F (Cx M10 - Cy M00) =
    234          *          (M10 M01 - M00 M11) dy + M10 R0 - M00 R1
    235          * F (M10 - Cy M20) =
    236          *          (M10 M21 - M20 M11) dy + M10 R2 - M20 R1
    237          *
    238          * F (Cx M11 - Cy M01) =
    239          *          (M11 M00 - M01 M10) dx + M11 R0 - M01 R1
    240          * F (M11 - Cy M21) =
    241          *          (M11 M20 - M21 M10) dx + M11 R2 - M21 R1
    242          *
    243          * Make some temporaries
    244          *
    245          * T = | Cx M10 - Cy M00 |
    246          *     | Cx M11 - Cy M01 |
    247          *
    248          * U = | M10 M01 - M00 M11 |
    249          *     | M11 M00 - M01 M10 |
    250          *
    251          * Q = | M10 R0 - M00 R1 |
    252          *     | M11 R0 - M01 R1 |
    253          *
    254          * P = | M10 - Cy M20 |
    255          *     | M11 - Cy M21 |
    256          *
    257          * W = | M10 M21 - M20 M11 |
    258          *     | M11 M20 - M21 M10 |
    259          *
    260          * V = | M10 R2 - M20 R1 |
    261          *         | M11 R2 - M21 R1 |
    262          *
    263          * Rewrite:
    264          *
    265          * F T0 = U0 dy + Q0
    266          * F P0 = W0 dy + V0
    267          * F T1 = U1 dx + Q1
    268          * F P1 = W1 dx + V1
    269          *
    270          * Solve for F (two ways)
    271          *
    272          * F (W0 T0 - U0 P0)  = W0 Q0 - U0 V0
    273          *
    274          *     W0 Q0 - U0 V0
    275          * F = -------------
    276          *     W0 T0 - U0 P0
    277          *
    278          * F (W1 T1 - U1 P1) = W1 Q1 - U1 V1
    279          *
    280          *     W1 Q1 - U1 V1
    281          * F = -------------
    282          *     W1 T1 - U1 P1
    283          *
    284          * We'll use which ever solution works (denominator != 0)
    285          *
    286          * Finally, solve for dx and dy:
    287          *
    288          * dx = (F T1 - Q1) / U1
    289          * dx = (F P1 - V1) / W1
    290          *
    291          * dy = (F T0 - Q0) / U0
    292          * dy = (F P0 - V0) / W0
    293          */
    294         double r[3];
    295         double q[2], u[2], t[2], v[2], w[2], p[2];
    296         double f;
    297         struct pict_f_vector d;
    298         int i;
    299 
    300         /* Get the un-normalized crtc coordinates again */
    301         for (i = 0; i < 3; i++)
    302             r[i] = m->m[i][0] * screen_x + m->m[i][1] * screen_y + m->m[i][2];
    303 
    304         /* Combine values into temporaries */
    305         for (i = 0; i < 2; i++) {
    306             q[i] = m->m[1][i] * r[0] - m->m[0][i] * r[1];
    307             u[i] = m->m[1][i] * m->m[0][1 - i] - m->m[0][i] * m->m[1][1 - i];
    308             t[i] = m->m[1][i] * crtc_x - m->m[0][i] * crtc_y;
    309 
    310             v[i] = m->m[1][i] * r[2] - m->m[2][i] * r[1];
    311             w[i] = m->m[1][i] * m->m[2][1 - i] - m->m[2][i] * m->m[1][1 - i];
    312             p[i] = m->m[1][i] - m->m[2][i] * crtc_y;
    313         }
    314 
    315         /* Find a way to compute f */
    316         f = 0;
    317         for (i = 0; i < 2; i++) {
    318             double a = w[i] * q[i] - u[i] * v[i];
    319             double b = w[i] * t[i] - u[i] * p[i];
    320 
    321             if (b != 0) {
    322                 f = a / b;
    323                 break;
    324             }
    325         }
    326 
    327         /* Solve for the resulting transform vector */
    328         for (i = 0; i < 2; i++) {
    329             if (u[i])
    330                 d.v[1 - i] = (t[i] * f - q[i]) / u[i];
    331             else if (w[1])
    332                 d.v[1 - i] = (p[i] * f - v[i]) / w[i];
    333             else
    334                 d.v[1 - i] = 0;
    335         }
    336         *new_pan_x = old_pan_x - floor(d.v[0] + 0.5);
    337         *new_pan_y = old_pan_y - floor(d.v[1] + 0.5);
    338     }
    339     else {
    340         *new_pan_x = screen_x - crtc_x;
    341         *new_pan_y = screen_y - crtc_y;
    342     }
    343 }
    344 
    345 static void
    346 xf86RandR13Pan(xf86CrtcPtr crtc, int x, int y)
    347 {
    348     int newX, newY;
    349     int width, height;
    350     Bool panned = FALSE;
    351 
    352     if (crtc->version < 2)
    353         return;
    354 
    355     if (!crtc->enabled ||
    356         (crtc->panningTotalArea.x2 <= crtc->panningTotalArea.x1 &&
    357          crtc->panningTotalArea.y2 <= crtc->panningTotalArea.y1))
    358         return;
    359 
    360     newX = crtc->x;
    361     newY = crtc->y;
    362     width = crtc->mode.HDisplay;
    363     height = crtc->mode.VDisplay;
    364 
    365     if ((crtc->panningTrackingArea.x2 <= crtc->panningTrackingArea.x1 ||
    366          (x >= crtc->panningTrackingArea.x1 &&
    367           x < crtc->panningTrackingArea.x2)) &&
    368         (crtc->panningTrackingArea.y2 <= crtc->panningTrackingArea.y1 ||
    369          (y >= crtc->panningTrackingArea.y1 &&
    370           y < crtc->panningTrackingArea.y2))) {
    371         struct pict_f_vector c;
    372 
    373         /*
    374          * Pre-clip the mouse position to the panning area so that we don't
    375          * push the crtc outside. This doesn't deal with changes to the
    376          * panning values, only mouse position changes.
    377          */
    378         if (crtc->panningTotalArea.x2 > crtc->panningTotalArea.x1) {
    379             if (x < crtc->panningTotalArea.x1)
    380                 x = crtc->panningTotalArea.x1;
    381             if (x >= crtc->panningTotalArea.x2)
    382                 x = crtc->panningTotalArea.x2 - 1;
    383         }
    384         if (crtc->panningTotalArea.y2 > crtc->panningTotalArea.y1) {
    385             if (y < crtc->panningTotalArea.y1)
    386                 y = crtc->panningTotalArea.y1;
    387             if (y >= crtc->panningTotalArea.y2)
    388                 y = crtc->panningTotalArea.y2 - 1;
    389         }
    390 
    391         c.v[0] = x;
    392         c.v[1] = y;
    393         c.v[2] = 1.0;
    394         if (crtc->transform_in_use) {
    395             pixman_f_transform_point(&crtc->f_framebuffer_to_crtc, &c);
    396         }
    397         else {
    398             c.v[0] -= crtc->x;
    399             c.v[1] -= crtc->y;
    400         }
    401 
    402         if (crtc->panningTotalArea.x2 > crtc->panningTotalArea.x1) {
    403             if (c.v[0] < crtc->panningBorder[0]) {
    404                 c.v[0] = crtc->panningBorder[0];
    405                 panned = TRUE;
    406             }
    407             if (c.v[0] >= width - crtc->panningBorder[2]) {
    408                 c.v[0] = width - crtc->panningBorder[2] - 1;
    409                 panned = TRUE;
    410             }
    411         }
    412         if (crtc->panningTotalArea.y2 > crtc->panningTotalArea.y1) {
    413             if (c.v[1] < crtc->panningBorder[1]) {
    414                 c.v[1] = crtc->panningBorder[1];
    415                 panned = TRUE;
    416             }
    417             if (c.v[1] >= height - crtc->panningBorder[3]) {
    418                 c.v[1] = height - crtc->panningBorder[3] - 1;
    419                 panned = TRUE;
    420             }
    421         }
    422         if (panned)
    423             xf86ComputeCrtcPan(crtc->transform_in_use,
    424                                &crtc->f_framebuffer_to_crtc,
    425                                x, y, c.v[0], c.v[1], newX, newY, &newX, &newY);
    426     }
    427 
    428     /*
    429      * Ensure that the crtc is within the panning region.
    430      *
    431      * XXX This computation only works when we do not have a transform
    432      * in use.
    433      */
    434     if (!crtc->transform_in_use) {
    435         /* Validate against [xy]1 after [xy]2, to be sure that results are > 0 for [xy]1 > 0 */
    436         if (crtc->panningTotalArea.x2 > crtc->panningTotalArea.x1) {
    437             if (newX > crtc->panningTotalArea.x2 - width)
    438                 newX = crtc->panningTotalArea.x2 - width;
    439             if (newX < crtc->panningTotalArea.x1)
    440                 newX = crtc->panningTotalArea.x1;
    441         }
    442         if (crtc->panningTotalArea.y2 > crtc->panningTotalArea.y1) {
    443             if (newY > crtc->panningTotalArea.y2 - height)
    444                 newY = crtc->panningTotalArea.y2 - height;
    445             if (newY < crtc->panningTotalArea.y1)
    446                 newY = crtc->panningTotalArea.y1;
    447         }
    448     }
    449     if (newX != crtc->x || newY != crtc->y)
    450         xf86CrtcSetOrigin(crtc, newX, newY);
    451 }
    452 
    453 static Bool
    454 xf86RandR12GetInfo(ScreenPtr pScreen, Rotation * rotations)
    455 {
    456     RRScreenSizePtr pSize;
    457     ScrnInfoPtr scrp = xf86ScreenToScrn(pScreen);
    458     XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
    459     DisplayModePtr mode;
    460     int maxX = 0, maxY = 0;
    461 
    462     *rotations = randrp->supported_rotations;
    463 
    464     if (randrp->virtualX == -1 || randrp->virtualY == -1) {
    465         randrp->virtualX = scrp->virtualX;
    466         randrp->virtualY = scrp->virtualY;
    467     }
    468 
    469     /* Re-probe the outputs for new monitors or modes */
    470     if (scrp->vtSema) {
    471         xf86ProbeOutputModes(scrp, 0, 0);
    472         xf86SetScrnInfoModes(scrp);
    473     }
    474 
    475     for (mode = scrp->modes;; mode = mode->next) {
    476         int refresh = xf86RandR12ModeRefresh(mode);
    477 
    478         if (randrp->maxX == 0 || randrp->maxY == 0) {
    479             if (maxX < mode->HDisplay)
    480                 maxX = mode->HDisplay;
    481             if (maxY < mode->VDisplay)
    482                 maxY = mode->VDisplay;
    483         }
    484         pSize = RRRegisterSize(pScreen,
    485                                mode->HDisplay, mode->VDisplay,
    486                                randrp->mmWidth, randrp->mmHeight);
    487         if (!pSize)
    488             return FALSE;
    489         RRRegisterRate(pScreen, pSize, refresh);
    490 
    491         if (xf86ModesEqual(mode, scrp->currentMode)) {
    492             RRSetCurrentConfig(pScreen, randrp->rotation, refresh, pSize);
    493         }
    494         if (mode->next == scrp->modes)
    495             break;
    496     }
    497 
    498     if (randrp->maxX == 0 || randrp->maxY == 0) {
    499         randrp->maxX = maxX;
    500         randrp->maxY = maxY;
    501     }
    502 
    503     return TRUE;
    504 }
    505 
    506 static Bool
    507 xf86RandR12SetMode(ScreenPtr pScreen,
    508                    DisplayModePtr mode,
    509                    Bool useVirtual, int mmWidth, int mmHeight)
    510 {
    511     ScrnInfoPtr scrp = xf86ScreenToScrn(pScreen);
    512     XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
    513     int oldWidth = pScreen->width;
    514     int oldHeight = pScreen->height;
    515     int oldmmWidth = pScreen->mmWidth;
    516     int oldmmHeight = pScreen->mmHeight;
    517     WindowPtr pRoot = pScreen->root;
    518     DisplayModePtr currentMode = NULL;
    519     Bool ret = TRUE;
    520 
    521     if (pRoot)
    522         (*scrp->EnableDisableFBAccess) (scrp, FALSE);
    523     if (useVirtual) {
    524         scrp->virtualX = randrp->virtualX;
    525         scrp->virtualY = randrp->virtualY;
    526     }
    527     else {
    528         scrp->virtualX = mode->HDisplay;
    529         scrp->virtualY = mode->VDisplay;
    530     }
    531 
    532     if (randrp->rotation & (RR_Rotate_90 | RR_Rotate_270)) {
    533         /* If the screen is rotated 90 or 270 degrees, swap the sizes. */
    534         pScreen->width = scrp->virtualY;
    535         pScreen->height = scrp->virtualX;
    536         pScreen->mmWidth = mmHeight;
    537         pScreen->mmHeight = mmWidth;
    538     }
    539     else {
    540         pScreen->width = scrp->virtualX;
    541         pScreen->height = scrp->virtualY;
    542         pScreen->mmWidth = mmWidth;
    543         pScreen->mmHeight = mmHeight;
    544     }
    545     if (scrp->currentMode == mode) {
    546         /* Save current mode */
    547         currentMode = scrp->currentMode;
    548         /* Reset, just so we ensure the drivers SwitchMode is called */
    549         scrp->currentMode = NULL;
    550     }
    551     /*
    552      * We know that if the driver failed to SwitchMode to the rotated
    553      * version, then it should revert back to its prior mode.
