xserver

xserver with xephyr scale patch
git clone https://git.neptards.moe/u3shit/xserver.git
Log | Files | Refs | README | LICENSE

xf86Mode.c (73386B)


      1 /*
      2  * Copyright (c) 1997-2003 by The XFree86 Project, Inc.
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice shall be included in
     12  * all copies or substantial portions of the Software.
     13  *
     14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     20  * OTHER DEALINGS IN THE SOFTWARE.
     21  *
     22  * Except as contained in this notice, the name of the copyright holder(s)
     23  * and author(s) shall not be used in advertising or otherwise to promote
     24  * the sale, use or other dealings in this Software without prior written
     25  * authorization from the copyright holder(s) and author(s).
     26  */
     27 
     28 /*
     29  * LCM() and scanLineWidth() are:
     30  *
     31  * Copyright 1997 through 2004 by Marc Aurele La France (TSI @ UQV), tsi@xfree86.org
     32  *
     33  * Permission to use, copy, modify, distribute, and sell this software and its
     34  * documentation for any purpose is hereby granted without fee, provided that
     35  * the above copyright notice appear in all copies and that both that copyright
     36  * notice and this permission notice appear in supporting documentation, and
     37  * that the name of Marc Aurele La France not be used in advertising or
     38  * publicity pertaining to distribution of the software without specific,
     39  * written prior permission.  Marc Aurele La France makes no representations
     40  * about the suitability of this software for any purpose.  It is provided
     41  * "as-is" without express or implied warranty.
     42  *
     43  * MARC AURELE LA FRANCE DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
     44  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.  IN NO
     45  * EVENT SHALL MARC AURELE LA FRANCE BE LIABLE FOR ANY SPECIAL, INDIRECT OR
     46  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
     47  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
     48  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
     49  * PERFORMANCE OF THIS SOFTWARE.
     50  *
     51  * Copyright 1990,91,92,93 by Thomas Roell, Germany.
     52  * Copyright 1991,92,93    by SGCS (Snitily Graphics Consulting Services), USA.
     53  *
     54  * Permission to use, copy, modify, distribute, and sell this software
     55  * and its documentation for any purpose is hereby granted without fee,
     56  * provided that the above copyright notice appear in all copies and
     57  * that both that copyright notice and this  permission notice appear
     58  * in supporting documentation, and that the name of Thomas Roell nor
     59  * SGCS be used in advertising or publicity pertaining to distribution
     60  * of the software without specific, written prior permission.
     61  * Thomas Roell nor SGCS makes no representations about the suitability
     62  * of this software for any purpose. It is provided "as is" without
     63  * express or implied warranty.
     64  *
     65  * THOMAS ROELL AND SGCS DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
     66  * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
     67  * FITNESS, IN NO EVENT SHALL THOMAS ROELL OR SGCS BE LIABLE FOR ANY
     68  * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
     69  * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
     70  * CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
     71  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     72  */
     73 
     74 /*
     75  * Authors: Dirk Hohndel <hohndel@XFree86.Org>
     76  *          David Dawes <dawes@XFree86.Org>
     77  *          Marc La France <tsi@XFree86.Org>
     78  *          ... and others
     79  *
     80  * This file includes helper functions for mode related things.
     81  */
     82 
     83 #ifdef HAVE_XORG_CONFIG_H
     84 #include <xorg-config.h>
     85 #endif
     86 
     87 #include <X11/X.h>
     88 #include "xf86Modes.h"
     89 #include "xf86Crtc.h"
     90 #include "os.h"
     91 #include "servermd.h"
     92 #include "globals.h"
     93 #include "xf86.h"
     94 #include "xf86Priv.h"
     95 #include "edid.h"
     96 
     97 static void
     98 printModeRejectMessage(int index, DisplayModePtr p, int status)
     99 {
    100     const char *type;
    101 
    102     if (p->type & M_T_BUILTIN)
    103         type = "built-in ";
    104     else if (p->type & M_T_DEFAULT)
    105         type = "default ";
    106     else if (p->type & M_T_DRIVER)
    107         type = "driver ";
    108     else
    109         type = "";
    110 
    111     xf86DrvMsg(index, X_INFO, "Not using %smode \"%s\" (%s)\n", type, p->name,
    112                xf86ModeStatusToString(status));
    113 }
    114 
    115 /*
    116  * Find closest clock to given frequency (in kHz).  This assumes the
    117  * number of clocks is greater than zero.
    118  */
    119 static int
    120 xf86GetNearestClock(ScrnInfoPtr scrp, int freq, Bool allowDiv2,
    121                     int DivFactor, int MulFactor, int *divider)
    122 {
    123     int nearestClock = 0, nearestDiv = 1;
    124     int minimumGap = abs(freq - scrp->clock[0]);
    125     int i, j, k, gap;
    126 
    127     if (allowDiv2)
    128         k = 2;
    129     else
    130         k = 1;
    131 
    132     /* Must set this here in case the best match is scrp->clock[0] */
    133     if (divider != NULL)
    134         *divider = 0;
    135 
    136     for (i = 0; i < scrp->numClocks; i++) {
    137         for (j = 1; j <= k; j++) {
    138             gap = abs((freq * j) - ((scrp->clock[i] * DivFactor) / MulFactor));
    139             if ((gap < minimumGap) || ((gap == minimumGap) && (j < nearestDiv))) {
    140                 minimumGap = gap;
    141                 nearestClock = i;
    142                 nearestDiv = j;
    143                 if (divider != NULL)
    144                     *divider = (j - 1) * V_CLKDIV2;
    145             }
    146         }
    147     }
    148     return nearestClock;
    149 }
    150 
    151 /*
    152  * xf86ModeStatusToString
    153  *
    154  * Convert a ModeStatus value to a printable message
    155  */
    156 
    157 const char *
    158 xf86ModeStatusToString(ModeStatus status)
    159 {
    160     switch (status) {
    161     case MODE_OK:
    162         return "Mode OK";
    163     case MODE_HSYNC:
    164         return "hsync out of range";
    165     case MODE_VSYNC:
    166         return "vrefresh out of range";
    167     case MODE_H_ILLEGAL:
    168         return "illegal horizontal timings";
    169     case MODE_V_ILLEGAL:
    170         return "illegal vertical timings";
    171     case MODE_BAD_WIDTH:
    172         return "width requires unsupported line pitch";
    173     case MODE_NOMODE:
    174         return "no mode of this name";
    175     case MODE_NO_INTERLACE:
    176         return "interlace mode not supported";
    177     case MODE_NO_DBLESCAN:
    178         return "doublescan mode not supported";
    179     case MODE_NO_VSCAN:
    180         return "multiscan mode not supported";
    181     case MODE_MEM:
    182         return "insufficient memory for mode";
    183     case MODE_VIRTUAL_X:
    184         return "width too large for virtual size";
    185     case MODE_VIRTUAL_Y:
    186         return "height too large for virtual size";
    187     case MODE_MEM_VIRT:
    188         return "insufficient memory given virtual size";
    189     case MODE_NOCLOCK:
    190         return "no clock available for mode";
    191     case MODE_CLOCK_HIGH:
    192         return "mode clock too high";
    193     case MODE_CLOCK_LOW:
    194         return "mode clock too low";
    195     case MODE_CLOCK_RANGE:
    196         return "bad mode clock/interlace/doublescan";
    197     case MODE_BAD_HVALUE:
    198         return "horizontal timing out of range";
    199     case MODE_BAD_VVALUE:
    200         return "vertical timing out of range";
    201     case MODE_BAD_VSCAN:
    202         return "VScan value out of range";
    203     case MODE_HSYNC_NARROW:
    204         return "horizontal sync too narrow";
    205     case MODE_HSYNC_WIDE:
    206         return "horizontal sync too wide";
    207     case MODE_HBLANK_NARROW:
    208         return "horizontal blanking too narrow";
    209     case MODE_HBLANK_WIDE:
    210         return "horizontal blanking too wide";
    211     case MODE_VSYNC_NARROW:
    212         return "vertical sync too narrow";
    213     case MODE_VSYNC_WIDE:
    214         return "vertical sync too wide";
    215     case MODE_VBLANK_NARROW:
    216         return "vertical blanking too narrow";
    217     case MODE_VBLANK_WIDE:
    218         return "vertical blanking too wide";
    219     case MODE_PANEL:
    220         return "exceeds panel dimensions";
    221     case MODE_INTERLACE_WIDTH:
    222         return "width too large for interlaced mode";
    223     case MODE_ONE_WIDTH:
    224         return "all modes must have the same width";
    225     case MODE_ONE_HEIGHT:
    226         return "all modes must have the same height";
    227     case MODE_ONE_SIZE:
    228         return "all modes must have the same resolution";
    229     case MODE_NO_REDUCED:
    230         return "monitor doesn't support reduced blanking";
    231     case MODE_BANDWIDTH:
    232         return "mode requires too much memory bandwidth";
    233     case MODE_BAD:
    234         return "unknown reason";
    235     case MODE_ERROR:
    236         return "internal error";
    237     default:
    238         return "unknown";
    239     }
    240 }
    241 
    242 /*
    243  * xf86ShowClockRanges() -- Print the clock ranges allowed
    244  * and the clock values scaled by ClockMulFactor and ClockDivFactor
    245  */
    246 void
    247 xf86ShowClockRanges(ScrnInfoPtr scrp, ClockRangePtr clockRanges)
    248 {
    249     ClockRangePtr cp;
    250     int MulFactor = 1;
    251     int DivFactor = 1;
    252     int i, j;
    253     int scaledClock;
    254 
    255     for (cp = clockRanges; cp != NULL; cp = cp->next) {
    256         DivFactor = max(1, cp->ClockDivFactor);
    257         MulFactor = max(1, cp->ClockMulFactor);
    258         if (scrp->progClock) {
    259             if (cp->minClock) {
    260                 if (cp->maxClock) {
    261                     xf86DrvMsg(scrp->scrnIndex, X_INFO,
    262                                "Clock range: %6.2f to %6.2f MHz\n",
    263                                (double) cp->minClock / 1000.0,
    264                                (double) cp->maxClock / 1000.0);
    265                 }
    266                 else {
    267                     xf86DrvMsg(scrp->scrnIndex, X_INFO,
    268                                "Minimum clock: %6.2f MHz\n",
    269                                (double) cp->minClock / 1000.0);
    270                 }
    271             }
    272             else {
    273                 if (cp->maxClock) {
    274                     xf86DrvMsg(scrp->scrnIndex, X_INFO,
    275                                "Maximum clock: %6.2f MHz\n",
    276                                (double) cp->maxClock / 1000.0);
    277                 }
    278             }
    279         }
    280         else if (DivFactor > 1 || MulFactor > 1) {
    281             j = 0;
    282             for (i = 0; i < scrp->numClocks; i++) {
    283                 scaledClock = (scrp->clock[i] * DivFactor) / MulFactor;
    284                 if (scaledClock >= cp->minClock && scaledClock <= cp->maxClock) {
    285                     if ((j % 8) == 0) {
    286                         if (j > 0)
    287                             xf86ErrorF("\n");
    288                         xf86DrvMsg(scrp->scrnIndex, X_INFO, "scaled clocks:");
    289                     }
    290                     xf86ErrorF(" %6.2f", (double) scaledClock / 1000.0);
    291                     j++;
    292                 }
    293             }
    294             xf86ErrorF("\n");
    295         }
    296     }
    297 }
    298 
    299 static Bool
    300 modeInClockRange(ClockRangePtr cp, DisplayModePtr p)
    301 {
    302     return ((p->Clock >= cp->minClock) &&
    303             (p->Clock <= cp->maxClock) &&
    304             (cp->interlaceAllowed || !(p->Flags & V_INTERLACE)) &&
    305             (cp->doubleScanAllowed ||
    306              ((p->VScan <= 1) && !(p->Flags & V_DBLSCAN))));
    307 }
    308 
    309 /*
    310  * xf86FindClockRangeForMode()    [... like the name says ...]
