duckstation

duckstation, but archived from the revision just before upstream changed it to a proprietary software project, this version is the libre one
git clone https://git.neptards.moe/u3shit/duckstation.git
Log | Files | Refs | README | LICENSE

gtest-internal.h (55995B)


      1 // Copyright 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // The Google C++ Testing and Mocking Framework (Google Test)
     31 //
     32 // This header file declares functions and macros used internally by
     33 // Google Test.  They are subject to change without notice.
     34 
     35 // GOOGLETEST_CM0001 DO NOT DELETE
     36 
     37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     39 
     40 #include "gtest/internal/gtest-port.h"
     41 
     42 #if GTEST_OS_LINUX
     43 # include <stdlib.h>
     44 # include <sys/types.h>
     45 # include <sys/wait.h>
     46 # include <unistd.h>
     47 #endif  // GTEST_OS_LINUX
     48 
     49 #if GTEST_HAS_EXCEPTIONS
     50 # include <stdexcept>
     51 #endif
     52 
     53 #include <ctype.h>
     54 #include <float.h>
     55 #include <string.h>
     56 #include <cstdint>
     57 #include <iomanip>
     58 #include <limits>
     59 #include <map>
     60 #include <set>
     61 #include <string>
     62 #include <type_traits>
     63 #include <vector>
     64 
     65 #include "gtest/gtest-message.h"
     66 #include "gtest/internal/gtest-filepath.h"
     67 #include "gtest/internal/gtest-string.h"
     68 #include "gtest/internal/gtest-type-util.h"
     69 
     70 // Due to C++ preprocessor weirdness, we need double indirection to
     71 // concatenate two tokens when one of them is __LINE__.  Writing
     72 //
     73 //   foo ## __LINE__
     74 //
     75 // will result in the token foo__LINE__, instead of foo followed by
     76 // the current line number.  For more details, see
     77 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
     78 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
     79 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
     80 
     81 // Stringifies its argument.
     82 // Work around a bug in visual studio which doesn't accept code like this:
     83 //
     84 //   #define GTEST_STRINGIFY_(name) #name
     85 //   #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ...
     86 //   MACRO(, x, y)
     87 //
     88 // Complaining about the argument to GTEST_STRINGIFY_ being empty.
     89 // This is allowed by the spec.
     90 #define GTEST_STRINGIFY_HELPER_(name, ...) #name
     91 #define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, )
     92 
     93 namespace proto2 { class Message; }
     94 
     95 namespace testing {
     96 
     97 // Forward declarations.
     98 
     99 class AssertionResult;                 // Result of an assertion.
    100 class Message;                         // Represents a failure message.
    101 class Test;                            // Represents a test.
    102 class TestInfo;                        // Information about a test.
    103 class TestPartResult;                  // Result of a test part.
    104 class UnitTest;                        // A collection of test suites.
    105 
    106 template <typename T>
    107 ::std::string PrintToString(const T& value);
    108 
    109 namespace internal {
    110 
    111 struct TraceInfo;                      // Information about a trace point.
    112 class TestInfoImpl;                    // Opaque implementation of TestInfo
    113 class UnitTestImpl;                    // Opaque implementation of UnitTest
    114 
    115 // The text used in failure messages to indicate the start of the
    116 // stack trace.
    117 GTEST_API_ extern const char kStackTraceMarker[];
    118 
    119 // An IgnoredValue object can be implicitly constructed from ANY value.
    120 class IgnoredValue {
    121   struct Sink {};
    122  public:
    123   // This constructor template allows any value to be implicitly
    124   // converted to IgnoredValue.  The object has no data member and
    125   // doesn't try to remember anything about the argument.  We
    126   // deliberately omit the 'explicit' keyword in order to allow the
    127   // conversion to be implicit.
    128   // Disable the conversion if T already has a magical conversion operator.
    129   // Otherwise we get ambiguity.
    130   template <typename T,
    131             typename std::enable_if<!std::is_convertible<T, Sink>::value,
    132                                     int>::type = 0>
    133   IgnoredValue(const T& /* ignored */) {}  // NOLINT(runtime/explicit)
    134 };
    135 
    136 // Appends the user-supplied message to the Google-Test-generated message.