    554      */
    555     if (!xf86SwitchMode(pScreen, mode)) {
    556         ret = FALSE;
    557         scrp->virtualX = pScreen->width = oldWidth;
    558         scrp->virtualY = pScreen->height = oldHeight;
    559         pScreen->mmWidth = oldmmWidth;
    560         pScreen->mmHeight = oldmmHeight;
    561         scrp->currentMode = currentMode;
    562     }
    563 
    564     /*
    565      * Make sure the layout is correct
    566      */
    567     xf86ReconfigureLayout();
    568 
    569     /*
    570      * Make sure the whole screen is visible
    571      */
    572     xf86SetViewport(pScreen, pScreen->width, pScreen->height);
    573     xf86SetViewport(pScreen, 0, 0);
    574     if (pRoot)
    575         (*scrp->EnableDisableFBAccess) (scrp, TRUE);
    576     return ret;
    577 }
    578 
    579 Bool
    580 xf86RandR12SetConfig(ScreenPtr pScreen,
    581                      Rotation rotation, int rate, RRScreenSizePtr pSize)
    582 {
    583     ScrnInfoPtr scrp = xf86ScreenToScrn(pScreen);
    584     XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
    585     DisplayModePtr mode;
    586     int pos[MAXDEVICES][2];
    587     Bool useVirtual = FALSE;
    588     int maxX = 0, maxY = 0;
    589     Rotation oldRotation = randrp->rotation;
    590     DeviceIntPtr dev;
    591     Bool view_adjusted = FALSE;
    592 
    593     randrp->rotation = rotation;
    594 
    595     if (randrp->virtualX == -1 || randrp->virtualY == -1) {
    596         randrp->virtualX = scrp->virtualX;
    597         randrp->virtualY = scrp->virtualY;
    598     }
    599 
    600     for (dev = inputInfo.devices; dev; dev = dev->next) {
    601         if (!IsMaster(dev) && !IsFloating(dev))
    602             continue;
    603 
    604         miPointerGetPosition(dev, &pos[dev->id][0], &pos[dev->id][1]);
    605     }
    606 
    607     for (mode = scrp->modes;; mode = mode->next) {
    608         if (randrp->maxX == 0 || randrp->maxY == 0) {
    609             if (maxX < mode->HDisplay)
    610                 maxX = mode->HDisplay;
    611             if (maxY < mode->VDisplay)
    612                 maxY = mode->VDisplay;
    613         }
    614         if (mode->HDisplay == pSize->width &&
    615             mode->VDisplay == pSize->height &&
    616             (rate == 0 || xf86RandR12ModeRefresh(mode) == rate))
    617             break;
    618         if (mode->next == scrp->modes) {
    619             if (pSize->width == randrp->virtualX &&
    620                 pSize->height == randrp->virtualY) {
    621                 mode = scrp->modes;
    622                 useVirtual = TRUE;
    623                 break;
    624             }
    625             if (randrp->maxX == 0 || randrp->maxY == 0) {
    626                 randrp->maxX = maxX;
    627                 randrp->maxY = maxY;
    628             }
    629             return FALSE;
    630         }
    631     }
    632 
    633     if (randrp->maxX == 0 || randrp->maxY == 0) {
    634         randrp->maxX = maxX;
    635         randrp->maxY = maxY;
    636     }
    637 
    638     if (!xf86RandR12SetMode(pScreen, mode, useVirtual, pSize->mmWidth,
    639                             pSize->mmHeight)) {
    640         randrp->rotation = oldRotation;
    641         return FALSE;
    642     }
    643 
    644     /*
    645      * Move the cursor back where it belongs; SwitchMode repositions it
    646      * FIXME: duplicated code, see modes/xf86RandR12.c
    647      */
    648     for (dev = inputInfo.devices; dev; dev = dev->next) {
    649         if (!IsMaster(dev) && !IsFloating(dev))
    650             continue;
    651 
    652         if (pScreen == miPointerGetScreen(dev)) {
    653             int px = pos[dev->id][0];
    654             int py = pos[dev->id][1];
    655 
    656             px = (px >= pScreen->width ? (pScreen->width - 1) : px);
    657             py = (py >= pScreen->height ? (pScreen->height - 1) : py);
    658 
    659             /* Setting the viewpoint makes only sense on one device */
    660             if (!view_adjusted && IsMaster(dev)) {
    661                 xf86SetViewport(pScreen, px, py);
    662                 view_adjusted = TRUE;
    663             }
    664 
    665             (*pScreen->SetCursorPosition) (dev, pScreen, px, py, FALSE);
    666         }
    667     }
    668 
    669     return TRUE;
    670 }
    671 
    672 #define PANNING_ENABLED(crtc)                                           \
    673     ((crtc)->panningTotalArea.x2 > (crtc)->panningTotalArea.x1 ||       \
    674      (crtc)->panningTotalArea.y2 > (crtc)->panningTotalArea.y1)
    675 
    676 static Bool
    677 xf86RandR12ScreenSetSize(ScreenPtr pScreen,
    678                          CARD16 width,
    679                          CARD16 height, CARD32 mmWidth, CARD32 mmHeight)
    680 {
    681     XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
    682     ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
    683     xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
    684     WindowPtr pRoot = pScreen->root;
    685     PixmapPtr pScrnPix;
    686     Bool ret = FALSE;
    687     int c;
    688 
    689     if (randrp->virtualX == -1 || randrp->virtualY == -1) {
    690         randrp->virtualX = pScrn->virtualX;
    691         randrp->virtualY = pScrn->virtualY;
    692     }
    693     if (pRoot && pScrn->vtSema)
    694         (*pScrn->EnableDisableFBAccess) (pScrn, FALSE);
    695 
    696     /* Let the driver update virtualX and virtualY */
    697     if (!(*config->funcs->resize) (pScrn, width, height))
    698         goto finish;
    699 
    700     ret = TRUE;
    701     /* Update panning information */
    702     for (c = 0; c < config->num_crtc; c++) {
    703         xf86CrtcPtr crtc = config->crtc[c];
    704 
    705 	if (PANNING_ENABLED (crtc)) {
    706             if (crtc->panningTotalArea.x2 > crtc->panningTrackingArea.x1)
    707                 crtc->panningTotalArea.x2 += width - pScreen->width;
    708             if (crtc->panningTotalArea.y2 > crtc->panningTrackingArea.y1)
    709                 crtc->panningTotalArea.y2 += height - pScreen->height;
    710             if (crtc->panningTrackingArea.x2 > crtc->panningTrackingArea.x1)
    711                 crtc->panningTrackingArea.x2 += width - pScreen->width;
    712             if (crtc->panningTrackingArea.y2 > crtc->panningTrackingArea.y1)
    713                 crtc->panningTrackingArea.y2 += height - pScreen->height;
    714             xf86RandR13VerifyPanningArea(crtc, width, height);
    715             xf86RandR13Pan(crtc, randrp->pointerX, randrp->pointerY);
    716         }
    717     }
    718 
    719     pScrnPix = (*pScreen->GetScreenPixmap) (pScreen);
    720     pScreen->width = pScrnPix->drawable.width = width;
    721     pScreen->height = pScrnPix->drawable.height = height;
    722     randrp->mmWidth = pScreen->mmWidth = mmWidth;
    723     randrp->mmHeight = pScreen->mmHeight = mmHeight;
    724 
    725     xf86SetViewport(pScreen, pScreen->width - 1, pScreen->height - 1);
    726     xf86SetViewport(pScreen, 0, 0);
    727 
    728  finish:
    729     update_desktop_dimensions();
    730 
    731     if (pRoot && pScrn->vtSema)
    732         (*pScrn->EnableDisableFBAccess) (pScrn, TRUE);
    733 #if RANDR_12_INTERFACE
    734     if (pScreen->root && ret)
    735         RRScreenSizeNotify(pScreen);
    736 #endif
    737     return ret;
    738 }
    739 
    740 Rotation
    741 xf86RandR12GetRotation(ScreenPtr pScreen)
    742 {
    743     XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
    744 
    745     return randrp->rotation;
    746 }
    747 
    748 Bool
    749 xf86RandR12CreateScreenResources(ScreenPtr pScreen)
    750 {
    751     ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
    752     xf86CrtcConfigPtr config;
    753     XF86RandRInfoPtr randrp;
    754     int c;
    755     int width, height;
    756     int mmWidth, mmHeight;
    757 
    758 #ifdef PANORAMIX
    759     /* XXX disable RandR when using Xinerama */
    760     if (!noPanoramiXExtension)
    761         return TRUE;
    762 #endif
    763 
    764     config = XF86_CRTC_CONFIG_PTR(pScrn);
    765     randrp = XF86RANDRINFO(pScreen);
    766     /*
    767      * Compute size of screen
    768      */
    769     width = 0;
    770     height = 0;
    771     for (c = 0; c < config->num_crtc; c++) {
    772         xf86CrtcPtr crtc = config->crtc[c];
    773         int crtc_width = crtc->x + xf86ModeWidth(&crtc->mode, crtc->rotation);
    774         int crtc_height = crtc->y + xf86ModeHeight(&crtc->mode, crtc->rotation);
    775 
    776         if (crtc->enabled) {
    777             if (crtc_width > width)
    778                 width = crtc_width;
    779             if (crtc_height > height)
    780                 height = crtc_height;
    781             if (crtc->panningTotalArea.x2 > width)
    782                 width = crtc->panningTotalArea.x2;
    783             if (crtc->panningTotalArea.y2 > height)
    784                 height = crtc->panningTotalArea.y2;
    785         }
    786     }
    787 
    788     if (width && height) {
    789         /*
    790          * Compute physical size of screen
    791          */
    792         if (monitorResolution) {
    793             mmWidth = width * 25.4 / monitorResolution;
    794             mmHeight = height * 25.4 / monitorResolution;
    795         }
    796         else {
    797             xf86OutputPtr output = xf86CompatOutput(pScrn);
    798 
    799             if (output &&
    800                 output->conf_monitor &&
    801                 (output->conf_monitor->mon_width > 0 &&
    802                  output->conf_monitor->mon_height > 0)) {
    803                 /*
    804                  * Prefer user configured DisplaySize
    805                  */
    806                 mmWidth = output->conf_monitor->mon_width;
    807                 mmHeight = output->conf_monitor->mon_height;
    808             }
    809             else {
    810                 /*
    811                  * Otherwise, just set the screen to DEFAULT_DPI
    812                  */
    813                 mmWidth = width * 25.4 / DEFAULT_DPI;
    814                 mmHeight = height * 25.4 / DEFAULT_DPI;
    815             }
    816         }
    817         xf86DrvMsg(pScrn->scrnIndex, X_INFO,
    818                    "Setting screen physical size to %d x %d\n",
    819                    mmWidth, mmHeight);
    820         /*
    821          * This is the initial setting of the screen size.