    311  */
    312 static ClockRangePtr
    313 xf86FindClockRangeForMode(ClockRangePtr clockRanges, DisplayModePtr p)
    314 {
    315     ClockRangePtr cp;
    316 
    317     for (cp = clockRanges;; cp = cp->next)
    318         if (!cp || modeInClockRange(cp, p))
    319             return cp;
    320 }
    321 
    322 /*
    323  * xf86HandleBuiltinMode() - handles built-in modes
    324  */
    325 static ModeStatus
    326 xf86HandleBuiltinMode(ScrnInfoPtr scrp,
    327                       DisplayModePtr p,
    328                       DisplayModePtr modep,
    329                       ClockRangePtr clockRanges, Bool allowDiv2)
    330 {
    331     ClockRangePtr cp;
    332     int extraFlags = 0;
    333     int MulFactor = 1;
    334     int DivFactor = 1;
    335     int clockIndex;
    336 
    337     /* Reject previously rejected modes */
    338     if (p->status != MODE_OK)
    339         return p->status;
    340 
    341     /* Reject previously considered modes */
    342     if (p->prev)
    343         return MODE_NOMODE;
    344 
    345     if ((p->type & M_T_CLOCK_C) == M_T_CLOCK_C) {
    346         /* Check clock is in range */
    347         cp = xf86FindClockRangeForMode(clockRanges, p);
    348         if (cp == NULL) {
    349             modep->type = p->type;
    350             p->status = MODE_CLOCK_RANGE;
    351             return MODE_CLOCK_RANGE;
    352         }
    353         DivFactor = cp->ClockDivFactor;
    354         MulFactor = cp->ClockMulFactor;
    355         if (!scrp->progClock) {
    356             clockIndex = xf86GetNearestClock(scrp, p->Clock, allowDiv2,
    357                                              cp->ClockDivFactor,
    358                                              cp->ClockMulFactor, &extraFlags);
    359             modep->Clock = (scrp->clock[clockIndex] * DivFactor)
    360                 / MulFactor;
    361             modep->ClockIndex = clockIndex;
    362             modep->SynthClock = scrp->clock[clockIndex];
    363             if (extraFlags & V_CLKDIV2) {
    364                 modep->Clock /= 2;
    365                 modep->SynthClock /= 2;
    366             }
    367         }
    368         else {
    369             modep->Clock = p->Clock;
    370             modep->ClockIndex = -1;
    371             modep->SynthClock = (modep->Clock * MulFactor)
    372                 / DivFactor;
    373         }
    374         modep->PrivFlags = cp->PrivFlags;
    375     }
    376     else {
    377         if (!scrp->progClock) {
    378             modep->Clock = p->Clock;
    379             modep->ClockIndex = p->ClockIndex;
    380             modep->SynthClock = p->SynthClock;
    381         }
    382         else {
    383             modep->Clock = p->Clock;
    384             modep->ClockIndex = -1;
    385             modep->SynthClock = p->SynthClock;
    386         }
    387         modep->PrivFlags = p->PrivFlags;
    388     }
    389     modep->type = p->type;
    390     modep->HDisplay = p->HDisplay;
    391     modep->HSyncStart = p->HSyncStart;
    392     modep->HSyncEnd = p->HSyncEnd;
    393     modep->HTotal = p->HTotal;
    394     modep->HSkew = p->HSkew;
    395     modep->VDisplay = p->VDisplay;
    396     modep->VSyncStart = p->VSyncStart;
    397     modep->VSyncEnd = p->VSyncEnd;
    398     modep->VTotal = p->VTotal;
    399     modep->VScan = p->VScan;
    400     modep->Flags = p->Flags | extraFlags;
    401     modep->CrtcHDisplay = p->CrtcHDisplay;
    402     modep->CrtcHBlankStart = p->CrtcHBlankStart;
    403     modep->CrtcHSyncStart = p->CrtcHSyncStart;
    404     modep->CrtcHSyncEnd = p->CrtcHSyncEnd;
    405     modep->CrtcHBlankEnd = p->CrtcHBlankEnd;
    406     modep->CrtcHTotal = p->CrtcHTotal;
    407     modep->CrtcHSkew = p->CrtcHSkew;
    408     modep->CrtcVDisplay = p->CrtcVDisplay;
    409     modep->CrtcVBlankStart = p->CrtcVBlankStart;
    410     modep->CrtcVSyncStart = p->CrtcVSyncStart;
    411     modep->CrtcVSyncEnd = p->CrtcVSyncEnd;
    412     modep->CrtcVBlankEnd = p->CrtcVBlankEnd;
    413     modep->CrtcVTotal = p->CrtcVTotal;
    414     modep->CrtcHAdjusted = p->CrtcHAdjusted;
    415     modep->CrtcVAdjusted = p->CrtcVAdjusted;
    416     modep->HSync = p->HSync;
    417     modep->VRefresh = p->VRefresh;
    418     modep->Private = p->Private;
    419     modep->PrivSize = p->PrivSize;
    420 
    421     p->prev = modep;
    422 
    423     return MODE_OK;
    424 }
    425 
    426 /*
    427  * xf86LookupMode
    428  *
    429  * This function returns a mode from the given list which matches the
    430  * given name.  When multiple modes with the same name are available,
    431  * the method of picking the matching mode is determined by the
    432  * strategy selected.
    433  *
    434  * This function takes the following parameters:
    435  *    scrp         ScrnInfoPtr
    436  *    modep        pointer to the returned mode, which must have the name
    437  *                 field filled in.
    438  *    clockRanges  a list of clock ranges.   This is optional when all the
    439  *                 modes are built-in modes.
    440  *    strategy     how to decide which mode to use from multiple modes with
    441  *                 the same name
    442  *
    443  * In addition, the following fields from the ScrnInfoRec are used:
    444  *    modePool     the list of monitor modes compatible with the driver
    445  *    clocks       a list of discrete clocks
    446  *    numClocks    number of discrete clocks
    447  *    progClock    clock is programmable
    448  *
    449  * If a mode was found, its values are filled in to the area pointed to
    450  * by modep,  If a mode was not found the return value indicates the
    451  * reason.
    452  */
    453 
    454 static ModeStatus
    455 xf86LookupMode(ScrnInfoPtr scrp, DisplayModePtr modep,
    456                ClockRangePtr clockRanges, LookupModeFlags strategy)
    457 {
    458     DisplayModePtr p, bestMode = NULL;
    459     ClockRangePtr cp;
    460     int i, k, gap, minimumGap = CLOCK_TOLERANCE + 1;
    461     double refresh, bestRefresh = 0.0;
    462     Bool found = FALSE;
    463     int extraFlags = 0;
    464     int clockIndex = -1;
    465     int MulFactor = 1;
    466     int DivFactor = 1;
    467     int ModePrivFlags = 0;
    468     ModeStatus status = MODE_NOMODE;
    469     Bool allowDiv2 = (strategy & LOOKUP_CLKDIV2) != 0;
    470     int n;
    471 
    472     const int types[] = {
    473         M_T_BUILTIN | M_T_PREFERRED,
    474         M_T_BUILTIN,
    475         M_T_USERDEF | M_T_PREFERRED,
    476         M_T_USERDEF,
    477         M_T_DRIVER | M_T_PREFERRED,
    478         M_T_DRIVER,
    479         0
    480     };
    481     const int ntypes = ARRAY_SIZE(types);
    482 
    483     strategy &= ~(LOOKUP_CLKDIV2 | LOOKUP_OPTIONAL_TOLERANCES);
    484 
    485     /* Some sanity checking */
    486     if (scrp == NULL || scrp->modePool == NULL ||
    487         (!scrp->progClock && scrp->numClocks == 0)) {
    488         ErrorF("xf86LookupMode: called with invalid scrnInfoRec\n");
    489         return MODE_ERROR;
    490     }
    491     if (modep == NULL || modep->name == NULL) {
    492         ErrorF("xf86LookupMode: called with invalid modep\n");
    493         return MODE_ERROR;
    494     }
    495     for (cp = clockRanges; cp != NULL; cp = cp->next) {
    496         /* DivFactor and MulFactor must be > 0 */
    497         cp->ClockDivFactor = max(1, cp->ClockDivFactor);
    498         cp->ClockMulFactor = max(1, cp->ClockMulFactor);
    499     }
    500 
    501     /* Scan the mode pool for matching names */
    502     for (n = 0; n < ntypes; n++) {
    503         int type = types[n];
    504 
    505         for (p = scrp->modePool; p != NULL; p = p->next) {
    506 
    507             /* scan through the modes in the sort order above */
    508             if ((p->type & type) != type)
    509                 continue;
    510 
    511             if (strcmp(p->name, modep->name) == 0) {
    512 
    513                 /* Skip over previously rejected modes */
    514                 if (p->status != MODE_OK) {
    515                     if (!found)
    516                         status = p->status;
    517                     continue;
    518                 }
    519 
    520                 /* Skip over previously considered modes */
    521                 if (p->prev)
    522                     continue;
    523 
    524                 if (p->type & M_T_BUILTIN) {
    525                     return xf86HandleBuiltinMode(scrp, p, modep, clockRanges,
    526                                                  allowDiv2);
    527                 }
    528 
    529                 /* Check clock is in range */
    530                 cp = xf86FindClockRangeForMode(clockRanges, p);
    531                 if (cp == NULL) {
    532                     /*
    533                      * XXX Could do more here to provide a more detailed
    534                      * reason for not finding a mode.
    535                      */
    536                     p->status = MODE_CLOCK_RANGE;
    537                     if (!found)
    538                         status = MODE_CLOCK_RANGE;
    539                     continue;
    540                 }
    541 
    542                 /*
    543                  * If programmable clock and strategy is not
    544                  * LOOKUP_BEST_REFRESH, the required mode has been found,
    545                  * otherwise record the refresh and continue looking.