    137 GTEST_API_ std::string AppendUserMessage(
    138     const std::string& gtest_msg, const Message& user_msg);
    139 
    140 #if GTEST_HAS_EXCEPTIONS
    141 
    142 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4275 \
    143 /* an exported class was derived from a class that was not exported */)
    144 
    145 // This exception is thrown by (and only by) a failed Google Test
    146 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
    147 // are enabled).  We derive it from std::runtime_error, which is for
    148 // errors presumably detectable only at run time.  Since
    149 // std::runtime_error inherits from std::exception, many testing
    150 // frameworks know how to extract and print the message inside it.
    151 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
    152  public:
    153   explicit GoogleTestFailureException(const TestPartResult& failure);
    154 };
    155 
    156 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4275
    157 
    158 #endif  // GTEST_HAS_EXCEPTIONS
    159 
    160 namespace edit_distance {
    161 // Returns the optimal edits to go from 'left' to 'right'.
    162 // All edits cost the same, with replace having lower priority than
    163 // add/remove.
    164 // Simple implementation of the Wagner-Fischer algorithm.
    165 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
    166 enum EditType { kMatch, kAdd, kRemove, kReplace };
    167 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
    168     const std::vector<size_t>& left, const std::vector<size_t>& right);
    169 
    170 // Same as above, but the input is represented as strings.
    171 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
    172     const std::vector<std::string>& left,
    173     const std::vector<std::string>& right);
    174 
    175 // Create a diff of the input strings in Unified diff format.
    176 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
    177                                          const std::vector<std::string>& right,
    178                                          size_t context = 2);
    179 
    180 }  // namespace edit_distance
    181 
    182 // Calculate the diff between 'left' and 'right' and return it in unified diff
    183 // format.
    184 // If not null, stores in 'total_line_count' the total number of lines found
    185 // in left + right.
    186 GTEST_API_ std::string DiffStrings(const std::string& left,
    187                                    const std::string& right,
    188                                    size_t* total_line_count);
    189 
    190 // Constructs and returns the message for an equality assertion
    191 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
    192 //
    193 // The first four parameters are the expressions used in the assertion
    194 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
    195 // where foo is 5 and bar is 6, we have:
    196 //
    197 //   expected_expression: "foo"
    198 //   actual_expression:   "bar"
    199 //   expected_value:      "5"
    200 //   actual_value:        "6"
    201 //
    202 // The ignoring_case parameter is true if and only if the assertion is a
    203 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
    204 // be inserted into the message.
    205 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
    206                                      const char* actual_expression,
    207                                      const std::string& expected_value,
    208                                      const std::string& actual_value,
    209                                      bool ignoring_case);
    210 
    211 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
    212 GTEST_API_ std::string GetBoolAssertionFailureMessage(
    213     const AssertionResult& assertion_result,
    214     const char* expression_text,
    215     const char* actual_predicate_value,
    216     const char* expected_predicate_value);
    217 
    218 // This template class represents an IEEE floating-point number
    219 // (either single-precision or double-precision, depending on the
    220 // template parameters).
    221 //
    222 // The purpose of this class is to do more sophisticated number
    223 // comparison.  (Due to round-off error, etc, it's very unlikely that
    224 // two floating-points will be equal exactly.  Hence a naive
    225 // comparison by the == operation often doesn't work.)
    226 //
    227 // Format of IEEE floating-point:
    228 //
    229 //   The most-significant bit being the leftmost, an IEEE
    230 //   floating-point looks like
    231 //
    232 //     sign_bit exponent_bits fraction_bits
    233 //
    234 //   Here, sign_bit is a single bit that designates the sign of the
    235 //   number.
    236 //
    237 //   For float, there are 8 exponent bits and 23 fraction bits.
    238 //
    239 //   For double, there are 11 exponent bits and 52 fraction bits.
    240 //
    241 //   More details can be found at
    242 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
    243 //
    244 // Template parameter:
    245 //
    246 //   RawType: the raw floating-point type (either float or double)
    247 template <typename RawType>
    248 class FloatingPoint {
    249  public:
    250   // Defines the unsigned integer type that has the same size as the
    251   // floating point number.
    252   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
    253 
    254   // Constants.
    255 
    256   // # of bits in a number.
    257   static const size_t kBitCount = 8*sizeof(RawType);
    258 
    259   // # of fraction bits in a number.
    260   static const size_t kFractionBitCount =
    261     std::numeric_limits<RawType>::digits - 1;
    262 
    263   // # of exponent bits in a number.