    822          * We have to pre-set it here, otherwise panning would be adapted
    823          * to the new screen size.
    824          */
    825         pScreen->width = width;
    826         pScreen->height = height;
    827         xf86RandR12ScreenSetSize(pScreen, width, height, mmWidth, mmHeight);
    828     }
    829 
    830     if (randrp->virtualX == -1 || randrp->virtualY == -1) {
    831         randrp->virtualX = pScrn->virtualX;
    832         randrp->virtualY = pScrn->virtualY;
    833     }
    834     xf86CrtcSetScreenSubpixelOrder(pScreen);
    835 #if RANDR_12_INTERFACE
    836     if (xf86RandR12CreateScreenResources12(pScreen))
    837         return TRUE;
    838 #endif
    839     return TRUE;
    840 }
    841 
    842 Bool
    843 xf86RandR12Init(ScreenPtr pScreen)
    844 {
    845     rrScrPrivPtr rp;
    846     XF86RandRInfoPtr randrp;
    847 
    848 #ifdef PANORAMIX
    849     /* XXX disable RandR when using Xinerama */
    850     if (!noPanoramiXExtension) {
    851         if (xf86NumScreens == 1)
    852             noPanoramiXExtension = TRUE;
    853         else
    854             return TRUE;
    855     }
    856 #endif
    857 
    858     if (xf86RandR12Generation != serverGeneration)
    859         xf86RandR12Generation = serverGeneration;
    860 
    861     if (!dixRegisterPrivateKey(&xf86RandR12KeyRec, PRIVATE_SCREEN, 0))
    862         return FALSE;
    863 
    864     randrp = malloc(sizeof(XF86RandRInfoRec));
    865     if (!randrp)
    866         return FALSE;
    867 
    868     if (!RRScreenInit(pScreen)) {
    869         free(randrp);
    870         return FALSE;
    871     }
    872     rp = rrGetScrPriv(pScreen);
    873     rp->rrGetInfo = xf86RandR12GetInfo;
    874     rp->rrSetConfig = xf86RandR12SetConfig;
    875 
    876     randrp->virtualX = -1;
    877     randrp->virtualY = -1;
    878     randrp->mmWidth = pScreen->mmWidth;
    879     randrp->mmHeight = pScreen->mmHeight;
    880 
    881     randrp->rotation = RR_Rotate_0;     /* initial rotated mode */
    882 
    883     randrp->supported_rotations = RR_Rotate_0;
    884 
    885     randrp->maxX = randrp->maxY = 0;
    886 
    887     randrp->palette_size = 0;
    888     randrp->palette = NULL;
    889 
    890     dixSetPrivate(&pScreen->devPrivates, &xf86RandR12KeyRec, randrp);
    891 
    892 #if RANDR_12_INTERFACE
    893     if (!xf86RandR12Init12(pScreen))
    894         return FALSE;
    895 #endif
    896     return TRUE;
    897 }
    898 
    899 void
    900 xf86RandR12CloseScreen(ScreenPtr pScreen)
    901 {
    902     XF86RandRInfoPtr randrp;
    903 
    904     if (!dixPrivateKeyRegistered(&xf86RandR12KeyRec))
    905         return;
    906 
    907     randrp = XF86RANDRINFO(pScreen);
    908 #if RANDR_12_INTERFACE
    909     xf86ScreenToScrn(pScreen)->EnterVT = randrp->orig_EnterVT;
    910     pScreen->ConstrainCursorHarder = randrp->orig_ConstrainCursorHarder;
    911 #endif
    912 
    913     free(randrp->palette);
    914     free(randrp);
    915 }
    916 
    917 void
    918 xf86RandR12SetRotations(ScreenPtr pScreen, Rotation rotations)
    919 {
    920     XF86RandRInfoPtr randrp;
    921 
    922 #if RANDR_12_INTERFACE
    923     ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
    924     int c;
    925     xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
    926 #endif
    927 
    928     if (!dixPrivateKeyRegistered(&xf86RandR12KeyRec))
    929         return;
    930 
    931     randrp = XF86RANDRINFO(pScreen);
    932 #if RANDR_12_INTERFACE
    933     for (c = 0; c < config->num_crtc; c++) {
    934         xf86CrtcPtr crtc = config->crtc[c];
    935 
    936         RRCrtcSetRotations(crtc->randr_crtc, rotations);
    937     }
    938 #endif
    939     randrp->supported_rotations = rotations;
    940 }
    941 
    942 void
    943 xf86RandR12SetTransformSupport(ScreenPtr pScreen, Bool transforms)
    944 {
    945 #if RANDR_13_INTERFACE
    946     ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
    947     int c;
    948     xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
    949 
    950     if (!dixPrivateKeyRegistered(&xf86RandR12KeyRec))
    951         return;
    952 
    953     for (c = 0; c < config->num_crtc; c++) {
    954         xf86CrtcPtr crtc = config->crtc[c];
    955 
    956         RRCrtcSetTransformSupport(crtc->randr_crtc, transforms);
    957     }
    958 #endif
    959 }
    960 
    961 void
    962 xf86RandR12GetOriginalVirtualSize(ScrnInfoPtr pScrn, int *x, int *y)
    963 {
    964     ScreenPtr pScreen = xf86ScrnToScreen(pScrn);
    965 
    966     if (xf86RandR12Generation != serverGeneration ||
    967         XF86RANDRINFO(pScreen)->virtualX == -1) {
    968         *x = pScrn->virtualX;
    969         *y = pScrn->virtualY;
    970     }
    971     else {
    972         XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
    973 
    974         *x = randrp->virtualX;
    975         *y = randrp->virtualY;
    976     }
    977 }
    978 
    979 #if RANDR_12_INTERFACE
    980 
    981 #define FLAG_BITS (RR_HSyncPositive | \
    982 		   RR_HSyncNegative | \
    983 		   RR_VSyncPositive | \
    984 		   RR_VSyncNegative | \
    985 		   RR_Interlace | \
    986 		   RR_DoubleScan | \
    987 		   RR_CSync | \
    988 		   RR_CSyncPositive | \
    989 		   RR_CSyncNegative | \
    990 		   RR_HSkewPresent | \
    991 		   RR_BCast | \
    992 		   RR_PixelMultiplex | \
    993 		   RR_DoubleClock | \
    994 		   RR_ClockDivideBy2)
    995 
    996 static Bool
    997 xf86RandRModeMatches(RRModePtr randr_mode, DisplayModePtr mode)
    998 {
    999 #if 0
   1000     if (match_name) {
   1001         /* check for same name */
   1002         int len = strlen(mode->name);
   1003 
   1004         if (randr_mode->mode.nameLength != len)
   1005             return FALSE;
   1006         if (memcmp(randr_mode->name, mode->name, len) != 0)
   1007             return FALSE;
   1008     }
   1009 #endif
   1010 
   1011     /* check for same timings */
   1012     if (randr_mode->mode.dotClock / 1000 != mode->Clock)
   1013         return FALSE;
   1014     if (randr_mode->mode.width != mode->HDisplay)
   1015         return FALSE;
   1016     if (randr_mode->mode.hSyncStart != mode->HSyncStart)
   1017         return FALSE;
   1018     if (randr_mode->mode.hSyncEnd != mode->HSyncEnd)
   1019         return FALSE;
   1020     if (randr_mode->mode.hTotal != mode->HTotal)
   1021         return FALSE;
   1022     if (randr_mode->mode.hSkew != mode->HSkew)
   1023         return FALSE;
   1024     if (randr_mode->mode.height != mode->VDisplay)
   1025         return FALSE;
   1026     if (randr_mode->mode.vSyncStart != mode->VSyncStart)
   1027         return FALSE;
   1028     if (randr_mode->mode.vSyncEnd != mode->VSyncEnd)
   1029         return FALSE;
   1030     if (randr_mode->mode.vTotal != mode->VTotal)
   1031         return FALSE;
   1032 
   1033     /* check for same flags (using only the XF86 valid flag bits) */
   1034     if ((randr_mode->mode.modeFlags & FLAG_BITS) != (mode->Flags & FLAG_BITS))
   1035         return FALSE;
   1036 
   1037     /* everything matches */
   1038     return TRUE;
   1039 }
   1040 
   1041 static Bool
   1042 xf86RandR12CrtcNotify(RRCrtcPtr randr_crtc)
   1043 {
   1044     ScreenPtr pScreen = randr_crtc->pScreen;
   1045     ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
   1046     xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
   1047     RRModePtr randr_mode = NULL;
   1048     int x;
   1049     int y;
   1050     Rotation rotation;
   1051     int numOutputs;
   1052     RROutputPtr *randr_outputs;
   1053     RROutputPtr randr_output;
   1054     xf86CrtcPtr crtc = randr_crtc->devPrivate;
   1055     xf86OutputPtr output;
   1056     int i, j;
   1057     DisplayModePtr mode = &crtc->mode;
   1058     Bool ret;
   1059 
   1060     randr_outputs = xallocarray(config->num_output, sizeof(RROutputPtr));
   1061     if (!randr_outputs)
   1062         return FALSE;
   1063     x = crtc->x;
   1064     y = crtc->y;
   1065     rotation = crtc->rotation;
   1066     numOutputs = 0;
   1067     randr_mode = NULL;
   1068     for (i = 0; i < config->num_output; i++) {
   1069         output = config->output[i];
   1070         if (output->crtc == crtc) {
   1071             randr_output = output->randr_output;
   1072             randr_outputs[numOutputs++] = randr_output;
   1073             /*
   1074              * We make copies of modes, so pointer equality
   1075              * isn't sufficient
   1076              */
   1077             for (j = 0; j < randr_output->numModes + randr_output->numUserModes;
   1078                  j++) {
   1079                 RRModePtr m =
   1080                     (j <
   1081                      randr_output->numModes ? randr_output->
   1082                      modes[j] : randr_output->userModes[j -
   1083                                                         randr_output->
   1084                                                         numModes]);
   1085 
   1086                 if (xf86RandRModeMatches(m, mode)) {
   1087                     randr_mode = m;
   1088                     break;
   1089                 }
   1090             }
   1091         }
   1092     }
   1093     ret = RRCrtcNotify(randr_crtc, randr_mode, x, y,
   1094                        rotation,
   1095                        crtc->transformPresent ? &crtc->transform : NULL,
   1096                        numOutputs, randr_outputs);
   1097     free(randr_outputs);
   1098     return ret;
   1099 }
   1100 
   1101 /*
   1102  * Convert a RandR mode to a DisplayMode
   1103  */
   1104 static void
   1105 xf86RandRModeConvert(ScrnInfoPtr scrn,
   1106                      RRModePtr randr_mode, DisplayModePtr mode)
   1107 {
   1108     memset(mode, 0, sizeof(DisplayModeRec));
   1109     mode->status = MODE_OK;
   1110 
   1111     mode->Clock = randr_mode->mode.dotClock / 1000;
   1112 
   1113     mode->HDisplay = randr_mode->mode.width;