    546                  */
    547                 if (scrp->progClock) {
    548                     found = TRUE;
    549                     if (strategy != LOOKUP_BEST_REFRESH) {
    550                         bestMode = p;
    551                         DivFactor = cp->ClockDivFactor;
    552                         MulFactor = cp->ClockMulFactor;
    553                         ModePrivFlags = cp->PrivFlags;
    554                         break;
    555                     }
    556                     refresh = xf86ModeVRefresh(p);
    557                     if (p->Flags & V_INTERLACE)
    558                         refresh /= INTERLACE_REFRESH_WEIGHT;
    559                     if (refresh > bestRefresh) {
    560                         bestMode = p;
    561                         DivFactor = cp->ClockDivFactor;
    562                         MulFactor = cp->ClockMulFactor;
    563                         ModePrivFlags = cp->PrivFlags;
    564                         bestRefresh = refresh;
    565                     }
    566                     continue;
    567                 }
    568 
    569                 /*
    570                  * Clock is in range, so if it is not a programmable clock, find
    571                  * a matching clock.
    572                  */
    573 
    574                 i = xf86GetNearestClock(scrp, p->Clock, allowDiv2,
    575                                         cp->ClockDivFactor, cp->ClockMulFactor,
    576                                         &k);
    577                 /*
    578                  * If the clock is too far from the requested clock, this
    579                  * mode is no good.
    580                  */
    581                 if (k & V_CLKDIV2)
    582                     gap = abs((p->Clock * 2) -
    583                               ((scrp->clock[i] * cp->ClockDivFactor) /
    584                                cp->ClockMulFactor));
    585                 else
    586                     gap = abs(p->Clock -
    587                               ((scrp->clock[i] * cp->ClockDivFactor) /
    588                                cp->ClockMulFactor));
    589                 if (gap > minimumGap) {
    590                     p->status = MODE_NOCLOCK;
    591                     if (!found)
    592                         status = MODE_NOCLOCK;
    593                     continue;
    594                 }
    595                 found = TRUE;
    596 
    597                 if (strategy == LOOKUP_BEST_REFRESH) {
    598                     refresh = xf86ModeVRefresh(p);
    599                     if (p->Flags & V_INTERLACE)
    600                         refresh /= INTERLACE_REFRESH_WEIGHT;
    601                     if (refresh > bestRefresh) {
    602                         bestMode = p;
    603                         DivFactor = cp->ClockDivFactor;
    604                         MulFactor = cp->ClockMulFactor;
    605                         ModePrivFlags = cp->PrivFlags;
    606                         extraFlags = k;
    607                         clockIndex = i;
    608                         bestRefresh = refresh;
    609                     }
    610                     continue;
    611                 }
    612                 if (strategy == LOOKUP_CLOSEST_CLOCK) {
    613                     if (gap < minimumGap) {
    614                         bestMode = p;
    615                         DivFactor = cp->ClockDivFactor;
    616                         MulFactor = cp->ClockMulFactor;
    617                         ModePrivFlags = cp->PrivFlags;
    618                         extraFlags = k;
    619                         clockIndex = i;
    620                         minimumGap = gap;
    621                     }
    622                     continue;
    623                 }
    624                 /*
    625                  * If strategy is neither LOOKUP_BEST_REFRESH or
    626                  * LOOKUP_CLOSEST_CLOCK the required mode has been found.
    627                  */
    628                 bestMode = p;
    629                 DivFactor = cp->ClockDivFactor;
    630                 MulFactor = cp->ClockMulFactor;
    631                 ModePrivFlags = cp->PrivFlags;
    632                 extraFlags = k;
    633                 clockIndex = i;
    634                 break;
    635             }
    636         }
    637         if (found)
    638             break;
    639     }
    640     if (!found || bestMode == NULL)
    641         return status;
    642 
    643     /* Fill in the mode parameters */
    644     if (scrp->progClock) {
    645         modep->Clock = bestMode->Clock;
    646         modep->ClockIndex = -1;
    647         modep->SynthClock = (modep->Clock * MulFactor) / DivFactor;
    648     }
    649     else {
    650         modep->Clock = (scrp->clock[clockIndex] * DivFactor) / MulFactor;
    651         modep->ClockIndex = clockIndex;
    652         modep->SynthClock = scrp->clock[clockIndex];
    653         if (extraFlags & V_CLKDIV2) {
    654             modep->Clock /= 2;
    655             modep->SynthClock /= 2;
    656         }
    657     }
    658     modep->type = bestMode->type;
    659     modep->PrivFlags = ModePrivFlags;
    660     modep->HDisplay = bestMode->HDisplay;
    661     modep->HSyncStart = bestMode->HSyncStart;
    662     modep->HSyncEnd = bestMode->HSyncEnd;
    663     modep->HTotal = bestMode->HTotal;
    664     modep->HSkew = bestMode->HSkew;
    665     modep->VDisplay = bestMode->VDisplay;
    666     modep->VSyncStart = bestMode->VSyncStart;
    667     modep->VSyncEnd = bestMode->VSyncEnd;
    668     modep->VTotal = bestMode->VTotal;
    669     modep->VScan = bestMode->VScan;
    670     modep->Flags = bestMode->Flags | extraFlags;
    671     modep->CrtcHDisplay = bestMode->CrtcHDisplay;
    672     modep->CrtcHBlankStart = bestMode->CrtcHBlankStart;
    673     modep->CrtcHSyncStart = bestMode->CrtcHSyncStart;
    674     modep->CrtcHSyncEnd = bestMode->CrtcHSyncEnd;
    675     modep->CrtcHBlankEnd = bestMode->CrtcHBlankEnd;
    676     modep->CrtcHTotal = bestMode->CrtcHTotal;
    677     modep->CrtcHSkew = bestMode->CrtcHSkew;
    678     modep->CrtcVDisplay = bestMode->CrtcVDisplay;
    679     modep->CrtcVBlankStart = bestMode->CrtcVBlankStart;
    680     modep->CrtcVSyncStart = bestMode->CrtcVSyncStart;
    681     modep->CrtcVSyncEnd = bestMode->CrtcVSyncEnd;
    682     modep->CrtcVBlankEnd = bestMode->CrtcVBlankEnd;
    683     modep->CrtcVTotal = bestMode->CrtcVTotal;
    684     modep->CrtcHAdjusted = bestMode->CrtcHAdjusted;
    685     modep->CrtcVAdjusted = bestMode->CrtcVAdjusted;
    686     modep->HSync = bestMode->HSync;
    687     modep->VRefresh = bestMode->VRefresh;
    688     modep->Private = bestMode->Private;
    689     modep->PrivSize = bestMode->PrivSize;
    690 
    691     bestMode->prev = modep;
    692 
    693     return MODE_OK;
    694 }
    695 
    696 /*
    697  * xf86CheckModeForMonitor
    698  *
    699  * This function takes a mode and monitor description, and determines
    700  * if the mode is valid for the monitor.
    701  */
    702 ModeStatus
    703 xf86CheckModeForMonitor(DisplayModePtr mode, MonPtr monitor)
    704 {
    705     int i;
    706 
    707     /* Sanity checks */
    708     if (mode == NULL || monitor == NULL) {
    709         ErrorF("xf86CheckModeForMonitor: called with invalid parameters\n");
    710         return MODE_ERROR;
    711     }
    712 
    713     DebugF("xf86CheckModeForMonitor(%p %s, %p %s)\n",
    714            mode, mode->name, monitor, monitor->id);
    715 
    716     /* Some basic mode validity checks */
    717     if (0 >= mode->HDisplay || mode->HDisplay > mode->HSyncStart ||
    718         mode->HSyncStart >= mode->HSyncEnd || mode->HSyncEnd >= mode->HTotal)
    719         return MODE_H_ILLEGAL;
    720 
    721     if (0 >= mode->VDisplay || mode->VDisplay > mode->VSyncStart ||
    722         mode->VSyncStart >= mode->VSyncEnd || mode->VSyncEnd >= mode->VTotal)
    723         return MODE_V_ILLEGAL;
    724 
    725     if (monitor->nHsync > 0) {
    726         /* Check hsync against the allowed ranges */
    727         float hsync = xf86ModeHSync(mode);
    728 
    729         for (i = 0; i < monitor->nHsync; i++)
    730             if ((hsync > monitor->hsync[i].lo * (1.0 - SYNC_TOLERANCE)) &&
    731                 (hsync < monitor->hsync[i].hi * (1.0 + SYNC_TOLERANCE)))
    732                 break;
    733 
    734         /* Now see whether we ran out of sync ranges without finding a match */
    735         if (i == monitor->nHsync)
    736             return MODE_HSYNC;
    737     }
    738 
    739     if (monitor->nVrefresh > 0) {
    740         /* Check vrefresh against the allowed ranges */
    741         float vrefrsh = xf86ModeVRefresh(mode);
    742 
    743         for (i = 0; i < monitor->nVrefresh; i++)
    744             if ((vrefrsh > monitor->vrefresh[i].lo * (1.0 - SYNC_TOLERANCE)) &&
    745                 (vrefrsh < monitor->vrefresh[i].hi * (1.0 + SYNC_TOLERANCE)))
    746                 break;
    747 
    748         /* Now see whether we ran out of refresh ranges without finding a match */
    749         if (i == monitor->nVrefresh)
    750             return MODE_VSYNC;
    751     }
    752 
    753     /* Force interlaced modes to have an odd VTotal */
    754     if (mode->Flags & V_INTERLACE)
    755         mode->CrtcVTotal = mode->VTotal |= 1;
    756 
    757     /*
    758      * This code stops cvt -r modes, and only cvt -r modes, from hitting 15y+
    759      * old CRTs which might, when there is a lot of solar flare activity and
    760      * when the celestial bodies are unfavourably aligned, implode trying to
    761      * sync to it. It's called "Protecting the user from doing anything stupid".
    762      * -- libv
    763      */
    764 
    765     if (xf86ModeIsReduced(mode)) {
    766         if (!monitor->reducedblanking && !(mode->type & M_T_DRIVER))
    767             return MODE_NO_REDUCED;
    768     }
    769 
    770     if ((monitor->maxPixClock) && (mode->Clock > monitor->maxPixClock))
    771         return MODE_CLOCK_HIGH;
    772 
    773     return MODE_OK;
    774 }
    775 
    776 /*
    777  * xf86CheckModeSize
    778  *
    779  * An internal routine to check if a mode fits in video memory.  This tries to
    780  * avoid overflows that would otherwise occur when video memory size is greater
    781  * than 256MB.
    782  */
    783 static Bool
    784 xf86CheckModeSize(ScrnInfoPtr scrp, int w, int x, int y)
    785 {
    786     int bpp = scrp->fbFormat.bitsPerPixel, pad = scrp->fbFormat.scanlinePad;
    787     int lineWidth, lastWidth;
    788 
    789     if (scrp->depth == 4)
    790         pad *= 4;               /* 4 planes */
    791 
    792     /* Sanity check */
    793     if ((w < 0) || (x < 0) || (y <= 0))
    794         return FALSE;
    795 
    796     lineWidth = (((w * bpp) + pad - 1) / pad) * pad;
    797     lastWidth = x * bpp;
    798 
    799     /*
    800      * At this point, we need to compare
    801      *
    802      *  (lineWidth * (y - 1)) + lastWidth
    803      *
    804      * against
    805      *
    806      *  scrp->videoRam * (1024 * 8)
    807      *
    808      * These are bit quantities.  To avoid overflows, do the comparison in
    809      * terms of BITMAP_SCANLINE_PAD units.  This assumes BITMAP_SCANLINE_PAD
    810      * is a power of 2.  We currently use 32, which limits us to a video
    811      * memory size of 8GB.