    264   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
    265 
    266   // The mask for the sign bit.
    267   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
    268 
    269   // The mask for the fraction bits.
    270   static const Bits kFractionBitMask =
    271     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
    272 
    273   // The mask for the exponent bits.
    274   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
    275 
    276   // How many ULP's (Units in the Last Place) we want to tolerate when
    277   // comparing two numbers.  The larger the value, the more error we
    278   // allow.  A 0 value means that two numbers must be exactly the same
    279   // to be considered equal.
    280   //
    281   // The maximum error of a single floating-point operation is 0.5
    282   // units in the last place.  On Intel CPU's, all floating-point
    283   // calculations are done with 80-bit precision, while double has 64
    284   // bits.  Therefore, 4 should be enough for ordinary use.
    285   //
    286   // See the following article for more details on ULP:
    287   // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
    288   static const size_t kMaxUlps = 4;
    289 
    290   // Constructs a FloatingPoint from a raw floating-point number.
    291   //
    292   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
    293   // around may change its bits, although the new value is guaranteed
    294   // to be also a NAN.  Therefore, don't expect this constructor to
    295   // preserve the bits in x when x is a NAN.
    296   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
    297 
    298   // Static methods
    299 
    300   // Reinterprets a bit pattern as a floating-point number.
    301   //
    302   // This function is needed to test the AlmostEquals() method.
    303   static RawType ReinterpretBits(const Bits bits) {
    304     FloatingPoint fp(0);
    305     fp.u_.bits_ = bits;
    306     return fp.u_.value_;
    307   }
    308 
    309   // Returns the floating-point number that represent positive infinity.
    310   static RawType Infinity() {
    311     return ReinterpretBits(kExponentBitMask);
    312   }
    313 
    314   // Returns the maximum representable finite floating-point number.
    315   static RawType Max();
    316 
    317   // Non-static methods
    318 
    319   // Returns the bits that represents this number.
    320   const Bits &bits() const { return u_.bits_; }
    321 
    322   // Returns the exponent bits of this number.
    323   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
    324 
    325   // Returns the fraction bits of this number.
    326   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
    327 
    328   // Returns the sign bit of this number.
    329   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
    330 
    331   // Returns true if and only if this is NAN (not a number).
    332   bool is_nan() const {
    333     // It's a NAN if the exponent bits are all ones and the fraction
    334     // bits are not entirely zeros.
    335     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
    336   }
    337 
    338   // Returns true if and only if this number is at most kMaxUlps ULP's away
    339   // from rhs.  In particular, this function:
    340   //
    341   //   - returns false if either number is (or both are) NAN.
    342   //   - treats really large numbers as almost equal to infinity.
    343   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
    344   bool AlmostEquals(const FloatingPoint& rhs) const {
    345     // The IEEE standard says that any comparison operation involving
    346     // a NAN must return false.
    347     if (is_nan() || rhs.is_nan()) return false;
    348 
    349     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
    350         <= kMaxUlps;
    351   }
    352 
    353  private:
    354   // The data type used to store the actual floating-point number.
    355   union FloatingPointUnion {
    356     RawType value_;  // The raw floating-point number.
    357     Bits bits_;      // The bits that represent the number.
    358   };
    359 
    360   // Converts an integer from the sign-and-magnitude representation to
    361   // the biased representation.  More precisely, let N be 2 to the
    362   // power of (kBitCount - 1), an integer x is represented by the
    363   // unsigned number x + N.
    364   //
    365   // For instance,
    366   //
    367   //   -N + 1 (the most negative number representable using
    368   //          sign-and-magnitude) is represented by 1;
    369   //   0      is represented by N; and
    370   //   N - 1  (the biggest number representable using
    371   //          sign-and-magnitude) is represented by 2N - 1.
    372   //
    373   // Read http://en.wikipedia.org/wiki/Signed_number_representations
    374   // for more details on signed number representations.
    375   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
    376     if (kSignBitMask & sam) {
    377       // sam represents a negative number.
    378       return ~sam + 1;
    379     } else {
    380       // sam represents a positive number.
    381       return kSignBitMask | sam;
    382     }
    383   }
    384 
    385   // Given two numbers in the sign-and-magnitude representation,
    386   // returns the distance between them as an unsigned number.
    387   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
    388                                                      const Bits &sam2) {
    389     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
    390     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
    391     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
    392   }
    393 
    394   FloatingPointUnion u_;
    395 };
    396 
    397 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
    398 // macro defined by <windows.h>.