   1114     mode->HSyncStart = randr_mode->mode.hSyncStart;
   1115     mode->HSyncEnd = randr_mode->mode.hSyncEnd;
   1116     mode->HTotal = randr_mode->mode.hTotal;
   1117     mode->HSkew = randr_mode->mode.hSkew;
   1118 
   1119     mode->VDisplay = randr_mode->mode.height;
   1120     mode->VSyncStart = randr_mode->mode.vSyncStart;
   1121     mode->VSyncEnd = randr_mode->mode.vSyncEnd;
   1122     mode->VTotal = randr_mode->mode.vTotal;
   1123     mode->VScan = 0;
   1124 
   1125     mode->Flags = randr_mode->mode.modeFlags & FLAG_BITS;
   1126 
   1127     xf86SetModeCrtc(mode, scrn->adjustFlags);
   1128 }
   1129 
   1130 static Bool
   1131 xf86RandR12CrtcSet(ScreenPtr pScreen,
   1132                    RRCrtcPtr randr_crtc,
   1133                    RRModePtr randr_mode,
   1134                    int x,
   1135                    int y,
   1136                    Rotation rotation,
   1137                    int num_randr_outputs, RROutputPtr * randr_outputs)
   1138 {
   1139     XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
   1140     ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
   1141     xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
   1142     xf86CrtcPtr crtc = randr_crtc->devPrivate;
   1143     RRTransformPtr transform;
   1144     Bool changed = FALSE;
   1145     int o, ro;
   1146     xf86CrtcPtr *save_crtcs;
   1147     Bool save_enabled = crtc->enabled;
   1148 
   1149     if (!crtc->scrn->vtSema)
   1150         return FALSE;
   1151 
   1152     save_crtcs = xallocarray(config->num_output, sizeof(xf86CrtcPtr));
   1153     if ((randr_mode != NULL) != crtc->enabled)
   1154         changed = TRUE;
   1155     else if (randr_mode && !xf86RandRModeMatches(randr_mode, &crtc->mode))
   1156         changed = TRUE;
   1157 
   1158     if (rotation != crtc->rotation)
   1159         changed = TRUE;
   1160 
   1161     if (crtc->current_scanout != randr_crtc->scanout_pixmap ||
   1162         crtc->current_scanout_back != randr_crtc->scanout_pixmap_back)
   1163         changed = TRUE;
   1164 
   1165     transform = RRCrtcGetTransform(randr_crtc);
   1166     if ((transform != NULL) != crtc->transformPresent)
   1167         changed = TRUE;
   1168     else if (transform &&
   1169              !RRTransformEqual(transform, &crtc->transform))
   1170         changed = TRUE;
   1171 
   1172     if (x != crtc->x || y != crtc->y)
   1173         changed = TRUE;
   1174     for (o = 0; o < config->num_output; o++) {
   1175         xf86OutputPtr output = config->output[o];
   1176         xf86CrtcPtr new_crtc;
   1177 
   1178         save_crtcs[o] = output->crtc;
   1179 
   1180         if (output->crtc == crtc)
   1181             new_crtc = NULL;
   1182         else
   1183             new_crtc = output->crtc;
   1184         for (ro = 0; ro < num_randr_outputs; ro++)
   1185             if (output->randr_output == randr_outputs[ro]) {
   1186                 new_crtc = crtc;
   1187                 break;
   1188             }
   1189         if (new_crtc != output->crtc) {
   1190             changed = TRUE;
   1191             output->crtc = new_crtc;
   1192         }
   1193     }
   1194     for (ro = 0; ro < num_randr_outputs; ro++)
   1195         if (randr_outputs[ro]->pendingProperties)
   1196             changed = TRUE;
   1197 
   1198     /* XXX need device-independent mode setting code through an API */
   1199     if (changed) {
   1200         crtc->enabled = randr_mode != NULL;
   1201 
   1202         if (randr_mode) {
   1203             DisplayModeRec mode;
   1204 
   1205             xf86RandRModeConvert(pScrn, randr_mode, &mode);
   1206             if (!xf86CrtcSetModeTransform
   1207                 (crtc, &mode, rotation, transform, x, y)) {
   1208                 crtc->enabled = save_enabled;
   1209                 for (o = 0; o < config->num_output; o++) {
   1210                     xf86OutputPtr output = config->output[o];
   1211 
   1212                     output->crtc = save_crtcs[o];
   1213                 }
   1214                 free(save_crtcs);
   1215                 return FALSE;
   1216             }
   1217             xf86RandR13VerifyPanningArea(crtc, pScreen->width, pScreen->height);
   1218             xf86RandR13Pan(crtc, randrp->pointerX, randrp->pointerY);
   1219             randrp->panning = PANNING_ENABLED (crtc);
   1220             /*
   1221              * Save the last successful setting for EnterVT
   1222              */
   1223             xf86SaveModeContents(&crtc->desiredMode, &mode);
   1224             crtc->desiredRotation = rotation;
   1225             crtc->current_scanout = randr_crtc->scanout_pixmap;
   1226             crtc->current_scanout_back = randr_crtc->scanout_pixmap_back;
   1227             if (transform) {
   1228                 crtc->desiredTransform = *transform;
   1229                 crtc->desiredTransformPresent = TRUE;
   1230             }
   1231             else
   1232                 crtc->desiredTransformPresent = FALSE;
   1233 
   1234             crtc->desiredX = x;
   1235             crtc->desiredY = y;
   1236         }
   1237         xf86DisableUnusedFunctions(pScrn);
   1238     }
   1239     free(save_crtcs);
   1240     return xf86RandR12CrtcNotify(randr_crtc);
   1241 }
   1242 
   1243 static void
   1244 xf86RandR12CrtcComputeGamma(xf86CrtcPtr crtc, LOCO *palette,
   1245                             int palette_red_size, int palette_green_size,
   1246                             int palette_blue_size, CARD16 *gamma_red,
   1247                             CARD16 *gamma_green, CARD16 *gamma_blue,
   1248                             int gamma_size)
   1249 {
   1250     int gamma_slots;
   1251     unsigned shift;
   1252     int i, j;
   1253     CARD32 value = 0;
   1254 
   1255     for (shift = 0; (gamma_size << shift) < (1 << 16); shift++);
   1256 
   1257     if (crtc->gamma_size >= palette_red_size) {
   1258         /* Upsampling of smaller palette to larger hw lut size */
   1259         gamma_slots = crtc->gamma_size / palette_red_size;
   1260         for (i = 0; i < palette_red_size; i++) {
   1261             value = palette[i].red;
   1262             if (gamma_red)
   1263                 value = gamma_red[value];
   1264             else
   1265                 value <<= shift;
   1266 
   1267             for (j = 0; j < gamma_slots; j++)
   1268                 crtc->gamma_red[i * gamma_slots + j] = value;
   1269         }
   1270 
   1271         /* Replicate last value until end of crtc for gamma_size not a power of 2 */
   1272         for (j = i * gamma_slots; j < crtc->gamma_size; j++)
   1273                 crtc->gamma_red[j] = value;
   1274     } else {
   1275         /* Downsampling of larger palette to smaller hw lut size */
   1276         for (i = 0; i < crtc->gamma_size; i++) {
   1277             value = palette[i * (palette_red_size - 1) / (crtc->gamma_size - 1)].red;
   1278             if (gamma_red)
   1279                 value = gamma_red[value];
   1280             else
   1281                 value <<= shift;
   1282 
   1283             crtc->gamma_red[i] = value;
   1284         }
   1285     }
   1286 
   1287     if (crtc->gamma_size >= palette_green_size) {
   1288         /* Upsampling of smaller palette to larger hw lut size */
   1289         gamma_slots = crtc->gamma_size / palette_green_size;
   1290         for (i = 0; i < palette_green_size; i++) {
   1291             value = palette[i].green;
   1292             if (gamma_green)
   1293                 value = gamma_green[value];
   1294             else
   1295                 value <<= shift;
   1296 
   1297             for (j = 0; j < gamma_slots; j++)
   1298                 crtc->gamma_green[i * gamma_slots + j] = value;
   1299         }
   1300 
   1301         /* Replicate last value until end of crtc for gamma_size not a power of 2 */
   1302         for (j = i * gamma_slots; j < crtc->gamma_size; j++)
   1303             crtc->gamma_green[j] = value;
   1304     } else {
   1305         /* Downsampling of larger palette to smaller hw lut size */
   1306         for (i = 0; i < crtc->gamma_size; i++) {
   1307             value = palette[i * (palette_green_size - 1) / (crtc->gamma_size - 1)].green;
   1308             if (gamma_green)
   1309                 value = gamma_green[value];
   1310             else
   1311                 value <<= shift;
   1312 
   1313             crtc->gamma_green[i] = value;
   1314         }
   1315     }
   1316 
   1317     if (crtc->gamma_size >= palette_blue_size) {
   1318         /* Upsampling of smaller palette to larger hw lut size */
   1319         gamma_slots = crtc->gamma_size / palette_blue_size;
   1320         for (i = 0; i < palette_blue_size; i++) {
   1321             value = palette[i].blue;
   1322             if (gamma_blue)
   1323                 value = gamma_blue[value];
   1324             else
   1325                 value <<= shift;
   1326 
   1327             for (j = 0; j < gamma_slots; j++)
   1328                 crtc->gamma_blue[i * gamma_slots + j] = value;
   1329         }
   1330 
   1331         /* Replicate last value until end of crtc for gamma_size not a power of 2 */
   1332         for (j = i * gamma_slots; j < crtc->gamma_size; j++)
   1333             crtc->gamma_blue[j] = value;
   1334     } else {
   1335         /* Downsampling of larger palette to smaller hw lut size */
   1336         for (i = 0; i < crtc->gamma_size; i++) {
   1337             value = palette[i * (palette_blue_size - 1) / (crtc->gamma_size - 1)].blue;
   1338             if (gamma_blue)
   1339                 value = gamma_blue[value];
   1340             else
   1341                 value <<= shift;
   1342 
   1343             crtc->gamma_blue[i] = value;
   1344         }
   1345     }
   1346 }
   1347 
   1348 static void
   1349 xf86RandR12CrtcReloadGamma(xf86CrtcPtr crtc)
   1350 {
   1351     if (!crtc->scrn->vtSema || !crtc->funcs->gamma_set)
   1352         return;
   1353 
   1354     /* Only set it when the crtc is actually running.