    812      */
    813 
    814     lineWidth = (lineWidth + (BITMAP_SCANLINE_PAD - 1)) / BITMAP_SCANLINE_PAD;
    815     lastWidth = (lastWidth + (BITMAP_SCANLINE_PAD - 1)) / BITMAP_SCANLINE_PAD;
    816 
    817     if ((lineWidth * (y - 1) + lastWidth) >
    818         (scrp->videoRam * ((1024 * 8) / BITMAP_SCANLINE_PAD)))
    819         return FALSE;
    820 
    821     return TRUE;
    822 }
    823 
    824 /*
    825  * xf86InitialCheckModeForDriver
    826  *
    827  * This function checks if a mode satisfies a driver's initial requirements:
    828  *   -  mode size fits within the available pixel area (memory)
    829  *   -  width lies within the range of supported line pitches
    830  *   -  mode size fits within virtual size (if fixed)
    831  *   -  horizontal timings are in range
    832  *
    833  * This function takes the following parameters:
    834  *    scrp         ScrnInfoPtr
    835  *    mode         mode to check
    836  *    maxPitch     (optional) maximum line pitch
    837  *    virtualX     (optional) virtual width requested
    838  *    virtualY     (optional) virtual height requested
    839  *
    840  * In addition, the following fields from the ScrnInfoRec are used:
    841  *    monitor      pointer to structure for monitor section
    842  *    fbFormat     pixel format for the framebuffer
    843  *    videoRam     video memory size (in kB)
    844  */
    845 
    846 static ModeStatus
    847 xf86InitialCheckModeForDriver(ScrnInfoPtr scrp, DisplayModePtr mode,
    848                               ClockRangePtr clockRanges,
    849                               LookupModeFlags strategy,
    850                               int maxPitch, int virtualX, int virtualY)
    851 {
    852     ClockRangePtr cp;
    853     ModeStatus status;
    854     Bool allowDiv2 = (strategy & LOOKUP_CLKDIV2) != 0;
    855     int i, needDiv2;
    856 
    857     /* Sanity checks */
    858     if (!scrp || !mode || !clockRanges) {
    859         ErrorF("xf86InitialCheckModeForDriver: "
    860                "called with invalid parameters\n");
    861         return MODE_ERROR;
    862     }
    863 
    864     DebugF("xf86InitialCheckModeForDriver(%p, %p %s, %p, 0x%x, %d, %d, %d)\n",
    865            scrp, mode, mode->name, clockRanges, strategy, maxPitch, virtualX,
    866            virtualY);
    867 
    868     /* Some basic mode validity checks */
    869     if (0 >= mode->HDisplay || mode->HDisplay > mode->HSyncStart ||
    870         mode->HSyncStart >= mode->HSyncEnd || mode->HSyncEnd >= mode->HTotal)
    871         return MODE_H_ILLEGAL;
    872 
    873     if (0 >= mode->VDisplay || mode->VDisplay > mode->VSyncStart ||
    874         mode->VSyncStart >= mode->VSyncEnd || mode->VSyncEnd >= mode->VTotal)
    875         return MODE_V_ILLEGAL;
    876 
    877     if (!xf86CheckModeSize(scrp, mode->HDisplay, mode->HDisplay,
    878                            mode->VDisplay))
    879         return MODE_MEM;
    880 
    881     if (maxPitch > 0 && mode->HDisplay > maxPitch)
    882         return MODE_BAD_WIDTH;
    883 
    884     if (virtualX > 0 && mode->HDisplay > virtualX)
    885         return MODE_VIRTUAL_X;
    886 
    887     if (virtualY > 0 && mode->VDisplay > virtualY)
    888         return MODE_VIRTUAL_Y;
    889 
    890     /*
    891      * The use of the DisplayModeRec's Crtc* and SynthClock elements below is
    892      * provisional, in that they are later reused by the driver at mode-set
    893      * time.  Here, they are temporarily enlisted to contain the mode timings
    894      * as seen by the CRT or panel (rather than the CRTC).  The driver's
    895      * ValidMode() is allowed to modify these so it can deal with such things
    896      * as mode stretching and/or centering.  The driver should >NOT< modify the
    897      * user-supplied values as these are reported back when mode validation is
    898      * said and done.
    899      */
    900     /*
    901      * NOTE: We (ab)use the mode->Crtc* values here to store timing
    902      * information for the calculation of Hsync and Vrefresh. Before
    903      * these values are calculated the driver is given the opportunity
    904      * to either set these HSync and VRefresh itself or modify the timing
    905      * values.
    906      * The difference to the final calculation is small but imortand:
    907      * here we pass the flag INTERLACE_HALVE_V regardless if the driver
    908      * sets it or not. This way our calculation of VRefresh has the same
    909      * effect as if we do if (flags & V_INTERLACE) refresh *= 2.0
    910      * This dual use of the mode->Crtc* values will certainly create
    911      * confusion and is bad software design. However since it's part of
    912      * the driver API it's hard to change.
    913      */
    914 
    915     if (scrp->ValidMode) {
    916 
    917         xf86SetModeCrtc(mode, INTERLACE_HALVE_V);
    918 
    919         cp = xf86FindClockRangeForMode(clockRanges, mode);
    920         if (!cp)
    921             return MODE_CLOCK_RANGE;
    922 
    923         if (cp->ClockMulFactor < 1)
    924             cp->ClockMulFactor = 1;
    925         if (cp->ClockDivFactor < 1)
    926             cp->ClockDivFactor = 1;
    927 
    928         /*
    929          * XXX  The effect of clock dividers and multipliers on the monitor's
    930          *      pixel clock needs to be verified.
    931          */
    932         if (scrp->progClock) {
    933             mode->SynthClock = mode->Clock;
    934         }
    935         else {
    936             i = xf86GetNearestClock(scrp, mode->Clock, allowDiv2,
    937                                     cp->ClockDivFactor, cp->ClockMulFactor,
    938                                     &needDiv2);
    939             mode->SynthClock = (scrp->clock[i] * cp->ClockDivFactor) /
    940                 cp->ClockMulFactor;
    941             if (needDiv2 & V_CLKDIV2)
    942                 mode->SynthClock /= 2;
    943         }
    944 
    945         status = (*scrp->ValidMode) (scrp, mode, FALSE,
    946                                      MODECHECK_INITIAL);
    947         if (status != MODE_OK)
    948             return status;
    949 
    950         if (mode->HSync <= 0.0)
    951             mode->HSync = (float) mode->SynthClock / (float) mode->CrtcHTotal;
    952         if (mode->VRefresh <= 0.0)
    953             mode->VRefresh = (mode->SynthClock * 1000.0)
    954                 / (mode->CrtcHTotal * mode->CrtcVTotal);
    955     }
    956 
    957     mode->HSync = xf86ModeHSync(mode);
    958     mode->VRefresh = xf86ModeVRefresh(mode);
    959 
    960     /* Assume it is OK */
    961     return MODE_OK;
    962 }
    963 
    964 /*
    965  * xf86CheckModeForDriver
    966  *
    967  * This function is for checking modes while the server is running (for
    968  * use mainly by the VidMode extension).
    969  *
    970  * This function checks if a mode satisfies a driver's requirements:
    971  *   -  width lies within the line pitch
    972  *   -  mode size fits within virtual size
    973  *   -  horizontal/vertical timings are in range
    974  *
    975  * This function takes the following parameters:
    976  *    scrp         ScrnInfoPtr
    977  *    mode         mode to check
    978  *    flags        not (currently) used
    979  *
    980  * In addition, the following fields from the ScrnInfoRec are used:
    981  *    virtualX     virtual width
    982  *    virtualY     virtual height
    983  *    clockRanges  allowable clock ranges
    984  */
    985 
    986 ModeStatus
    987 xf86CheckModeForDriver(ScrnInfoPtr scrp, DisplayModePtr mode, int flags)
    988 {
    989     ClockRangePtr cp;
    990     int i, k, gap, minimumGap = CLOCK_TOLERANCE + 1;
    991     int extraFlags = 0;
    992     int clockIndex = -1;
    993     int MulFactor = 1;
    994     int DivFactor = 1;
    995     int ModePrivFlags = 0;
    996     ModeStatus status = MODE_NOMODE;
    997 
    998     /* Some sanity checking */
    999     if (scrp == NULL || (!scrp->progClock && scrp->numClocks == 0)) {
   1000         ErrorF("xf86CheckModeForDriver: called with invalid scrnInfoRec\n");
   1001         return MODE_ERROR;
   1002     }
   1003     if (mode == NULL) {
   1004         ErrorF("xf86CheckModeForDriver: called with invalid modep\n");
   1005         return MODE_ERROR;
   1006     }
   1007 
   1008     /* Check the mode size */
   1009     if (mode->HDisplay > scrp->virtualX)
   1010         return MODE_VIRTUAL_X;
   1011 
   1012     if (mode->VDisplay > scrp->virtualY)
   1013         return MODE_VIRTUAL_Y;
   1014 
   1015     for (cp = scrp->clockRanges; cp != NULL; cp = cp->next) {
   1016         /* DivFactor and MulFactor must be > 0 */
   1017         cp->ClockDivFactor = max(1, cp->ClockDivFactor);
   1018         cp->ClockMulFactor = max(1, cp->ClockMulFactor);
   1019     }
   1020 
   1021     if (scrp->progClock) {
   1022         /* Check clock is in range */
   1023         for (cp = scrp->clockRanges; cp != NULL; cp = cp->next) {
   1024             if (modeInClockRange(cp, mode))
   1025                 break;
   1026         }
   1027         if (cp == NULL) {
   1028             return MODE_CLOCK_RANGE;
   1029         }
   1030         /*
   1031          * If programmable clock the required mode has been found
   1032          */
   1033         DivFactor = cp->ClockDivFactor;
   1034         MulFactor = cp->ClockMulFactor;
   1035         ModePrivFlags = cp->PrivFlags;
   1036     }
   1037     else {
   1038         status = MODE_CLOCK_RANGE;
   1039         /* Check clock is in range */
   1040         for (cp = scrp->clockRanges; cp != NULL; cp = cp->next) {
   1041             if (modeInClockRange(cp, mode)) {
   1042                 /*
   1043                  * Clock is in range, so if it is not a programmable clock,
   1044                  * find a matching clock.
   1045                  */
   1046 
   1047                 i = xf86GetNearestClock(scrp, mode->Clock, 0,
   1048                                         cp->ClockDivFactor, cp->ClockMulFactor,
   1049                                         &k);
   1050                 /*
   1051                  * If the clock is too far from the requested clock, this
   1052                  * mode is no good.