    399 template <>
    400 inline float FloatingPoint<float>::Max() { return FLT_MAX; }
    401 template <>
    402 inline double FloatingPoint<double>::Max() { return DBL_MAX; }
    403 
    404 // Typedefs the instances of the FloatingPoint template class that we
    405 // care to use.
    406 typedef FloatingPoint<float> Float;
    407 typedef FloatingPoint<double> Double;
    408 
    409 // In order to catch the mistake of putting tests that use different
    410 // test fixture classes in the same test suite, we need to assign
    411 // unique IDs to fixture classes and compare them.  The TypeId type is
    412 // used to hold such IDs.  The user should treat TypeId as an opaque
    413 // type: the only operation allowed on TypeId values is to compare
    414 // them for equality using the == operator.
    415 typedef const void* TypeId;
    416 
    417 template <typename T>
    418 class TypeIdHelper {
    419  public:
    420   // dummy_ must not have a const type.  Otherwise an overly eager
    421   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
    422   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
    423   static bool dummy_;
    424 };
    425 
    426 template <typename T>
    427 bool TypeIdHelper<T>::dummy_ = false;
    428 
    429 // GetTypeId<T>() returns the ID of type T.  Different values will be
    430 // returned for different types.  Calling the function twice with the
    431 // same type argument is guaranteed to return the same ID.
    432 template <typename T>
    433 TypeId GetTypeId() {
    434   // The compiler is required to allocate a different
    435   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
    436   // the template.  Therefore, the address of dummy_ is guaranteed to
    437   // be unique.
    438   return &(TypeIdHelper<T>::dummy_);
    439 }
    440 
    441 // Returns the type ID of ::testing::Test.  Always call this instead
    442 // of GetTypeId< ::testing::Test>() to get the type ID of
    443 // ::testing::Test, as the latter may give the wrong result due to a
    444 // suspected linker bug when compiling Google Test as a Mac OS X
    445 // framework.
    446 GTEST_API_ TypeId GetTestTypeId();
    447 
    448 // Defines the abstract factory interface that creates instances
    449 // of a Test object.
    450 class TestFactoryBase {
    451  public:
    452   virtual ~TestFactoryBase() {}
    453 
    454   // Creates a test instance to run. The instance is both created and destroyed
    455   // within TestInfoImpl::Run()
    456   virtual Test* CreateTest() = 0;
    457 
    458  protected:
    459   TestFactoryBase() {}
    460 
    461  private:
    462   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
    463 };
    464 
    465 // This class provides implementation of TeastFactoryBase interface.
    466 // It is used in TEST and TEST_F macros.
    467 template <class TestClass>
    468 class TestFactoryImpl : public TestFactoryBase {
    469  public:
    470   Test* CreateTest() override { return new TestClass; }
    471 };
    472 
    473 #if GTEST_OS_WINDOWS
    474 
    475 // Predicate-formatters for implementing the HRESULT checking macros
    476 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
    477 // We pass a long instead of HRESULT to avoid causing an
    478 // include dependency for the HRESULT type.
    479 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
    480                                             long hr);  // NOLINT
    481 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
    482                                             long hr);  // NOLINT
    483 
    484 #endif  // GTEST_OS_WINDOWS
    485 
    486 // Types of SetUpTestSuite() and TearDownTestSuite() functions.
    487 using SetUpTestSuiteFunc = void (*)();
    488 using TearDownTestSuiteFunc = void (*)();
    489 
    490 struct CodeLocation {
    491   CodeLocation(const std::string& a_file, int a_line)
    492       : file(a_file), line(a_line) {}
    493 
    494   std::string file;
    495   int line;
    496 };
    497 
    498 //  Helper to identify which setup function for TestCase / TestSuite to call.
    499 //  Only one function is allowed, either TestCase or TestSute but not both.
    500 
    501 // Utility functions to help SuiteApiResolver
    502 using SetUpTearDownSuiteFuncType = void (*)();
    503 
    504 inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
    505     SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
    506   return a == def ? nullptr : a;
    507 }
    508 
    509 template <typename T>
    510 //  Note that SuiteApiResolver inherits from T because
    511 //  SetUpTestSuite()/TearDownTestSuite() could be protected. Ths way
    512 //  SuiteApiResolver can access them.