   1355      * Otherwise it will be set when it's activated.
   1356      */
   1357     if (crtc->active)
   1358         crtc->funcs->gamma_set(crtc, crtc->gamma_red, crtc->gamma_green,
   1359                                crtc->gamma_blue, crtc->gamma_size);
   1360 }
   1361 
   1362 static Bool
   1363 xf86RandR12CrtcSetGamma(ScreenPtr pScreen, RRCrtcPtr randr_crtc)
   1364 {
   1365     XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
   1366     xf86CrtcPtr crtc = randr_crtc->devPrivate;
   1367     int max_size = crtc->gamma_size;
   1368 
   1369     if (crtc->funcs->gamma_set == NULL)
   1370         return FALSE;
   1371 
   1372     if (randrp->palette_size) {
   1373         xf86RandR12CrtcComputeGamma(crtc, randrp->palette,
   1374                                     randrp->palette_red_size,
   1375                                     randrp->palette_green_size,
   1376                                     randrp->palette_blue_size,
   1377                                     randr_crtc->gammaRed,
   1378                                     randr_crtc->gammaGreen,
   1379                                     randr_crtc->gammaBlue,
   1380                                     randr_crtc->gammaSize);
   1381     } else {
   1382         if (max_size > randr_crtc->gammaSize)
   1383             max_size = randr_crtc->gammaSize;
   1384 
   1385         memcpy(crtc->gamma_red, randr_crtc->gammaRed,
   1386                max_size * sizeof(crtc->gamma_red[0]));
   1387         memcpy(crtc->gamma_green, randr_crtc->gammaGreen,
   1388                max_size * sizeof(crtc->gamma_green[0]));
   1389         memcpy(crtc->gamma_blue, randr_crtc->gammaBlue,
   1390                max_size * sizeof(crtc->gamma_blue[0]));
   1391     }
   1392 
   1393     xf86RandR12CrtcReloadGamma(crtc);
   1394 
   1395     return TRUE;
   1396 }
   1397 
   1398 static void
   1399 init_one_component(CARD16 *comp, unsigned size, float gamma)
   1400 {
   1401     int i;
   1402     unsigned shift;
   1403 
   1404     for (shift = 0; (size << shift) < (1 << 16); shift++);
   1405 
   1406     if (gamma == 1.0) {
   1407         for (i = 0; i < size; i++)
   1408             comp[i] = i << shift;
   1409     } else {
   1410         for (i = 0; i < size; i++)
   1411             comp[i] = (CARD16) (pow((double) i / (double) (size - 1),
   1412                                    1. / (double) gamma) *
   1413                                (double) (size - 1) * (1 << shift));
   1414     }
   1415 }
   1416 
   1417 static Bool
   1418 xf86RandR12CrtcInitGamma(xf86CrtcPtr crtc, float gamma_red, float gamma_green,
   1419                          float gamma_blue)
   1420 {
   1421     unsigned size = crtc->randr_crtc->gammaSize;
   1422     CARD16 *red, *green, *blue;
   1423 
   1424     if (!crtc->funcs->gamma_set &&
   1425         (gamma_red != 1.0f || gamma_green != 1.0f || gamma_blue != 1.0f))
   1426         return FALSE;
   1427 
   1428     red = xallocarray(size, 3 * sizeof(CARD16));
   1429     if (!red)
   1430         return FALSE;
   1431 
   1432     green = red + size;
   1433     blue = green + size;
   1434 
   1435     init_one_component(red, size, gamma_red);
   1436     init_one_component(green, size, gamma_green);
   1437     init_one_component(blue, size, gamma_blue);
   1438 
   1439     RRCrtcGammaSet(crtc->randr_crtc, red, green, blue);
   1440     free(red);
   1441 
   1442     return TRUE;
   1443 }
   1444 
   1445 static Bool
   1446 xf86RandR12OutputInitGamma(xf86OutputPtr output)
   1447 {
   1448     XF86ConfMonitorPtr mon = output->conf_monitor;
   1449     float gamma_red = 1.0, gamma_green = 1.0, gamma_blue = 1.0;
   1450 
   1451     if (!mon)
   1452         return TRUE;
   1453 
   1454     /* Get configured values, where they exist. */
   1455     if (mon->mon_gamma_red >= GAMMA_MIN && mon->mon_gamma_red <= GAMMA_MAX)
   1456         gamma_red = mon->mon_gamma_red;
   1457 
   1458     if (mon->mon_gamma_green >= GAMMA_MIN && mon->mon_gamma_green <= GAMMA_MAX)
   1459         gamma_green = mon->mon_gamma_green;
   1460 
   1461     if (mon->mon_gamma_blue >= GAMMA_MIN && mon->mon_gamma_blue <= GAMMA_MAX)
   1462         gamma_blue = mon->mon_gamma_blue;
   1463 
   1464     /* Don't set gamma 1.0 if another cloned output on this CRTC already set a
   1465      * different gamma
   1466      */
   1467     if (gamma_red != 1.0 || gamma_green != 1.0 || gamma_blue != 1.0) {
   1468         if (!output->crtc->randr_crtc) {
   1469             xf86DrvMsg(output->scrn->scrnIndex, X_WARNING,
   1470                        "Gamma correction for output %s not possible because "
   1471                        "RandR is disabled\n", output->name);
   1472             return TRUE;
   1473         }
   1474 
   1475         xf86DrvMsg(output->scrn->scrnIndex, X_INFO,
   1476                    "Output %s wants gamma correction (%.1f, %.1f, %.1f)\n",
   1477                    output->name, gamma_red, gamma_green, gamma_blue);
   1478         return xf86RandR12CrtcInitGamma(output->crtc, gamma_red, gamma_green,
   1479                                         gamma_blue);
   1480     }
   1481 
   1482     return TRUE;
   1483 }
   1484 
   1485 Bool
   1486 xf86RandR12InitGamma(ScrnInfoPtr pScrn, unsigned gammaSize) {
   1487     xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
   1488     int o, c;
   1489 
   1490     /* Set default gamma for all CRTCs
   1491      * This is done to avoid problems later on with cloned outputs
   1492      */
   1493     for (c = 0; c < config->num_crtc; c++) {
   1494         xf86CrtcPtr crtc = config->crtc[c];
   1495 
   1496         if (!crtc->randr_crtc)
   1497             continue;
   1498 
   1499         if (!RRCrtcGammaSetSize(crtc->randr_crtc, gammaSize) ||
   1500             !xf86RandR12CrtcInitGamma(crtc, 1.0f, 1.0f, 1.0f))
   1501             return FALSE;
   1502     }
   1503 
   1504     /* Set initial gamma per monitor configuration
   1505      */
   1506     for (o = 0; o < config->num_output; o++) {
   1507         xf86OutputPtr output = config->output[o];
   1508 
   1509         if (output->crtc &&
   1510             !xf86RandR12OutputInitGamma(output))
   1511             xf86DrvMsg(pScrn->scrnIndex, X_WARNING,
   1512                        "Initial gamma correction for output %s: failed.\n",
   1513                        output->name);
   1514     }
   1515 
   1516     return TRUE;
   1517 }
   1518 
   1519 static Bool
   1520 xf86RandR12OutputSetProperty(ScreenPtr pScreen,
   1521                              RROutputPtr randr_output,
   1522                              Atom property, RRPropertyValuePtr value)
   1523 {
   1524     xf86OutputPtr output = randr_output->devPrivate;
   1525 
   1526     /* If we don't have any property handler, then we don't care what the
   1527      * user is setting properties to.