   1053                  */
   1054                 if (k & V_CLKDIV2)
   1055                     gap = abs((mode->Clock * 2) -
   1056                               ((scrp->clock[i] * cp->ClockDivFactor) /
   1057                                cp->ClockMulFactor));
   1058                 else
   1059                     gap = abs(mode->Clock -
   1060                               ((scrp->clock[i] * cp->ClockDivFactor) /
   1061                                cp->ClockMulFactor));
   1062                 if (gap > minimumGap) {
   1063                     status = MODE_NOCLOCK;
   1064                     continue;
   1065                 }
   1066 
   1067                 DivFactor = cp->ClockDivFactor;
   1068                 MulFactor = cp->ClockMulFactor;
   1069                 ModePrivFlags = cp->PrivFlags;
   1070                 extraFlags = k;
   1071                 clockIndex = i;
   1072                 break;
   1073             }
   1074         }
   1075         if (cp == NULL)
   1076             return status;
   1077     }
   1078 
   1079     /* Fill in the mode parameters */
   1080     if (scrp->progClock) {
   1081         mode->ClockIndex = -1;
   1082         mode->SynthClock = (mode->Clock * MulFactor) / DivFactor;
   1083     }
   1084     else {
   1085         mode->Clock = (scrp->clock[clockIndex] * DivFactor) / MulFactor;
   1086         mode->ClockIndex = clockIndex;
   1087         mode->SynthClock = scrp->clock[clockIndex];
   1088         if (extraFlags & V_CLKDIV2) {
   1089             mode->Clock /= 2;
   1090             mode->SynthClock /= 2;
   1091         }
   1092     }
   1093     mode->PrivFlags = ModePrivFlags;
   1094 
   1095     return MODE_OK;
   1096 }
   1097 
   1098 static int
   1099 inferVirtualSize(ScrnInfoPtr scrp, DisplayModePtr modes, int *vx, int *vy)
   1100 {
   1101     float aspect = 0.0;
   1102     MonPtr mon = scrp->monitor;
   1103     xf86MonPtr DDC;
   1104     int x = 0, y = 0;
   1105     DisplayModePtr mode;
   1106 
   1107     if (!mon)
   1108         return 0;
   1109     DDC = mon->DDC;
   1110 
   1111     if (DDC && DDC->ver.revision >= 4) {
   1112         /* For 1.4, we might actually get native pixel format.  How novel. */
   1113         if (PREFERRED_TIMING_MODE(DDC->features.msc)) {
   1114             for (mode = modes; mode; mode = mode->next) {
   1115                 if (mode->type & (M_T_DRIVER | M_T_PREFERRED)) {
   1116                     x = mode->HDisplay;
   1117                     y = mode->VDisplay;
   1118                     goto found;
   1119                 }
   1120             }
   1121         }
   1122         /*
   1123          * Even if we don't, we might get aspect ratio from extra CVT info
   1124          * or from the monitor size fields.  TODO.
   1125          */
   1126     }
   1127 
   1128     /*
   1129      * Technically this triggers if either is zero.  That wasn't legal
   1130      * before EDID 1.4, but right now we'll get that wrong. TODO.
   1131      */
   1132     if (!aspect) {
   1133         if (!mon->widthmm || !mon->heightmm)
   1134             aspect = 4.0 / 3.0;
   1135         else
   1136             aspect = (float) mon->widthmm / (float) mon->heightmm;
   1137     }
   1138 
   1139     /* find the largest M_T_DRIVER mode with that aspect ratio */
   1140     for (mode = modes; mode; mode = mode->next) {
   1141         float mode_aspect, metaspect;
   1142 
   1143         if (!(mode->type & (M_T_DRIVER | M_T_USERDEF)))
   1144             continue;
   1145         mode_aspect = (float) mode->HDisplay / (float) mode->VDisplay;
   1146         metaspect = aspect / mode_aspect;
   1147         /* 5% slop or so, since we only get size in centimeters */
   1148         if (fabs(1.0 - metaspect) < 0.05) {
   1149             if ((mode->HDisplay > x) && (mode->VDisplay > y)) {
   1150                 x = mode->HDisplay;
   1151                 y = mode->VDisplay;
   1152             }
   1153         }
   1154     }
   1155 
   1156     if (!x || !y) {
   1157         xf86DrvMsg(scrp->scrnIndex, X_WARNING,
   1158                    "Unable to estimate virtual size\n");
   1159         return 0;
   1160     }
   1161 
   1162  found:
   1163     *vx = x;
   1164     *vy = y;
   1165 
   1166     xf86DrvMsg(scrp->scrnIndex, X_INFO,
   1167                "Estimated virtual size for aspect ratio %.4f is %dx%d\n",
   1168                aspect, *vx, *vy);
   1169 
   1170     return 1;
   1171 }
   1172 
   1173 /* Least common multiple */
   1174 static unsigned int
   1175 LCM(unsigned int x, unsigned int y)
   1176 {
   1177     unsigned int m = x, n = y, o;
   1178 
   1179     while ((o = m % n)) {
   1180         m = n;
   1181         n = o;
   1182     }
   1183 
   1184     return (x / n) * y;
   1185 }
   1186 
   1187 /*
   1188  * Given various screen attributes, determine the minimum scanline width such
   1189  * that each scanline is server and DDX padded and any pixels with embedded
   1190  * bank boundaries are off-screen.  This function returns -1 if such a width
   1191  * cannot exist.
   1192  */
   1193 static int
   1194 scanLineWidth(unsigned int xsize,       /* pixels */
   1195               unsigned int ysize,       /* pixels */
   1196               unsigned int width,       /* pixels */
   1197               unsigned long BankSize,   /* char's */
   1198               PixmapFormatRec * pBankFormat, unsigned int nWidthUnit    /* bits */
   1199     )
   1200 {
   1201     unsigned long nBitsPerBank, nBitsPerScanline, nBitsPerScanlinePadUnit;
   1202     unsigned long minBitsPerScanline, maxBitsPerScanline;
   1203 
   1204     /* Sanity checks */
   1205 
   1206     if (!nWidthUnit || !pBankFormat)
   1207         return -1;
   1208 
   1209     nBitsPerBank = BankSize * 8;
   1210     if (nBitsPerBank % pBankFormat->scanlinePad)
   1211         return -1;
   1212 
   1213     if (xsize > width)
   1214         width = xsize;
   1215     nBitsPerScanlinePadUnit = LCM(pBankFormat->scanlinePad, nWidthUnit);
   1216     nBitsPerScanline =
   1217         (((width * pBankFormat->bitsPerPixel) + nBitsPerScanlinePadUnit - 1) /
   1218          nBitsPerScanlinePadUnit) * nBitsPerScanlinePadUnit;
   1219     width = nBitsPerScanline / pBankFormat->bitsPerPixel;
   1220 
   1221     if (!xsize || !(nBitsPerBank % pBankFormat->bitsPerPixel))
   1222         return (int) width;
   1223 
   1224     /*
   1225      * Scanlines will be server-pad aligned at this point.  They will also be
   1226      * a multiple of nWidthUnit bits long.  Ensure that pixels with embedded
   1227      * bank boundaries are off-screen.
   1228      *
   1229      * It seems reasonable to limit total frame buffer size to 1/16 of the
   1230      * theoretical maximum address space size.  On a machine with 32-bit
   1231      * addresses (to 8-bit quantities) this turns out to be 256MB.  Not only
   1232      * does this provide a simple limiting condition for the loops below, but
   1233      * it also prevents unsigned long wraparounds.
   1234      */
   1235     if (!ysize)
   1236         return -1;
   1237 
   1238     minBitsPerScanline = xsize * pBankFormat->bitsPerPixel;
   1239     if (minBitsPerScanline > nBitsPerBank)
   1240         return -1;
   1241 
   1242     if (ysize == 1)
   1243         return (int) width;
   1244 
   1245     maxBitsPerScanline =
   1246         (((unsigned long) (-1) >> 1) - minBitsPerScanline) / (ysize - 1);
   1247     while (nBitsPerScanline <= maxBitsPerScanline) {
   1248         unsigned long BankBase, BankUnit;
   1249 
   1250         BankUnit = ((nBitsPerBank + nBitsPerScanline - 1) / nBitsPerBank) *
   1251             nBitsPerBank;
   1252         if (!(BankUnit % nBitsPerScanline))
   1253             return (int) width;
   1254 
   1255         for (BankBase = BankUnit;; BankBase += nBitsPerBank) {
   1256             unsigned long x, y;
   1257 
   1258             y = BankBase / nBitsPerScanline;
   1259             if (y >= ysize)
   1260                 return (int) width;
   1261 
   1262             x = BankBase % nBitsPerScanline;
   1263             if (!(x % pBankFormat->bitsPerPixel))
   1264                 continue;
   1265 
   1266             if (x < minBitsPerScanline) {
   1267                 /*
   1268                  * Skip ahead certain widths by dividing the excess scanline
   1269                  * amongst the y's.
   1270                  */
   1271                 y *= nBitsPerScanlinePadUnit;
   1272                 nBitsPerScanline += ((x + y - 1) / y) * nBitsPerScanlinePadUnit;
   1273                 width = nBitsPerScanline / pBankFormat->bitsPerPixel;
   1274                 break;
   1275             }
   1276 
   1277             if (BankBase != BankUnit)
   1278                 continue;
   1279 
   1280             if (!(nBitsPerScanline % x))
   1281                 return (int) width;
   1282 
   1283             BankBase = ((nBitsPerScanline - minBitsPerScanline) /
   1284                         (nBitsPerScanline - x)) * BankUnit;
   1285         }
   1286     }
   1287 
   1288     return -1;
   1289 }
   1290 
   1291 /*
   1292  * xf86ValidateModes
   1293  *
   1294  * This function takes a set of mode names, modes and limiting conditions,
   1295  * and selects a set of modes and parameters based on those conditions.
   1296  *
   1297  * This function takes the following parameters:
   1298  *    scrp         ScrnInfoPtr
   1299  *    availModes   the list of modes available for the monitor
   1300  *    modeNames    (optional) list of mode names that the screen is requesting
   1301  *    clockRanges  a list of clock ranges
   1302  *    linePitches  (optional) a list of line pitches
   1303  *    minPitch     (optional) minimum line pitch (in pixels)
   1304  *    maxPitch     (optional) maximum line pitch (in pixels)
   1305  *    pitchInc     (mandatory) pitch increment (in bits)
   1306  *    minHeight    (optional) minimum virtual height (in pixels)
   1307  *    maxHeight    (optional) maximum virtual height (in pixels)
   1308  *    virtualX     (optional) virtual width requested (in pixels)
   1309  *    virtualY     (optional) virtual height requested (in pixels)
   1310  *    apertureSize size of video aperture (in bytes)
   1311  *    strategy     how to decide which mode to use from multiple modes with
   1312  *                 the same name
   1313  *
   1314  * In addition, the following fields from the ScrnInfoRec are used:
   1315  *    clocks       a list of discrete clocks
   1316  *    numClocks    number of discrete clocks
   1317  *    progClock    clock is programmable
   1318  *    monitor      pointer to structure for monitor section
   1319  *    fbFormat     format of the framebuffer
   1320  *    videoRam     video memory size
   1321  *    xInc         horizontal timing increment (defaults to 8 pixels)
   1322  *
   1323  * The function fills in the following ScrnInfoRec fields:
   1324  *    modePool     A subset of the modes available to the monitor which
   1325  *		   are compatible with the driver.