    513 struct SuiteApiResolver : T {
    514   // testing::Test is only forward declared at this point. So we make it a
    515   // dependend class for the compiler to be OK with it.
    516   using Test =
    517       typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
    518 
    519   static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
    520                                                         int line_num) {
    521     SetUpTearDownSuiteFuncType test_case_fp =
    522         GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
    523     SetUpTearDownSuiteFuncType test_suite_fp =
    524         GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
    525 
    526     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
    527         << "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
    528            "make sure there is only one present at "
    529         << filename << ":" << line_num;
    530 
    531     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
    532   }
    533 
    534   static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename,
    535                                                            int line_num) {
    536     SetUpTearDownSuiteFuncType test_case_fp =
    537         GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
    538     SetUpTearDownSuiteFuncType test_suite_fp =
    539         GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
    540 
    541     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
    542         << "Test can not provide both TearDownTestSuite and TearDownTestCase,"
    543            " please make sure there is only one present at"
    544         << filename << ":" << line_num;
    545 
    546     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
    547   }
    548 };
    549 
    550 // Creates a new TestInfo object and registers it with Google Test;
    551 // returns the created object.
    552 //
    553 // Arguments:
    554 //
    555 //   test_suite_name:   name of the test suite
    556 //   name:             name of the test
    557 //   type_param        the name of the test's type parameter, or NULL if
    558 //                     this is not a typed or a type-parameterized test.
    559 //   value_param       text representation of the test's value parameter,
    560 //                     or NULL if this is not a type-parameterized test.
    561 //   code_location:    code location where the test is defined
    562 //   fixture_class_id: ID of the test fixture class
    563 //   set_up_tc:        pointer to the function that sets up the test suite
    564 //   tear_down_tc:     pointer to the function that tears down the test suite
    565 //   factory:          pointer to the factory that creates a test object.
    566 //                     The newly created TestInfo instance will assume
    567 //                     ownership of the factory object.
    568 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
    569     const char* test_suite_name, const char* name, const char* type_param,
    570     const char* value_param, CodeLocation code_location,
    571     TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
    572     TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
    573 
    574 // If *pstr starts with the given prefix, modifies *pstr to be right
    575 // past the prefix and returns true; otherwise leaves *pstr unchanged
    576 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
    577 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
    578 
    579 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    580 
    581 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
    582 /* class A needs to have dll-interface to be used by clients of class B */)
    583 
    584 // State of the definition of a type-parameterized test suite.
    585 class GTEST_API_ TypedTestSuitePState {
    586  public:
    587   TypedTestSuitePState() : registered_(false) {}
    588 
    589   // Adds the given test name to defined_test_names_ and return true
    590   // if the test suite hasn't been registered; otherwise aborts the
    591   // program.
    592   bool AddTestName(const char* file, int line, const char* case_name,
    593                    const char* test_name) {
    594     if (registered_) {
    595       fprintf(stderr,
    596               "%s Test %s must be defined before "
    597               "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
    598               FormatFileLocation(file, line).c_str(), test_name, case_name);
    599       fflush(stderr);
    600       posix::Abort();
    601     }
    602     registered_tests_.insert(
    603         ::std::make_pair(test_name, CodeLocation(file, line)));
    604     return true;
    605   }
    606 
    607   bool TestExists(const std::string& test_name) const {
    608     return registered_tests_.count(test_name) > 0;
    609   }
    610 
    611   const CodeLocation& GetCodeLocation(const std::string& test_name) const {
    612     RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
    613     GTEST_CHECK_(it != registered_tests_.end());
    614     return it->second;
    615   }
    616 
    617   // Verifies that registered_tests match the test names in
    618   // defined_test_names_; returns registered_tests if successful, or
    619   // aborts the program otherwise.
    620   const char* VerifyRegisteredTestNames(const char* test_suite_name,
    621                                         const char* file, int line,
    622                                         const char* registered_tests);
    623 
    624  private:
    625   typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
    626 
    627   bool registered_;
    628   RegisteredTestsMap registered_tests_;
    629 };
    630 
    631 //  Legacy API is deprecated but still available
    632 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
    633 using TypedTestCasePState = TypedTestSuitePState;
    634 #endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
    635 
    636 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251
    637 
    638 // Skips to the first non-space char after the first comma in 'str';
    639 // returns NULL if no comma is found in 'str'.