   1528      */
   1529     if (output->funcs->set_property == NULL)
   1530         return TRUE;
   1531 
   1532     /*
   1533      * This function gets called even when vtSema is FALSE, as
   1534      * drivers will need to remember the correct value to apply
   1535      * when the VT switch occurs
   1536      */
   1537     return output->funcs->set_property(output, property, value);
   1538 }
   1539 
   1540 static Bool
   1541 xf86RandR13OutputGetProperty(ScreenPtr pScreen,
   1542                              RROutputPtr randr_output, Atom property)
   1543 {
   1544     xf86OutputPtr output = randr_output->devPrivate;
   1545 
   1546     if (output->funcs->get_property == NULL)
   1547         return TRUE;
   1548 
   1549     /* Should be safe even w/o vtSema */
   1550     return output->funcs->get_property(output, property);
   1551 }
   1552 
   1553 static Bool
   1554 xf86RandR12OutputValidateMode(ScreenPtr pScreen,
   1555                               RROutputPtr randr_output, RRModePtr randr_mode)
   1556 {
   1557     ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
   1558     xf86OutputPtr output = randr_output->devPrivate;
   1559     DisplayModeRec mode;
   1560 
   1561     xf86RandRModeConvert(pScrn, randr_mode, &mode);
   1562     /*
   1563      * This function may be called when vtSema is FALSE, so
   1564      * the underlying function must either avoid touching the hardware
   1565      * or return FALSE when vtSema is FALSE
   1566      */
   1567     if (output->funcs->mode_valid(output, &mode) != MODE_OK)
   1568         return FALSE;
   1569     return TRUE;
   1570 }
   1571 
   1572 static void
   1573 xf86RandR12ModeDestroy(ScreenPtr pScreen, RRModePtr randr_mode)
   1574 {
   1575 }
   1576 
   1577 /**
   1578  * Given a list of xf86 modes and a RandR Output object, construct
   1579  * RandR modes and assign them to the output
   1580  */
   1581 static Bool
   1582 xf86RROutputSetModes(RROutputPtr randr_output, DisplayModePtr modes)
   1583 {
   1584     DisplayModePtr mode;
   1585     RRModePtr *rrmodes = NULL;
   1586     int nmode = 0;
   1587     int npreferred = 0;
   1588     Bool ret = TRUE;
   1589     int pref;
   1590 
   1591     for (mode = modes; mode; mode = mode->next)
   1592         nmode++;
   1593 
   1594     if (nmode) {
   1595         rrmodes = xallocarray(nmode, sizeof(RRModePtr));
   1596 
   1597         if (!rrmodes)
   1598             return FALSE;
   1599         nmode = 0;
   1600 
   1601         for (pref = 1; pref >= 0; pref--) {
   1602             for (mode = modes; mode; mode = mode->next) {
   1603                 if ((pref != 0) == ((mode->type & M_T_PREFERRED) != 0)) {
   1604                     xRRModeInfo modeInfo;
   1605                     RRModePtr rrmode;
   1606 
   1607                     modeInfo.nameLength = strlen(mode->name);
   1608                     modeInfo.width = mode->HDisplay;
   1609                     modeInfo.dotClock = mode->Clock * 1000;
   1610                     modeInfo.hSyncStart = mode->HSyncStart;
   1611                     modeInfo.hSyncEnd = mode->HSyncEnd;
   1612                     modeInfo.hTotal = mode->HTotal;
   1613                     modeInfo.hSkew = mode->HSkew;
   1614 
   1615                     modeInfo.height = mode->VDisplay;
   1616                     modeInfo.vSyncStart = mode->VSyncStart;
   1617                     modeInfo.vSyncEnd = mode->VSyncEnd;
   1618                     modeInfo.vTotal = mode->VTotal;
   1619                     modeInfo.modeFlags = mode->Flags;
   1620 
   1621                     rrmode = RRModeGet(&modeInfo, mode->name);
   1622                     if (rrmode) {
   1623                         rrmodes[nmode++] = rrmode;
   1624                         npreferred += pref;
   1625                     }
   1626                 }
   1627             }
   1628         }
   1629     }
   1630 
   1631     ret = RROutputSetModes(randr_output, rrmodes, nmode, npreferred);
   1632     free(rrmodes);
   1633     return ret;
   1634 }
   1635 
   1636 /*
   1637  * Mirror the current mode configuration to RandR
   1638  */
   1639 static Bool
   1640 xf86RandR12SetInfo12(ScreenPtr pScreen)
   1641 {
   1642     ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
   1643     xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
   1644     RROutputPtr *clones;
   1645     RRCrtcPtr *crtcs;
   1646     int ncrtc;
   1647     int o, c, l;
   1648     int nclone;
   1649 
   1650     clones = xallocarray(config->num_output, sizeof(RROutputPtr));
   1651     crtcs = xallocarray(config->num_crtc, sizeof(RRCrtcPtr));
   1652     for (o = 0; o < config->num_output; o++) {
   1653         xf86OutputPtr output = config->output[o];
   1654 
   1655         ncrtc = 0;
   1656         for (c = 0; c < config->num_crtc; c++)
   1657             if (output->possible_crtcs & (1 << c))
   1658                 crtcs[ncrtc++] = config->crtc[c]->randr_crtc;
   1659 
   1660         if (!RROutputSetCrtcs(output->randr_output, crtcs, ncrtc)) {
   1661             free(crtcs);
   1662             free(clones);
   1663             return FALSE;
   1664         }
   1665 
   1666         RROutputSetPhysicalSize(output->randr_output,
   1667                                 output->mm_width, output->mm_height);
   1668         xf86RROutputSetModes(output->randr_output, output->probed_modes);
   1669 
   1670         switch (output->status) {
   1671         case XF86OutputStatusConnected:
   1672             RROutputSetConnection(output->randr_output, RR_Connected);
   1673             break;
   1674         case XF86OutputStatusDisconnected:
   1675 	    if (xf86OutputForceEnabled(output))
   1676                 RROutputSetConnection(output->randr_output, RR_Connected);
   1677 	    else
   1678                 RROutputSetConnection(output->randr_output, RR_Disconnected);
   1679             break;
   1680         case XF86OutputStatusUnknown:
   1681             RROutputSetConnection(output->randr_output, RR_UnknownConnection);
   1682             break;
   1683         }
   1684 
   1685         RROutputSetSubpixelOrder(output->randr_output, output->subpixel_order);
   1686 
   1687         /*
   1688          * Valid clones
   1689          */
   1690         nclone = 0;
   1691         for (l = 0; l < config->num_output; l++) {
   1692             xf86OutputPtr clone = config->output[l];
   1693 
   1694             if (l != o && (output->possible_clones & (1 << l)))
   1695                 clones[nclone++] = clone->randr_output;
   1696         }
   1697         if (!RROutputSetClones(output->randr_output, clones, nclone)) {
   1698             free(crtcs);
   1699             free(clones);
   1700             return FALSE;
   1701         }
   1702     }
   1703     free(crtcs);
   1704     free(clones);
   1705     return TRUE;
   1706 }
   1707 
   1708 /*
   1709  * Query the hardware for the current state, then mirror
   1710  * that to RandR
   1711  */
   1712 static Bool
   1713 xf86RandR12GetInfo12(ScreenPtr pScreen, Rotation * rotations)
   1714 {
   1715     ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
   1716 
   1717     if (!pScrn->vtSema)
   1718         return TRUE;
   1719     xf86ProbeOutputModes(pScrn, 0, 0);
   1720     xf86SetScrnInfoModes(pScrn);
   1721     return xf86RandR12SetInfo12(pScreen);
   1722 }
   1723 
   1724 static Bool
   1725 xf86RandR12CreateObjects12(ScreenPtr pScreen)
   1726 {
   1727     ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
   1728     xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
   1729     int c;
   1730     int o;
   1731 
   1732     if (!RRInit())
   1733         return FALSE;
   1734 
   1735     /*
   1736      * Configure crtcs
   1737      */
   1738     for (c = 0; c < config->num_crtc; c++) {
   1739         xf86CrtcPtr crtc = config->crtc[c];
   1740 
   1741         crtc->randr_crtc = RRCrtcCreate(pScreen, crtc);
   1742     }
   1743     /*
   1744      * Configure outputs
   1745      */
   1746     for (o = 0; o < config->num_output; o++) {
   1747         xf86OutputPtr output = config->output[o];
   1748 
   1749         output->randr_output = RROutputCreate(pScreen, output->name,
   1750                                               strlen(output->name), output);
   1751 
   1752         if (output->funcs->create_resources != NULL)
   1753             output->funcs->create_resources(output);
   1754         RRPostPendingProperties(output->randr_output);
   1755     }
   1756 
   1757     if (config->name) {
   1758         config->randr_provider = RRProviderCreate(pScreen, config->name,
   1759                                                   strlen(config->name));
   1760 
   1761         RRProviderSetCapabilities(config->randr_provider, pScrn->capabilities);
   1762     }
   1763 
   1764     return TRUE;
   1765 }
   1766 
   1767 static void
   1768 xf86RandR12CreateMonitors(ScreenPtr pScreen)
   1769 {
   1770     ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
   1771     xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
   1772     int o, ot;
   1773     int ht, vt;
   1774     int ret;
   1775     char buf[25];
   1776 
   1777     for (o = 0; o < config->num_output; o++) {
   1778         xf86OutputPtr output = config->output[o];
   1779         struct xf86CrtcTileInfo *tile_info = &output->tile_info, *this_tile;
   1780         RRMonitorPtr monitor;
   1781         int output_num, num_outputs;
   1782         if (!tile_info->group_id)
   1783             continue;
   1784 
   1785         if (tile_info->tile_h_loc ||
   1786             tile_info->tile_v_loc)
   1787             continue;
   1788 
   1789         num_outputs = tile_info->num_h_tile * tile_info->num_v_tile;
   1790 
   1791         monitor = RRMonitorAlloc(num_outputs);
   1792         if (!monitor)
   1793             return;
   1794         monitor->pScreen = pScreen;
   1795         snprintf(buf, 25, "Auto-Monitor-%d", tile_info->group_id);
   1796         monitor->name = MakeAtom(buf, strlen(buf), TRUE);
   1797         monitor->primary = 0;
   1798         monitor->automatic = TRUE;
   1799         memset(&monitor->geometry.box, 0, sizeof(monitor->geometry.box));
   1800 
   1801         output_num = 0;
   1802         for (ht = 0; ht < tile_info->num_h_tile; ht++) {
   1803             for (vt = 0; vt < tile_info->num_v_tile; vt++) {
   1804 
   1805                 for (ot = 0; ot < config->num_output; ot++) {
   1806                     this_tile = &config->output[ot]->tile_info;
   1807 
   1808                     if (this_tile->group_id != tile_info->group_id)
   1809                         continue;
   1810 
   1811                     if (this_tile->tile_h_loc != ht ||
   1812                         this_tile->tile_v_loc != vt)
   1813                         continue;
   1814 
   1815                     monitor->outputs[output_num] = config->output[ot]->randr_output->id;
   1816                     output_num++;
   1817 
   1818                 }
   1819 
   1820             }
   1821         }
   1822 
   1823         ret = RRMonitorAdd(serverClient, pScreen, monitor);
   1824         if (ret) {
   1825             RRMonitorFree(monitor);
   1826             return;
   1827         }
   1828     }
   1829 }
   1830 
   1831 static Bool
   1832 xf86RandR12CreateScreenResources12(ScreenPtr pScreen)
   1833 {
   1834     int c;
   1835     ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
   1836     rrScrPrivPtr rp = rrGetScrPriv(pScreen);
   1837     xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
   1838 
   1839     for (c = 0; c < config->num_crtc; c++)
   1840         xf86RandR12CrtcNotify(config->crtc[c]->randr_crtc);