   1326  *    modes        one mode entry for each of the requested modes, with the
   1327  *                 status field filled in to indicate if the mode has been
   1328  *                 accepted or not.
   1329  *    virtualX     the resulting virtual width
   1330  *    virtualY     the resulting virtual height
   1331  *    displayWidth the resulting line pitch
   1332  *
   1333  * The function's return value is the number of matching modes found, or -1
   1334  * if an unrecoverable error was encountered.
   1335  */
   1336 
   1337 int
   1338 xf86ValidateModes(ScrnInfoPtr scrp, DisplayModePtr availModes,
   1339                   const char **modeNames, ClockRangePtr clockRanges,
   1340                   int *linePitches, int minPitch, int maxPitch, int pitchInc,
   1341                   int minHeight, int maxHeight, int virtualX, int virtualY,
   1342                   int apertureSize, LookupModeFlags strategy)
   1343 {
   1344     DisplayModePtr p, q, r, new, last, *endp;
   1345     int i, numModes = 0;
   1346     ModeStatus status;
   1347     int linePitch = -1, virtX = 0, virtY = 0;
   1348     int newLinePitch, newVirtX, newVirtY;
   1349     int modeSize;               /* in pixels */
   1350     Bool validateAllDefaultModes = FALSE;
   1351     Bool userModes = FALSE;
   1352     int saveType;
   1353     PixmapFormatRec *BankFormat;
   1354     ClockRangePtr cp;
   1355     int numTimings = 0;
   1356     range hsync[MAX_HSYNC];
   1357     range vrefresh[MAX_VREFRESH];
   1358     Bool inferred_virtual = FALSE;
   1359 
   1360     DebugF
   1361         ("xf86ValidateModes(%p, %p, %p, %p,\n\t\t  %p, %d, %d, %d, %d, %d, %d, %d, %d, 0x%x)\n",
   1362          scrp, availModes, modeNames, clockRanges, linePitches, minPitch,
   1363          maxPitch, pitchInc, minHeight, maxHeight, virtualX, virtualY,
   1364          apertureSize, strategy);
   1365 
   1366     /* Some sanity checking */
   1367     if (scrp == NULL || scrp->name == NULL || !scrp->monitor ||
   1368         (!scrp->progClock && scrp->numClocks == 0)) {
   1369         ErrorF("xf86ValidateModes: called with invalid scrnInfoRec\n");
   1370         return -1;
   1371     }
   1372     if (linePitches != NULL && linePitches[0] <= 0) {
   1373         ErrorF("xf86ValidateModes: called with invalid linePitches\n");
   1374         return -1;
   1375     }
   1376     if (pitchInc <= 0) {
   1377         ErrorF("xf86ValidateModes: called with invalid pitchInc\n");
   1378         return -1;
   1379     }
   1380     if ((virtualX > 0) != (virtualY > 0)) {
   1381         ErrorF("xf86ValidateModes: called with invalid virtual resolution\n");
   1382         return -1;
   1383     }
   1384 
   1385     /*
   1386      * If requested by the driver, allow missing hsync and/or vrefresh ranges
   1387      * in the monitor section.
   1388      */
   1389     if (strategy & LOOKUP_OPTIONAL_TOLERANCES) {
   1390         strategy &= ~LOOKUP_OPTIONAL_TOLERANCES;
   1391     }
   1392     else {
   1393         const char *type = "";
   1394         Bool specified = FALSE;
   1395 
   1396         if (scrp->monitor->nHsync <= 0) {
   1397             if (numTimings > 0) {
   1398                 scrp->monitor->nHsync = numTimings;
   1399                 for (i = 0; i < numTimings; i++) {
   1400                     scrp->monitor->hsync[i].lo = hsync[i].lo;
   1401                     scrp->monitor->hsync[i].hi = hsync[i].hi;
   1402                 }
   1403             }
   1404             else {
   1405                 scrp->monitor->hsync[0].lo = 31.5;
   1406                 scrp->monitor->hsync[0].hi = 48.0;
   1407                 scrp->monitor->nHsync = 1;
   1408             }
   1409             type = "default ";
   1410         }
   1411         else {
   1412             specified = TRUE;
   1413         }
   1414         for (i = 0; i < scrp->monitor->nHsync; i++) {
   1415             if (scrp->monitor->hsync[i].lo == scrp->monitor->hsync[i].hi)
   1416                 xf86DrvMsg(scrp->scrnIndex, X_INFO,
   1417                            "%s: Using %shsync value of %.2f kHz\n",
   1418                            scrp->monitor->id, type, scrp->monitor->hsync[i].lo);
   1419             else
   1420                 xf86DrvMsg(scrp->scrnIndex, X_INFO,
   1421                            "%s: Using %shsync range of %.2f-%.2f kHz\n",
   1422                            scrp->monitor->id, type,
   1423                            scrp->monitor->hsync[i].lo,
   1424                            scrp->monitor->hsync[i].hi);
   1425         }
   1426 
   1427         type = "";
   1428         if (scrp->monitor->nVrefresh <= 0) {
   1429             if (numTimings > 0) {
   1430                 scrp->monitor->nVrefresh = numTimings;
   1431                 for (i = 0; i < numTimings; i++) {
   1432                     scrp->monitor->vrefresh[i].lo = vrefresh[i].lo;
   1433                     scrp->monitor->vrefresh[i].hi = vrefresh[i].hi;
   1434                 }
   1435             }
   1436             else {
   1437                 scrp->monitor->vrefresh[0].lo = 50;
   1438                 scrp->monitor->vrefresh[0].hi = 70;
   1439                 scrp->monitor->nVrefresh = 1;
   1440             }
   1441             type = "default ";
   1442         }
   1443         else {
   1444             specified = TRUE;
   1445         }
   1446         for (i = 0; i < scrp->monitor->nVrefresh; i++) {
   1447             if (scrp->monitor->vrefresh[i].lo == scrp->monitor->vrefresh[i].hi)
   1448                 xf86DrvMsg(scrp->scrnIndex, X_INFO,
   1449                            "%s: Using %svrefresh value of %.2f Hz\n",
   1450                            scrp->monitor->id, type,
   1451                            scrp->monitor->vrefresh[i].lo);
   1452             else
   1453                 xf86DrvMsg(scrp->scrnIndex, X_INFO,
   1454                            "%s: Using %svrefresh range of %.2f-%.2f Hz\n",
   1455                            scrp->monitor->id, type,
   1456                            scrp->monitor->vrefresh[i].lo,
   1457                            scrp->monitor->vrefresh[i].hi);
   1458         }
   1459 
   1460         type = "";
   1461         if (!scrp->monitor->maxPixClock && !specified) {
   1462             type = "default ";
   1463             scrp->monitor->maxPixClock = 65000.0;
   1464         }
   1465         if (scrp->monitor->maxPixClock) {
   1466             xf86DrvMsg(scrp->scrnIndex, X_INFO,
   1467                        "%s: Using %smaximum pixel clock of %.2f MHz\n",
   1468                        scrp->monitor->id, type,
   1469                        (float) scrp->monitor->maxPixClock / 1000.0);
   1470         }
   1471     }
   1472 
   1473     /*
   1474      * Store the clockRanges for later use by the VidMode extension.
   1475      */
   1476     nt_list_for_each_entry(cp, clockRanges, next) {
   1477         ClockRangePtr newCR = xnfalloc(sizeof(ClockRange));
   1478         memcpy(newCR, cp, sizeof(ClockRange));
   1479         newCR->next = NULL;
   1480         if (scrp->clockRanges == NULL)
   1481             scrp->clockRanges = newCR;
   1482         else
   1483             nt_list_append(newCR, scrp->clockRanges, ClockRange, next);
   1484     }
   1485 
   1486     /* Determine which pixmap format to pass to scanLineWidth() */
   1487     if (scrp->depth > 4)
   1488         BankFormat = &scrp->fbFormat;
   1489     else
   1490         BankFormat = xf86GetPixFormat(scrp, 1); /* >not< scrp->depth! */
   1491 
   1492     if (scrp->xInc <= 0)
   1493         scrp->xInc = 8;         /* Suitable for VGA and others */
   1494 
   1495 #define _VIRTUALX(x) ((((x) + scrp->xInc - 1) / scrp->xInc) * scrp->xInc)
   1496 
   1497     /*
   1498      * Determine maxPitch if it wasn't given explicitly.  Note linePitches
   1499      * always takes precedence if is non-NULL.  In that case the minPitch and
   1500      * maxPitch values passed are ignored.
   1501      */
   1502     if (linePitches) {
   1503         minPitch = maxPitch = linePitches[0];
   1504         for (i = 1; linePitches[i] > 0; i++) {
   1505             if (linePitches[i] > maxPitch)
   1506                 maxPitch = linePitches[i];
   1507             if (linePitches[i] < minPitch)
   1508                 minPitch = linePitches[i];
   1509         }
   1510     }
   1511 
   1512     /*
   1513      * Initialise virtX and virtY if the values are fixed.
   1514      */
   1515     if (virtualY > 0) {
   1516         if (maxHeight > 0 && virtualY > maxHeight) {
   1517             xf86DrvMsg(scrp->scrnIndex, X_ERROR,
   1518                        "Virtual height (%d) is too large for the hardware "
   1519                        "(max %d)\n", virtualY, maxHeight);
   1520             return -1;
   1521         }
   1522 
   1523         if (minHeight > 0 && virtualY < minHeight) {
   1524             xf86DrvMsg(scrp->scrnIndex, X_ERROR,
   1525                        "Virtual height (%d) is too small for the hardware "
   1526                        "(min %d)\n", virtualY, minHeight);
   1527             return -1;
   1528         }
   1529 
   1530         virtualX = _VIRTUALX(virtualX);
   1531         if (linePitches != NULL) {
   1532             for (i = 0; linePitches[i] != 0; i++) {
   1533                 if ((linePitches[i] >= virtualX) &&
   1534                     (linePitches[i] ==
   1535                      scanLineWidth(virtualX, virtualY, linePitches[i],
   1536                                    apertureSize, BankFormat, pitchInc))) {
   1537                     linePitch = linePitches[i];
   1538                     break;
   1539                 }
   1540             }
   1541         }
   1542         else {
   1543             linePitch = scanLineWidth(virtualX, virtualY, minPitch,
   1544                                       apertureSize, BankFormat, pitchInc);
   1545         }
   1546 
   1547         if ((linePitch < minPitch) || (linePitch > maxPitch)) {
   1548             xf86DrvMsg(scrp->scrnIndex, X_ERROR,
   1549                        "Virtual width (%d) is too large for the hardware "
   1550                        "(max %d)\n", virtualX, maxPitch);
   1551             return -1;
   1552         }
   1553 
   1554         if (!xf86CheckModeSize(scrp, linePitch, virtualX, virtualY)) {
   1555             xf86DrvMsg(scrp->scrnIndex, X_ERROR,
   1556                        "Virtual size (%dx%d) (pitch %d) exceeds video memory\n",
   1557                        virtualX, virtualY, linePitch);
   1558             return -1;
   1559         }
   1560 
   1561         virtX = virtualX;
   1562         virtY = virtualY;
   1563     }
   1564     else if (!modeNames || !*modeNames) {
   1565         /* No virtual size given in the config, try to infer */
   1566         /* XXX this doesn't take m{in,ax}Pitch into account; oh well */
   1567         inferred_virtual = inferVirtualSize(scrp, availModes, &virtX, &virtY);
   1568         if (inferred_virtual)
   1569             linePitch = scanLineWidth(virtX, virtY, minPitch, apertureSize,
   1570                                       BankFormat, pitchInc);
   1571     }
   1572 
   1573     /* Print clock ranges and scaled clocks */
   1574     xf86ShowClockRanges(scrp, clockRanges);
   1575 
   1576     /*
   1577      * If scrp->modePool hasn't been setup yet, set it up now.  This allows the
   1578      * modes that the driver definitely can't use to be weeded out early.  Note
   1579      * that a modePool mode's prev field is used to hold a pointer to the
   1580      * member of the scrp->modes list for which a match was considered.