    640 inline const char* SkipComma(const char* str) {
    641   const char* comma = strchr(str, ',');
    642   if (comma == nullptr) {
    643     return nullptr;
    644   }
    645   while (IsSpace(*(++comma))) {}
    646   return comma;
    647 }
    648 
    649 // Returns the prefix of 'str' before the first comma in it; returns
    650 // the entire string if it contains no comma.
    651 inline std::string GetPrefixUntilComma(const char* str) {
    652   const char* comma = strchr(str, ',');
    653   return comma == nullptr ? str : std::string(str, comma);
    654 }
    655 
    656 // Splits a given string on a given delimiter, populating a given
    657 // vector with the fields.
    658 void SplitString(const ::std::string& str, char delimiter,
    659                  ::std::vector< ::std::string>* dest);
    660 
    661 // The default argument to the template below for the case when the user does
    662 // not provide a name generator.
    663 struct DefaultNameGenerator {
    664   template <typename T>
    665   static std::string GetName(int i) {
    666     return StreamableToString(i);
    667   }
    668 };
    669 
    670 template <typename Provided = DefaultNameGenerator>
    671 struct NameGeneratorSelector {
    672   typedef Provided type;
    673 };
    674 
    675 template <typename NameGenerator>
    676 void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {}
    677 
    678 template <typename NameGenerator, typename Types>
    679 void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
    680   result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
    681   GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
    682                                           i + 1);
    683 }
    684 
    685 template <typename NameGenerator, typename Types>
    686 std::vector<std::string> GenerateNames() {
    687   std::vector<std::string> result;
    688   GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
    689   return result;
    690 }
    691 
    692 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
    693 // registers a list of type-parameterized tests with Google Test.  The
    694 // return value is insignificant - we just need to return something
    695 // such that we can call this function in a namespace scope.
    696 //
    697 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
    698 // template parameter.  It's defined in gtest-type-util.h.
    699 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
    700 class TypeParameterizedTest {
    701  public:
    702   // 'index' is the index of the test in the type list 'Types'
    703   // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
    704   // Types).  Valid values for 'index' are [0, N - 1] where N is the
    705   // length of Types.
    706   static bool Register(const char* prefix, const CodeLocation& code_location,
    707                        const char* case_name, const char* test_names, int index,
    708                        const std::vector<std::string>& type_names =
    709                            GenerateNames<DefaultNameGenerator, Types>()) {
    710     typedef typename Types::Head Type;
    711     typedef Fixture<Type> FixtureClass;
    712     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
    713 
    714     // First, registers the first type-parameterized test in the type
    715     // list.
    716     MakeAndRegisterTestInfo(
    717         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
    718          "/" + type_names[static_cast<size_t>(index)])
    719             .c_str(),
    720         StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
    721         GetTypeName<Type>().c_str(),
    722         nullptr,  // No value parameter.
    723         code_location, GetTypeId<FixtureClass>(),
    724         SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(
    725             code_location.file.c_str(), code_location.line),
    726         SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(
    727             code_location.file.c_str(), code_location.line),
    728         new TestFactoryImpl<TestClass>);
    729 
    730     // Next, recurses (at compile time) with the tail of the type list.
    731     return TypeParameterizedTest<Fixture, TestSel,
    732                                  typename Types::Tail>::Register(prefix,
    733                                                                  code_location,
    734                                                                  case_name,
    735                                                                  test_names,
    736                                                                  index + 1,
    737                                                                  type_names);
    738   }
    739 };
    740 
    741 // The base case for the compile time recursion.
    742 template <GTEST_TEMPLATE_ Fixture, class TestSel>
    743 class TypeParameterizedTest<Fixture, TestSel, internal::None> {
    744  public:
    745   static bool Register(const char* /*prefix*/, const CodeLocation&,
    746                        const char* /*case_name*/, const char* /*test_names*/,
    747                        int /*index*/,
    748                        const std::vector<std::string>& =
    749                            std::vector<std::string>() /*type_names*/) {
    750     return true;
    751   }
    752 };
    753 
    754 GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name,
    755                                                    CodeLocation code_location);
    756 GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation(
    757     const char* case_name);
    758 
    759 // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
    760 // registers *all combinations* of 'Tests' and 'Types' with Google
    761 // Test.  The return value is insignificant - we just need to return
    762 // something such that we can call this function in a namespace scope.