   1841 
   1842     RRScreenSetSizeRange(pScreen, config->minWidth, config->minHeight,
   1843                          config->maxWidth, config->maxHeight);
   1844 
   1845     xf86RandR12CreateMonitors(pScreen);
   1846 
   1847     if (!pScreen->isGPU) {
   1848         rp->primaryOutput = config->output[0]->randr_output;
   1849         RROutputChanged(rp->primaryOutput, FALSE);
   1850         rp->layoutChanged = TRUE;
   1851     }
   1852 
   1853     return TRUE;
   1854 }
   1855 
   1856 /*
   1857  * Something happened within the screen configuration due
   1858  * to DGA, VidMode or hot key. Tell RandR
   1859  */
   1860 
   1861 void
   1862 xf86RandR12TellChanged(ScreenPtr pScreen)
   1863 {
   1864     ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
   1865     xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
   1866     int c;
   1867 
   1868     xf86RandR12SetInfo12(pScreen);
   1869     for (c = 0; c < config->num_crtc; c++)
   1870         xf86RandR12CrtcNotify(config->crtc[c]->randr_crtc);
   1871 
   1872     RRTellChanged(pScreen);
   1873 }
   1874 
   1875 static void
   1876 xf86RandR12PointerMoved(ScrnInfoPtr pScrn, int x, int y)
   1877 {
   1878     ScreenPtr pScreen = xf86ScrnToScreen(pScrn);
   1879     xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
   1880     XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
   1881     int c;
   1882 
   1883     randrp->pointerX = x;
   1884     randrp->pointerY = y;
   1885     for (c = 0; c < config->num_crtc; c++)
   1886         xf86RandR13Pan(config->crtc[c], x, y);
   1887 }
   1888 
   1889 static Bool
   1890 xf86RandR13GetPanning(ScreenPtr pScreen,
   1891                       RRCrtcPtr randr_crtc,
   1892                       BoxPtr totalArea, BoxPtr trackingArea, INT16 *border)
   1893 {
   1894     xf86CrtcPtr crtc = randr_crtc->devPrivate;
   1895 
   1896     if (crtc->version < 2)
   1897         return FALSE;
   1898     if (totalArea)
   1899         memcpy(totalArea, &crtc->panningTotalArea, sizeof(BoxRec));
   1900     if (trackingArea)
   1901         memcpy(trackingArea, &crtc->panningTrackingArea, sizeof(BoxRec));
   1902     if (border)
   1903         memcpy(border, crtc->panningBorder, 4 * sizeof(INT16));
   1904 
   1905     return TRUE;
   1906 }
   1907 
   1908 static Bool
   1909 xf86RandR13SetPanning(ScreenPtr pScreen,
   1910                       RRCrtcPtr randr_crtc,
   1911                       BoxPtr totalArea, BoxPtr trackingArea, INT16 *border)
   1912 {
   1913     XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
   1914     xf86CrtcPtr crtc = randr_crtc->devPrivate;
   1915     BoxRec oldTotalArea;
   1916     BoxRec oldTrackingArea;
   1917     INT16 oldBorder[4];
   1918     Bool oldPanning = randrp->panning;
   1919 
   1920     if (crtc->version < 2)
   1921         return FALSE;
   1922 
   1923     memcpy(&oldTotalArea, &crtc->panningTotalArea, sizeof(BoxRec));
   1924     memcpy(&oldTrackingArea, &crtc->panningTrackingArea, sizeof(BoxRec));
   1925     memcpy(oldBorder, crtc->panningBorder, 4 * sizeof(INT16));
   1926 
   1927     if (totalArea)
   1928         memcpy(&crtc->panningTotalArea, totalArea, sizeof(BoxRec));
   1929     if (trackingArea)
   1930         memcpy(&crtc->panningTrackingArea, trackingArea, sizeof(BoxRec));
   1931     if (border)
   1932         memcpy(crtc->panningBorder, border, 4 * sizeof(INT16));
   1933 
   1934     if (xf86RandR13VerifyPanningArea(crtc, pScreen->width, pScreen->height)) {
   1935         xf86RandR13Pan(crtc, randrp->pointerX, randrp->pointerY);
   1936         randrp->panning = PANNING_ENABLED (crtc);
   1937         return TRUE;
   1938     }
   1939     else {
   1940         /* Restore old settings */
   1941         memcpy(&crtc->panningTotalArea, &oldTotalArea, sizeof(BoxRec));
   1942         memcpy(&crtc->panningTrackingArea, &oldTrackingArea, sizeof(BoxRec));
   1943         memcpy(crtc->panningBorder, oldBorder, 4 * sizeof(INT16));
   1944         randrp->panning = oldPanning;
   1945         return FALSE;
   1946     }
   1947 }
   1948 
   1949 /*
   1950  * Compatibility with colormaps and XF86VidMode's gamma
   1951  */
   1952 void
   1953 xf86RandR12LoadPalette(ScrnInfoPtr pScrn, int numColors, int *indices,
   1954                        LOCO *colors, VisualPtr pVisual)
   1955 {
   1956     ScreenPtr pScreen = pScrn->pScreen;
   1957     xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
   1958     int reds, greens, blues, index, palette_size;
   1959     int c, i;
   1960 
   1961     if (pVisual->class == TrueColor || pVisual->class == DirectColor) {
   1962         reds = (pVisual->redMask >> pVisual->offsetRed) + 1;
   1963         greens = (pVisual->greenMask >> pVisual->offsetGreen) + 1;
   1964         blues = (pVisual->blueMask >> pVisual->offsetBlue) + 1;
   1965     } else {
   1966         reds = greens = blues = pVisual->ColormapEntries;
   1967     }
   1968 
   1969     palette_size = max(reds, max(greens, blues));
   1970 
   1971     if (dixPrivateKeyRegistered(rrPrivKey)) {
   1972         XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
   1973 
   1974         if (randrp->palette_size != palette_size) {
   1975             randrp->palette = reallocarray(randrp->palette, palette_size,
   1976                                            sizeof(colors[0]));
   1977             if (!randrp->palette) {
   1978                 randrp->palette_size = 0;
   1979                 return;
   1980             }
   1981 
   1982             randrp->palette_size = palette_size;
   1983         }
   1984         randrp->palette_red_size = reds;
   1985         randrp->palette_green_size = greens;
   1986         randrp->palette_blue_size = blues;
   1987 
   1988         for (i = 0; i < numColors; i++) {
   1989             index = indices[i];
   1990 
   1991             if (index < reds)
   1992                 randrp->palette[index].red = colors[index].red;
   1993             if (index < greens)
   1994                 randrp->palette[index].green = colors[index].green;
   1995             if (index < blues)
   1996                 randrp->palette[index].blue = colors[index].blue;
   1997         }
   1998     }
   1999 
   2000     for (c = 0; c < config->num_crtc; c++) {
   2001         xf86CrtcPtr crtc = config->crtc[c];
   2002         RRCrtcPtr randr_crtc = crtc->randr_crtc;
   2003 
   2004         if (randr_crtc) {
   2005             xf86RandR12CrtcComputeGamma(crtc, colors, reds, greens, blues,
   2006                                         randr_crtc->gammaRed,
   2007                                         randr_crtc->gammaGreen,
   2008                                         randr_crtc->gammaBlue,
   2009                                         randr_crtc->gammaSize);
   2010         } else {
   2011             xf86RandR12CrtcComputeGamma(crtc, colors, reds, greens, blues,
   2012                                         NULL, NULL, NULL,
   2013                                         xf86GetGammaRampSize(pScreen));
   2014         }
   2015         xf86RandR12CrtcReloadGamma(crtc);
   2016     }
   2017 }
   2018 
   2019 /*
   2020  * Compatibility pScrn->ChangeGamma provider for ddx drivers which do not call
   2021  * xf86HandleColormaps(). Note such drivers really should be fixed to call
   2022  * xf86HandleColormaps() as this clobbers the per-CRTC gamma ramp of the CRTC
   2023  * assigned to the RandR compatibility output.
   2024  */
   2025 static int
   2026 xf86RandR12ChangeGamma(ScrnInfoPtr pScrn, Gamma gamma)
   2027 {
   2028     RRCrtcPtr randr_crtc = xf86CompatRRCrtc(pScrn);
   2029     int size;
   2030 
   2031     if (!randr_crtc || pScrn->LoadPalette == xf86RandR12LoadPalette)
   2032         return Success;
   2033 
   2034     size = max(0, randr_crtc->gammaSize);
   2035     if (!size)
   2036         return Success;
   2037 
   2038     init_one_component(randr_crtc->gammaRed, size, gamma.red);
   2039     init_one_component(randr_crtc->gammaGreen, size, gamma.green);
   2040     init_one_component(randr_crtc->gammaBlue, size, gamma.blue);
   2041     xf86RandR12CrtcSetGamma(xf86ScrnToScreen(pScrn), randr_crtc);
   2042 
   2043     pScrn->gamma = gamma;
   2044 
   2045     return Success;
   2046 }
   2047 
   2048 static Bool
   2049 xf86RandR12EnterVT(ScrnInfoPtr pScrn)
   2050 {
   2051     ScreenPtr pScreen = xf86ScrnToScreen(pScrn);
   2052     XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
   2053     rrScrPrivPtr rp = rrGetScrPriv(pScreen);
   2054     Bool ret;
   2055     int i;
   2056 
   2057     if (randrp->orig_EnterVT) {
   2058         pScrn->EnterVT = randrp->orig_EnterVT;
   2059         ret = pScrn->EnterVT(pScrn);
   2060         randrp->orig_EnterVT = pScrn->EnterVT;
   2061         pScrn->EnterVT = xf86RandR12EnterVT;
   2062         if (!ret)
   2063             return FALSE;
   2064     }
   2065 
   2066     /* reload gamma */
   2067     for (i = 0; i < rp->numCrtcs; i++)
   2068         xf86RandR12CrtcReloadGamma(rp->crtcs[i]->devPrivate);
   2069 
   2070     return RRGetInfo(pScreen, TRUE);    /* force a re-probe of outputs and notify clients about changes */
   2071 }
   2072 
   2073 static void
   2074 xf86DetachOutputGPU(ScreenPtr pScreen)
   2075 {
   2076     rrScrPrivPtr rp = rrGetScrPriv(pScreen);
   2077     int i;
   2078 
   2079     /* make sure there are no attached shared scanout pixmaps first */
   2080     for (i = 0; i < rp->numCrtcs; i++)
   2081         RRCrtcDetachScanoutPixmap(rp->crtcs[i]);
   2082 
   2083     DetachOutputGPU(pScreen);
   2084 }
   2085 
   2086 static Bool
   2087 xf86RandR14ProviderSetOutputSource(ScreenPtr pScreen,
   2088                                    RRProviderPtr provider,
   2089                                    RRProviderPtr source_provider)
   2090 {
   2091     if (!source_provider) {
   2092         if (provider->output_source) {
   2093             xf86DetachOutputGPU(pScreen);
   2094         }
   2095         provider->output_source = NULL;
   2096         return TRUE;
   2097     }
   2098 
   2099     if (provider->output_source == source_provider)
   2100         return TRUE;
   2101 
   2102     SetRootClip(source_provider->pScreen, ROOT_CLIP_NONE);
   2103 
   2104     AttachOutputGPU(source_provider->pScreen, pScreen);
   2105 
   2106     provider->output_source = source_provider;
   2107     SetRootClip(source_provider->pScreen, ROOT_CLIP_FULL);
   2108     return TRUE;
   2109 }
   2110 
   2111 static Bool
   2112 xf86RandR14ProviderSetOffloadSink(ScreenPtr pScreen,
   2113                                   RRProviderPtr provider,
   2114                                   RRProviderPtr sink_provider)
   2115 {
   2116     if (!sink_provider) {
   2117         if (provider->offload_sink) {
   2118             xf86DetachOutputGPU(pScreen);
   2119         }
   2120 
   2121         provider->offload_sink = NULL;
   2122         return TRUE;
   2123     }
   2124 
   2125     if (provider->offload_sink == sink_provider)
   2126         return TRUE;
   2127 
   2128     AttachOffloadGPU(sink_provider->pScreen, pScreen);
   2129 
   2130     provider->offload_sink = sink_provider;
   2131     return TRUE;
   2132 }
   2133 
   2134 static Bool
   2135 xf86RandR14ProviderSetProperty(ScreenPtr pScreen,
   2136                              RRProviderPtr randr_provider,
   2137                              Atom property, RRPropertyValuePtr value)
   2138 {
   2139     ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
   2140     xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
   2141 
   2142     /* If we don't have any property handler, then we don't care what the
   2143      * user is setting properties to.