   1581      */
   1582     if (scrp->modePool == NULL) {
   1583         q = NULL;
   1584         for (p = availModes; p != NULL; p = p->next) {
   1585             status = xf86InitialCheckModeForDriver(scrp, p, clockRanges,
   1586                                                    strategy, maxPitch,
   1587                                                    virtX, virtY);
   1588 
   1589             if (status == MODE_OK) {
   1590                 status = xf86CheckModeForMonitor(p, scrp->monitor);
   1591             }
   1592 
   1593             if (status == MODE_OK) {
   1594                 new = xnfalloc(sizeof(DisplayModeRec));
   1595                 *new = *p;
   1596                 new->next = NULL;
   1597                 if (!q) {
   1598                     scrp->modePool = new;
   1599                 }
   1600                 else {
   1601                     q->next = new;
   1602                 }
   1603                 new->prev = NULL;
   1604                 q = new;
   1605                 q->name = xnfstrdup(p->name);
   1606                 q->status = MODE_OK;
   1607             }
   1608             else {
   1609                 printModeRejectMessage(scrp->scrnIndex, p, status);
   1610             }
   1611         }
   1612 
   1613         if (scrp->modePool == NULL) {
   1614             xf86DrvMsg(scrp->scrnIndex, X_WARNING, "Mode pool is empty\n");
   1615             return 0;
   1616         }
   1617     }
   1618     else {
   1619         for (p = scrp->modePool; p != NULL; p = p->next) {
   1620             p->prev = NULL;
   1621             p->status = MODE_OK;
   1622         }
   1623     }
   1624 
   1625     /*
   1626      * Allocate one entry in scrp->modes for each named mode.
   1627      */
   1628     while (scrp->modes)
   1629         xf86DeleteMode(&scrp->modes, scrp->modes);
   1630     endp = &scrp->modes;
   1631     last = NULL;
   1632     if (modeNames != NULL) {
   1633         for (i = 0; modeNames[i] != NULL; i++) {
   1634             userModes = TRUE;
   1635             new = xnfcalloc(1, sizeof(DisplayModeRec));
   1636             new->prev = last;
   1637             new->type = M_T_USERDEF;
   1638             new->name = xnfstrdup(modeNames[i]);
   1639             if (new->prev)
   1640                 new->prev->next = new;
   1641             *endp = last = new;
   1642             endp = &new->next;
   1643         }
   1644     }
   1645 
   1646     /* Lookup each mode */
   1647 #ifdef PANORAMIX
   1648     if (noPanoramiXExtension)
   1649         validateAllDefaultModes = TRUE;
   1650 #endif
   1651 
   1652     for (p = scrp->modes;; p = p->next) {
   1653         Bool repeat;
   1654 
   1655         /*
   1656          * If the supplied mode names don't produce a valid mode, scan through
   1657          * unconsidered modePool members until one survives validation.  This
   1658          * is done in decreasing order by mode pixel area.
   1659          */
   1660 
   1661         if (p == NULL) {
   1662             if ((numModes > 0) && !validateAllDefaultModes)
   1663                 break;
   1664 
   1665             validateAllDefaultModes = TRUE;
   1666             r = NULL;
   1667             modeSize = 0;
   1668             for (q = scrp->modePool; q != NULL; q = q->next) {
   1669                 if ((q->prev == NULL) && (q->status == MODE_OK)) {
   1670                     /*
   1671                      * Deal with the case where this mode wasn't considered
   1672                      * because of a builtin mode of the same name.
   1673                      */
   1674                     for (p = scrp->modes; p != NULL; p = p->next) {
   1675                         if ((p->status != MODE_OK) && !strcmp(p->name, q->name))
   1676                             break;
   1677                     }
   1678 
   1679                     if (p != NULL)
   1680                         q->prev = p;
   1681                     else {
   1682                         /*
   1683                          * A quick check to not allow default modes with
   1684                          * horizontal timing parameters that CRTs may have
   1685                          * problems with.
   1686                          */
   1687                         if (!scrp->monitor->reducedblanking &&
   1688                             (q->type & M_T_DEFAULT) &&
   1689                             ((double) q->HTotal / (double) q->HDisplay) < 1.15)
   1690                             continue;
   1691 
   1692                         if (modeSize < (q->HDisplay * q->VDisplay)) {
   1693                             r = q;
   1694                             modeSize = q->HDisplay * q->VDisplay;
   1695                         }
   1696                     }
   1697                 }
   1698             }
   1699 
   1700             if (r == NULL)
   1701                 break;
   1702 
   1703             p = xnfcalloc(1, sizeof(DisplayModeRec));
   1704             p->prev = last;
   1705             p->name = xnfstrdup(r->name);
   1706             if (!userModes)
   1707                 p->type = M_T_USERDEF;
   1708             if (p->prev)
   1709                 p->prev->next = p;
   1710             *endp = last = p;
   1711             endp = &p->next;
   1712         }
   1713 
   1714         repeat = FALSE;
   1715  lookupNext:
   1716         if (repeat && ((status = p->status) != MODE_OK))
   1717             printModeRejectMessage(scrp->scrnIndex, p, status);
   1718         saveType = p->type;
   1719         status = xf86LookupMode(scrp, p, clockRanges, strategy);
   1720         if (repeat && status == MODE_NOMODE)
   1721             continue;
   1722         if (status != MODE_OK)
   1723             printModeRejectMessage(scrp->scrnIndex, p, status);
   1724         if (status == MODE_ERROR) {
   1725             ErrorF("xf86ValidateModes: "
   1726                    "unexpected result from xf86LookupMode()\n");
   1727             return -1;
   1728         }
   1729         if (status != MODE_OK) {
   1730             if (p->status == MODE_OK)
   1731                 p->status = status;
   1732             continue;
   1733         }
   1734         p->type |= saveType;
   1735         repeat = TRUE;
   1736 
   1737         newLinePitch = linePitch;
   1738         newVirtX = virtX;
   1739         newVirtY = virtY;
   1740 
   1741         /*
   1742          * Don't let non-user defined modes increase the virtual size
   1743          */
   1744         if (!(p->type & M_T_USERDEF) && (numModes > 0)) {
   1745             if (p->HDisplay > virtX) {
   1746                 p->status = MODE_VIRTUAL_X;
   1747                 goto lookupNext;
   1748             }
   1749             if (p->VDisplay > virtY) {
   1750                 p->status = MODE_VIRTUAL_Y;
   1751                 goto lookupNext;
   1752             }
   1753         }
   1754         /*
   1755          * Adjust virtual width and height if the mode is too large for the
   1756          * current values and if they are not fixed.
   1757          */
   1758         if (virtualX <= 0 && p->HDisplay > newVirtX)
   1759             newVirtX = _VIRTUALX(p->HDisplay);
   1760         if (virtualY <= 0 && p->VDisplay > newVirtY) {
   1761             if (maxHeight > 0 && p->VDisplay > maxHeight) {
   1762                 p->status = MODE_VIRTUAL_Y;     /* ? */
   1763                 goto lookupNext;
   1764             }
   1765             newVirtY = p->VDisplay;
   1766         }
   1767 
   1768         /*
   1769          * If virtual resolution is to be increased, revalidate it.
   1770          */
   1771         if ((virtX != newVirtX) || (virtY != newVirtY)) {
   1772             if (linePitches != NULL) {
   1773                 newLinePitch = -1;
   1774                 for (i = 0; linePitches[i] != 0; i++) {
   1775                     if ((linePitches[i] >= newVirtX) &&
   1776                         (linePitches[i] >= linePitch) &&
   1777                         (linePitches[i] ==
   1778                          scanLineWidth(newVirtX, newVirtY, linePitches[i],
   1779                                        apertureSize, BankFormat, pitchInc))) {
   1780                         newLinePitch = linePitches[i];
   1781                         break;
   1782                     }
   1783                 }
   1784             }
   1785             else {
   1786                 if (linePitch < minPitch)
   1787                     linePitch = minPitch;
   1788                 newLinePitch = scanLineWidth(newVirtX, newVirtY, linePitch,
   1789                                              apertureSize, BankFormat,
   1790                                              pitchInc);
   1791             }
   1792             if ((newLinePitch < minPitch) || (newLinePitch > maxPitch)) {
   1793                 p->status = MODE_BAD_WIDTH;
   1794                 goto lookupNext;
   1795             }
   1796 
   1797             /*
   1798              * Check that the pixel area required by the new virtual height
   1799              * and line pitch isn't too large.
   1800              */
   1801             if (!xf86CheckModeSize(scrp, newLinePitch, newVirtX, newVirtY)) {
   1802                 p->status = MODE_MEM_VIRT;
   1803                 goto lookupNext;
   1804             }
   1805         }
   1806 
   1807         if (scrp->ValidMode) {
   1808             /*
   1809              * Give the driver a final say, passing it the proposed virtual
   1810              * geometry.
   1811              */
   1812             scrp->virtualX = newVirtX;
   1813             scrp->virtualY = newVirtY;
   1814             scrp->displayWidth = newLinePitch;
   1815             p->status = (scrp->ValidMode) (scrp, p, FALSE,
   1816                                            MODECHECK_FINAL);
   1817 
   1818             if (p->status != MODE_OK) {
   1819                 goto lookupNext;
   1820             }
   1821         }
   1822 
   1823         /* Mode has passed all the tests */
   1824         virtX = newVirtX;
   1825         virtY = newVirtY;
   1826         linePitch = newLinePitch;
   1827         p->status = MODE_OK;
   1828         numModes++;
   1829     }
   1830 
   1831     /*
   1832      * If we estimated the virtual size above, we may have filtered away all
   1833      * the modes that maximally match that size; scan again to find out and
   1834      * fix up if so.