    763 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
    764 class TypeParameterizedTestSuite {
    765  public:
    766   static bool Register(const char* prefix, CodeLocation code_location,
    767                        const TypedTestSuitePState* state, const char* case_name,
    768                        const char* test_names,
    769                        const std::vector<std::string>& type_names =
    770                            GenerateNames<DefaultNameGenerator, Types>()) {
    771     RegisterTypeParameterizedTestSuiteInstantiation(case_name);
    772     std::string test_name = StripTrailingSpaces(
    773         GetPrefixUntilComma(test_names));
    774     if (!state->TestExists(test_name)) {
    775       fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
    776               case_name, test_name.c_str(),
    777               FormatFileLocation(code_location.file.c_str(),
    778                                  code_location.line).c_str());
    779       fflush(stderr);
    780       posix::Abort();
    781     }
    782     const CodeLocation& test_location = state->GetCodeLocation(test_name);
    783 
    784     typedef typename Tests::Head Head;
    785 
    786     // First, register the first test in 'Test' for each type in 'Types'.
    787     TypeParameterizedTest<Fixture, Head, Types>::Register(
    788         prefix, test_location, case_name, test_names, 0, type_names);
    789 
    790     // Next, recurses (at compile time) with the tail of the test list.
    791     return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
    792                                       Types>::Register(prefix, code_location,
    793                                                        state, case_name,
    794                                                        SkipComma(test_names),
    795                                                        type_names);
    796   }
    797 };
    798 
    799 // The base case for the compile time recursion.
    800 template <GTEST_TEMPLATE_ Fixture, typename Types>
    801 class TypeParameterizedTestSuite<Fixture, internal::None, Types> {
    802  public:
    803   static bool Register(const char* /*prefix*/, const CodeLocation&,
    804                        const TypedTestSuitePState* /*state*/,
    805                        const char* /*case_name*/, const char* /*test_names*/,
    806                        const std::vector<std::string>& =
    807                            std::vector<std::string>() /*type_names*/) {
    808     return true;
    809   }
    810 };
    811 
    812 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    813 
    814 // Returns the current OS stack trace as an std::string.
    815 //
    816 // The maximum number of stack frames to be included is specified by
    817 // the gtest_stack_trace_depth flag.  The skip_count parameter
    818 // specifies the number of top frames to be skipped, which doesn't
    819 // count against the number of frames to be included.
    820 //
    821 // For example, if Foo() calls Bar(), which in turn calls
    822 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
    823 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
    824 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
    825     UnitTest* unit_test, int skip_count);
    826 
    827 // Helpers for suppressing warnings on unreachable code or constant
    828 // condition.
    829 
    830 // Always returns true.
    831 GTEST_API_ bool AlwaysTrue();
    832 
    833 // Always returns false.
    834 inline bool AlwaysFalse() { return !AlwaysTrue(); }
    835 
    836 // Helper for suppressing false warning from Clang on a const char*
    837 // variable declared in a conditional expression always being NULL in
    838 // the else branch.
    839 struct GTEST_API_ ConstCharPtr {
    840   ConstCharPtr(const char* str) : value(str) {}
    841   operator bool() const { return true; }
    842   const char* value;
    843 };
    844 
    845 // Helper for declaring std::string within 'if' statement
    846 // in pre C++17 build environment.
    847 struct TrueWithString {
    848   TrueWithString() = default;
    849   explicit TrueWithString(const char* str) : value(str) {}
    850   explicit TrueWithString(const std::string& str) : value(str) {}
    851   explicit operator bool() const { return true; }
    852   std::string value;
    853 };
    854 
    855 // A simple Linear Congruential Generator for generating random
    856 // numbers with a uniform distribution.  Unlike rand() and srand(), it
    857 // doesn't use global state (and therefore can't interfere with user
    858 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
    859 // but it's good enough for our purposes.
    860 class GTEST_API_ Random {
    861  public:
    862   static const uint32_t kMaxRange = 1u << 31;
    863 
    864   explicit Random(uint32_t seed) : state_(seed) {}
    865 
    866   void Reseed(uint32_t seed) { state_ = seed; }
    867 
    868   // Generates a random number from [0, range).  Crashes if 'range' is
    869   // 0 or greater than kMaxRange.
    870   uint32_t Generate(uint32_t range);
    871 
    872  private:
    873   uint32_t state_;
    874   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
    875 };
    876 
    877 // Turns const U&, U&, const U, and U all into U.