   2144      */
   2145     if (config->provider_funcs->set_property == NULL)
   2146         return TRUE;
   2147 
   2148     /*
   2149      * This function gets called even when vtSema is FALSE, as
   2150      * drivers will need to remember the correct value to apply
   2151      * when the VT switch occurs
   2152      */
   2153     return config->provider_funcs->set_property(pScrn, property, value);
   2154 }
   2155 
   2156 static Bool
   2157 xf86RandR14ProviderGetProperty(ScreenPtr pScreen,
   2158                                RRProviderPtr randr_provider, Atom property)
   2159 {
   2160     ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
   2161     xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
   2162 
   2163     if (config->provider_funcs->get_property == NULL)
   2164         return TRUE;
   2165 
   2166     /* Should be safe even w/o vtSema */
   2167     return config->provider_funcs->get_property(pScrn, property);
   2168 }
   2169 
   2170 static Bool
   2171 xf86CrtcSetScanoutPixmap(RRCrtcPtr randr_crtc, PixmapPtr pixmap)
   2172 {
   2173     xf86CrtcPtr crtc = randr_crtc->devPrivate;
   2174     if (!crtc->funcs->set_scanout_pixmap)
   2175         return FALSE;
   2176     return crtc->funcs->set_scanout_pixmap(crtc, pixmap);
   2177 }
   2178 
   2179 static void
   2180 xf86RandR13ConstrainCursorHarder(DeviceIntPtr dev, ScreenPtr screen, int mode, int *x, int *y)
   2181 {
   2182     XF86RandRInfoPtr randrp = XF86RANDRINFO(screen);
   2183 
   2184     if (randrp->panning)
   2185         return;
   2186 
   2187     if (randrp->orig_ConstrainCursorHarder) {
   2188         screen->ConstrainCursorHarder = randrp->orig_ConstrainCursorHarder;
   2189         screen->ConstrainCursorHarder(dev, screen, mode, x, y);
   2190         screen->ConstrainCursorHarder = xf86RandR13ConstrainCursorHarder;
   2191     }
   2192 }
   2193 
   2194 static void
   2195 xf86RandR14ProviderDestroy(ScreenPtr screen, RRProviderPtr provider)
   2196 {
   2197     ScrnInfoPtr scrn = xf86ScreenToScrn(screen);
   2198     xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(scrn);
   2199 
   2200     if (config->randr_provider == provider) {
   2201         if (config->randr_provider->offload_sink) {
   2202             DetachOffloadGPU(screen);
   2203             config->randr_provider->offload_sink = NULL;
   2204             RRSetChanged(screen);
   2205         }
   2206         if (config->randr_provider->output_source) {
   2207             xf86DetachOutputGPU(screen);
   2208             config->randr_provider->output_source = NULL;
   2209             RRSetChanged(screen);
   2210         }
   2211         if (screen->current_primary)
   2212             DetachUnboundGPU(screen);
   2213     }
   2214     config->randr_provider = NULL;
   2215 }
   2216 
   2217 static void
   2218 xf86CrtcCheckReset(xf86CrtcPtr crtc) {
   2219     if (xf86CrtcInUse(crtc)) {
   2220         RRTransformPtr transform;
   2221 
   2222         if (crtc->desiredTransformPresent)
   2223             transform = &crtc->desiredTransform;
   2224         else
   2225             transform = NULL;
   2226         xf86CrtcSetModeTransform(crtc, &crtc->desiredMode,
   2227                                  crtc->desiredRotation, transform,
   2228                                  crtc->desiredX, crtc->desiredY);
   2229         xf86_crtc_show_cursor(crtc);
   2230     }
   2231 }
   2232 
   2233 void
   2234 xf86CrtcLeaseTerminated(RRLeasePtr lease)
   2235 {
   2236     int c;
   2237     int o;
   2238     ScrnInfoPtr scrn = xf86ScreenToScrn(lease->screen);
   2239 
   2240     RRLeaseTerminated(lease);
   2241     /*
   2242      * Force a full mode set on any crtc in the expiring lease which
   2243      * was running before the lease started
   2244      */
   2245     for (c = 0; c < lease->numCrtcs; c++) {
   2246         RRCrtcPtr randr_crtc = lease->crtcs[c];
   2247         xf86CrtcPtr crtc = randr_crtc->devPrivate;
   2248 
   2249         xf86CrtcCheckReset(crtc);
   2250     }
   2251 
   2252     /* Check to see if any leased output is using a crtc which
   2253      * was not reset in the above loop
   2254      */
   2255     for (o = 0; o < lease->numOutputs; o++) {
   2256         RROutputPtr randr_output = lease->outputs[o];
   2257         xf86OutputPtr output = randr_output->devPrivate;
   2258         xf86CrtcPtr crtc = output->crtc;
   2259 
   2260         if (crtc) {
   2261             for (c = 0; c < lease->numCrtcs; c++)
   2262                 if (lease->crtcs[c] == crtc->randr_crtc)
   2263                     break;
   2264             if (c != lease->numCrtcs)
   2265                 continue;
   2266             xf86CrtcCheckReset(crtc);
   2267         }
   2268     }
   2269 
   2270     /* Power off if necessary */
   2271     xf86DisableUnusedFunctions(scrn);
   2272 
   2273     RRLeaseFree(lease);
   2274 }
   2275 
   2276 static Bool
   2277 xf86CrtcSoleOutput(xf86CrtcPtr crtc, xf86OutputPtr output)
   2278 {
   2279     ScrnInfoPtr scrn = crtc->scrn;
   2280     xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(scrn);
   2281     int o;
   2282 
   2283     for (o = 0; o < config->num_output; o++) {
   2284         xf86OutputPtr other = config->output[o];
   2285 
   2286         if (other != output && other->crtc == crtc)
   2287             return FALSE;
   2288     }
   2289     return TRUE;
   2290 }
   2291 
   2292 void
   2293 xf86CrtcLeaseStarted(RRLeasePtr lease)
   2294 {
   2295     int c;
   2296     int o;
   2297 
   2298     for (c = 0; c < lease->numCrtcs; c++) {
   2299         RRCrtcPtr randr_crtc = lease->crtcs[c];
   2300         xf86CrtcPtr crtc = randr_crtc->devPrivate;
   2301 
   2302         if (crtc->enabled) {
   2303             /*
   2304              * Leave the primary plane enabled so we can
   2305              * flip without blanking the screen. Hide
   2306              * the cursor so it doesn't remain on the screen
   2307              * while the lease is active
   2308              */
   2309             xf86_crtc_hide_cursor(crtc);
   2310             crtc->enabled = FALSE;
   2311         }
   2312     }
   2313     for (o = 0; o < lease->numOutputs; o++) {
   2314         RROutputPtr randr_output = lease->outputs[o];
   2315         xf86OutputPtr output = randr_output->devPrivate;
   2316         xf86CrtcPtr crtc = output->crtc;
   2317 
   2318         if (crtc)
   2319             if (xf86CrtcSoleOutput(crtc, output))
   2320                 crtc->enabled = FALSE;
   2321     }
   2322 }
   2323 
   2324 static int
   2325 xf86RandR16CreateLease(ScreenPtr screen, RRLeasePtr randr_lease, int *fd)
   2326 {
   2327     ScrnInfoPtr scrn = xf86ScreenToScrn(screen);
   2328     xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(scrn);
   2329 
   2330     if (config->funcs->create_lease)
   2331         return config->funcs->create_lease(randr_lease, fd);
   2332     else
   2333         return BadMatch;
   2334 }
   2335 
   2336 
   2337 static void
   2338 xf86RandR16TerminateLease(ScreenPtr screen, RRLeasePtr randr_lease)
   2339 {
   2340     ScrnInfoPtr scrn = xf86ScreenToScrn(screen);
   2341     xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(scrn);
   2342 
   2343     if (config->funcs->terminate_lease)
   2344         config->funcs->terminate_lease(randr_lease);
   2345 }
   2346 
   2347 static Bool
   2348 xf86RandR12Init12(ScreenPtr pScreen)
   2349 {
   2350     ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
   2351     rrScrPrivPtr rp = rrGetScrPriv(pScreen);
   2352     XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
   2353 
   2354     rp->rrGetInfo = xf86RandR12GetInfo12;
   2355     rp->rrScreenSetSize = xf86RandR12ScreenSetSize;
   2356     rp->rrCrtcSet = xf86RandR12CrtcSet;
   2357     rp->rrCrtcSetGamma = xf86RandR12CrtcSetGamma;
   2358     rp->rrOutputSetProperty = xf86RandR12OutputSetProperty;
   2359     rp->rrOutputValidateMode = xf86RandR12OutputValidateMode;
   2360 #if RANDR_13_INTERFACE
   2361     rp->rrOutputGetProperty = xf86RandR13OutputGetProperty;
   2362     rp->rrGetPanning = xf86RandR13GetPanning;
   2363     rp->rrSetPanning = xf86RandR13SetPanning;
   2364 #endif
   2365     rp->rrModeDestroy = xf86RandR12ModeDestroy;
   2366     rp->rrSetConfig = NULL;
   2367 
   2368     rp->rrProviderSetOutputSource = xf86RandR14ProviderSetOutputSource;
   2369     rp->rrProviderSetOffloadSink = xf86RandR14ProviderSetOffloadSink;
   2370 
   2371     rp->rrProviderSetProperty = xf86RandR14ProviderSetProperty;
   2372     rp->rrProviderGetProperty = xf86RandR14ProviderGetProperty;
   2373     rp->rrCrtcSetScanoutPixmap = xf86CrtcSetScanoutPixmap;
   2374     rp->rrProviderDestroy = xf86RandR14ProviderDestroy;
   2375 
   2376     rp->rrCreateLease = xf86RandR16CreateLease;
   2377     rp->rrTerminateLease = xf86RandR16TerminateLease;
   2378 
   2379     pScrn->PointerMoved = xf86RandR12PointerMoved;
   2380     pScrn->ChangeGamma = xf86RandR12ChangeGamma;
   2381 
   2382     randrp->orig_EnterVT = pScrn->EnterVT;
   2383     pScrn->EnterVT = xf86RandR12EnterVT;
   2384 
   2385     randrp->panning = FALSE;
   2386     randrp->orig_ConstrainCursorHarder = pScreen->ConstrainCursorHarder;
   2387     pScreen->ConstrainCursorHarder = xf86RandR13ConstrainCursorHarder;
   2388 
   2389     if (!xf86RandR12CreateObjects12(pScreen))
   2390         return FALSE;
   2391 
   2392     /*
   2393      * Configure output modes
   2394      */
   2395     if (!xf86RandR12SetInfo12(pScreen))
   2396         return FALSE;
   2397 
   2398     if (!xf86RandR12InitGamma(pScrn, 256))
   2399         return FALSE;
   2400 
   2401     return TRUE;
   2402 }
   2403 
   2404 #endif
   2405 
   2406 Bool
   2407 xf86RandR12PreInit(ScrnInfoPtr pScrn)
   2408 {
   2409     return TRUE;
   2410 }