   1835      */
   1836     if (inferred_virtual) {
   1837         int vx = 0, vy = 0;
   1838 
   1839         for (p = scrp->modes; p; p = p->next) {
   1840             if (p->HDisplay > vx && p->VDisplay > vy) {
   1841                 vx = p->HDisplay;
   1842                 vy = p->VDisplay;
   1843             }
   1844         }
   1845         if (vx < virtX || vy < virtY) {
   1846             const int types[] = {
   1847                 M_T_BUILTIN | M_T_PREFERRED,
   1848                 M_T_BUILTIN,
   1849                 M_T_DRIVER | M_T_PREFERRED,
   1850                 M_T_DRIVER,
   1851                 0
   1852             };
   1853             const int ntypes = ARRAY_SIZE(types);
   1854             int n;
   1855 
   1856             /*
   1857              * We did not find the estimated virtual size. So now we want to
   1858              * find the largest mode available, but we want to search in the
   1859              * modes in the order of "types" listed above.
   1860              */
   1861             for (n = 0; n < ntypes; n++) {
   1862                 int type = types[n];
   1863 
   1864                 vx = 0;
   1865                 vy = 0;
   1866                 for (p = scrp->modes; p; p = p->next) {
   1867                     /* scan through the modes in the sort order above */
   1868                     if ((p->type & type) != type)
   1869                         continue;
   1870                     if (p->HDisplay > vx && p->VDisplay > vy) {
   1871                         vx = p->HDisplay;
   1872                         vy = p->VDisplay;
   1873                     }
   1874                 }
   1875                 if (vx && vy)
   1876                     /* Found one */
   1877                     break;
   1878             }
   1879             xf86DrvMsg(scrp->scrnIndex, X_WARNING,
   1880                        "Shrinking virtual size estimate from %dx%d to %dx%d\n",
   1881                        virtX, virtY, vx, vy);
   1882             virtX = _VIRTUALX(vx);
   1883             virtY = vy;
   1884             for (p = scrp->modes; p; p = p->next) {
   1885                 if (numModes > 0) {
   1886                     if (p->HDisplay > virtX)
   1887                         p->status = MODE_VIRTUAL_X;
   1888                     if (p->VDisplay > virtY)
   1889                         p->status = MODE_VIRTUAL_Y;
   1890                     if (p->status != MODE_OK) {
   1891                         numModes--;
   1892                         printModeRejectMessage(scrp->scrnIndex, p, p->status);
   1893                     }
   1894                 }
   1895             }
   1896             if (linePitches != NULL) {
   1897                 for (i = 0; linePitches[i] != 0; i++) {
   1898                     if ((linePitches[i] >= virtX) &&
   1899                         (linePitches[i] ==
   1900                          scanLineWidth(virtX, virtY, linePitches[i],
   1901                                        apertureSize, BankFormat, pitchInc))) {
   1902                         linePitch = linePitches[i];
   1903                         break;
   1904                     }
   1905                 }
   1906             }
   1907             else {
   1908                 linePitch = scanLineWidth(virtX, virtY, minPitch,
   1909                                           apertureSize, BankFormat, pitchInc);
   1910             }
   1911         }
   1912     }
   1913 
   1914     /* Update the ScrnInfoRec parameters */
   1915 
   1916     scrp->virtualX = virtX;
   1917     scrp->virtualY = virtY;
   1918     scrp->displayWidth = linePitch;
   1919 
   1920     if (numModes <= 0)
   1921         return 0;
   1922 
   1923     /* Make the mode list into a circular list by joining up the ends */
   1924     p = scrp->modes;
   1925     while (p->next != NULL)
   1926         p = p->next;
   1927     /* p is now the last mode on the list */
   1928     p->next = scrp->modes;
   1929     scrp->modes->prev = p;
   1930 
   1931     if (minHeight > 0 && virtY < minHeight) {
   1932         xf86DrvMsg(scrp->scrnIndex, X_ERROR,
   1933                    "Virtual height (%d) is too small for the hardware "
   1934                    "(min %d)\n", virtY, minHeight);
   1935         return -1;
   1936     }
   1937 
   1938     return numModes;
   1939 }
   1940 
   1941 /*
   1942  * xf86DeleteMode
   1943  *
   1944  * This function removes a mode from a list of modes.
   1945  *
   1946  * There are different types of mode lists:
   1947  *
   1948  *  - singly linked linear lists, ending in NULL
   1949  *  - doubly linked linear lists, starting and ending in NULL
   1950  *  - doubly linked circular lists
   1951  *
   1952  */
   1953 
   1954 void
   1955 xf86DeleteMode(DisplayModePtr * modeList, DisplayModePtr mode)
   1956 {
   1957     /* Catch the easy/insane cases */
   1958     if (modeList == NULL || *modeList == NULL || mode == NULL)
   1959         return;
   1960 
   1961     /* If the mode is at the start of the list, move the start of the list */
   1962     if (*modeList == mode)
   1963         *modeList = mode->next;
   1964 
   1965     /* If mode is the only one on the list, set the list to NULL */
   1966     if ((mode == mode->prev) && (mode == mode->next)) {
   1967         *modeList = NULL;
   1968     }
   1969     else {
   1970         if ((mode->prev != NULL) && (mode->prev->next == mode))
   1971             mode->prev->next = mode->next;
   1972         if ((mode->next != NULL) && (mode->next->prev == mode))
   1973             mode->next->prev = mode->prev;
   1974     }
   1975 
   1976     free((void *) mode->name);
   1977     free(mode);
   1978 }
   1979 
   1980 /*
   1981  * xf86PruneDriverModes
   1982  *
   1983  * Remove modes from the driver's mode list which have been marked as
   1984  * invalid.
   1985  */
   1986 
   1987 void
   1988 xf86PruneDriverModes(ScrnInfoPtr scrp)
   1989 {
   1990     DisplayModePtr first, p, n;
   1991 
   1992     p = scrp->modes;
   1993     if (p == NULL)
   1994         return;
   1995 
   1996     do {
   1997         if (!(first = scrp->modes))
   1998             return;
   1999         n = p->next;
   2000         if (p->status != MODE_OK) {
   2001             xf86DeleteMode(&(scrp->modes), p);
   2002         }
   2003         p = n;
   2004     } while (p != NULL && p != first);
   2005 
   2006     /* modePool is no longer needed, turf it */
   2007     while (scrp->modePool) {
   2008         /*
   2009          * A modePool mode's prev field is used to hold a pointer to the
   2010          * member of the scrp->modes list for which a match was considered.
   2011          * Clear that pointer first, otherwise xf86DeleteMode might get
   2012          * confused
   2013          */
   2014         scrp->modePool->prev = NULL;
   2015         xf86DeleteMode(&scrp->modePool, scrp->modePool);
   2016     }
   2017 }
   2018 
   2019 /*
   2020  * xf86SetCrtcForModes
   2021  *
   2022  * Goes through the screen's mode list, and initialises the Crtc
   2023  * parameters for each mode.  The initialisation includes adjustments
   2024  * for interlaced and double scan modes.
   2025  */
   2026 void
   2027 xf86SetCrtcForModes(ScrnInfoPtr scrp, int adjustFlags)
   2028 {
   2029     DisplayModePtr p;
   2030 
   2031     /*
   2032      * Store adjustFlags for use with the VidMode extension. There is an
   2033      * implicit assumption here that SetCrtcForModes is called once.
   2034      */
   2035     scrp->adjustFlags = adjustFlags;
   2036 
   2037     p = scrp->modes;
   2038     if (p == NULL)
   2039         return;
   2040 
   2041     do {
   2042         xf86SetModeCrtc(p, adjustFlags);
   2043         DebugF("%sMode %s: %d (%d) %d %d (%d) %d %d (%d) %d %d (%d) %d\n",
   2044                (p->type & M_T_DEFAULT) ? "Default " : "",
   2045                p->name, p->CrtcHDisplay, p->CrtcHBlankStart,
   2046                p->CrtcHSyncStart, p->CrtcHSyncEnd, p->CrtcHBlankEnd,
   2047                p->CrtcHTotal, p->CrtcVDisplay, p->CrtcVBlankStart,
   2048                p->CrtcVSyncStart, p->CrtcVSyncEnd, p->CrtcVBlankEnd,
   2049                p->CrtcVTotal);
   2050         p = p->next;
   2051     } while (p != NULL && p != scrp->modes);
   2052 }
   2053 
   2054 void
   2055 xf86PrintModes(ScrnInfoPtr scrp)
   2056 {
   2057     DisplayModePtr p;
   2058     float hsync, refresh = 0;
   2059     const char *desc, *desc2, *prefix, *uprefix;
   2060 
   2061     if (scrp == NULL)
   2062         return;
   2063 
   2064     xf86DrvMsg(scrp->scrnIndex, X_INFO, "Virtual size is %dx%d (pitch %d)\n",
   2065                scrp->virtualX, scrp->virtualY, scrp->displayWidth);
   2066 
   2067     p = scrp->modes;
   2068     if (p == NULL)
   2069         return;
   2070 
   2071     do {
   2072         desc = desc2 = "";
   2073         hsync = xf86ModeHSync(p);
   2074         refresh = xf86ModeVRefresh(p);
   2075         if (p->Flags & V_INTERLACE) {
   2076             desc = " (I)";
   2077         }
   2078         if (p->Flags & V_DBLSCAN) {
   2079             desc = " (D)";
   2080         }
   2081         if (p->VScan > 1) {
   2082             desc2 = " (VScan)";
   2083         }
   2084         if (p->type & M_T_BUILTIN)
   2085             prefix = "Built-in mode";
   2086         else if (p->type & M_T_DEFAULT)
   2087             prefix = "Default mode";
   2088         else if (p->type & M_T_DRIVER)
   2089             prefix = "Driver mode";
   2090         else
   2091             prefix = "Mode";
   2092         if (p->type & M_T_USERDEF)
   2093             uprefix = "*";
   2094         else
   2095             uprefix = " ";
   2096         if (hsync == 0 || refresh == 0) {
   2097             if (p->name)
   2098                 xf86DrvMsg(scrp->scrnIndex, X_CONFIG,
   2099                            "%s%s \"%s\"\n", uprefix, prefix, p->name);
   2100             else
   2101                 xf86DrvMsg(scrp->scrnIndex, X_PROBED,
   2102                            "%s%s %dx%d (unnamed)\n",
   2103                            uprefix, prefix, p->HDisplay, p->VDisplay);
   2104         }
   2105         else if (p->Clock == p->SynthClock) {
   2106             xf86DrvMsg(scrp->scrnIndex, X_CONFIG,
   2107                        "%s%s \"%s\": %.1f MHz, %.1f kHz, %.1f Hz%s%s\n",
   2108                        uprefix, prefix, p->name, p->Clock / 1000.0,
   2109                        hsync, refresh, desc, desc2);
   2110         }
   2111         else {
   2112             xf86DrvMsg(scrp->scrnIndex, X_CONFIG,
   2113                        "%s%s \"%s\": %.1f MHz (scaled from %.1f MHz), "
   2114                        "%.1f kHz, %.1f Hz%s%s\n",
   2115                        uprefix, prefix, p->name, p->Clock / 1000.0,
   2116                        p->SynthClock / 1000.0, hsync, refresh, desc, desc2);
   2117         }
   2118         if (hsync != 0 && refresh != 0)
   2119             xf86PrintModeline(scrp->scrnIndex, p);
   2120         p = p->next;
   2121     } while (p != NULL && p != scrp->modes);
   2122 }