    878 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
    879   typename std::remove_const<typename std::remove_reference<T>::type>::type
    880 
    881 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
    882 // true if and only if T is type proto2::Message or a subclass of it.
    883 template <typename T>
    884 struct IsAProtocolMessage
    885     : public std::is_convertible<const T*, const ::proto2::Message*> {};
    886 
    887 // When the compiler sees expression IsContainerTest<C>(0), if C is an
    888 // STL-style container class, the first overload of IsContainerTest
    889 // will be viable (since both C::iterator* and C::const_iterator* are
    890 // valid types and NULL can be implicitly converted to them).  It will
    891 // be picked over the second overload as 'int' is a perfect match for
    892 // the type of argument 0.  If C::iterator or C::const_iterator is not
    893 // a valid type, the first overload is not viable, and the second
    894 // overload will be picked.  Therefore, we can determine whether C is
    895 // a container class by checking the type of IsContainerTest<C>(0).
    896 // The value of the expression is insignificant.
    897 //
    898 // In C++11 mode we check the existence of a const_iterator and that an
    899 // iterator is properly implemented for the container.
    900 //
    901 // For pre-C++11 that we look for both C::iterator and C::const_iterator.
    902 // The reason is that C++ injects the name of a class as a member of the
    903 // class itself (e.g. you can refer to class iterator as either
    904 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
    905 // only, for example, we would mistakenly think that a class named
    906 // iterator is an STL container.
    907 //
    908 // Also note that the simpler approach of overloading
    909 // IsContainerTest(typename C::const_iterator*) and
    910 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
    911 typedef int IsContainer;
    912 template <class C,
    913           class Iterator = decltype(::std::declval<const C&>().begin()),
    914           class = decltype(::std::declval<const C&>().end()),
    915           class = decltype(++::std::declval<Iterator&>()),
    916           class = decltype(*::std::declval<Iterator>()),
    917           class = typename C::const_iterator>
    918 IsContainer IsContainerTest(int /* dummy */) {
    919   return 0;
    920 }
    921 
    922 typedef char IsNotContainer;
    923 template <class C>
    924 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
    925 
    926 // Trait to detect whether a type T is a hash table.
    927 // The heuristic used is that the type contains an inner type `hasher` and does
    928 // not contain an inner type `reverse_iterator`.
    929 // If the container is iterable in reverse, then order might actually matter.
    930 template <typename T>
    931 struct IsHashTable {
    932  private:
    933   template <typename U>
    934   static char test(typename U::hasher*, typename U::reverse_iterator*);
    935   template <typename U>
    936   static int test(typename U::hasher*, ...);
    937   template <typename U>
    938   static char test(...);
    939 
    940  public:
    941   static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
    942 };
    943 
    944 template <typename T>
    945 const bool IsHashTable<T>::value;
    946 
    947 template <typename C,
    948           bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
    949 struct IsRecursiveContainerImpl;
    950 
    951 template <typename C>
    952 struct IsRecursiveContainerImpl<C, false> : public std::false_type {};
    953 
    954 // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
    955 // obey the same inconsistencies as the IsContainerTest, namely check if
    956 // something is a container is relying on only const_iterator in C++11 and
    957 // is relying on both const_iterator and iterator otherwise
    958 template <typename C>
    959 struct IsRecursiveContainerImpl<C, true> {
    960   using value_type = decltype(*std::declval<typename C::const_iterator>());
    961   using type =
    962       std::is_same<typename std::remove_const<
    963                        typename std::remove_reference<value_type>::type>::type,
    964                    C>;
    965 };
    966 
    967 // IsRecursiveContainer<Type> is a unary compile-time predicate that
    968 // evaluates whether C is a recursive container type. A recursive container
    969 // type is a container type whose value_type is equal to the container type
    970 // itself. An example for a recursive container type is
    971 // boost::filesystem::path, whose iterator has a value_type that is equal to
    972 // boost::filesystem::path.
    973 template <typename C>
    974 struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
    975 
    976 // Utilities for native arrays.
    977 
    978 // ArrayEq() compares two k-dimensional native arrays using the
    979 // elements' operator==, where k can be any integer >= 0.  When k is
    980 // 0, ArrayEq() degenerates into comparing a single pair of values.
    981 
    982 template <typename T, typename U>
    983 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
    984 
    985 // This generic version is used when k is 0.
    986 template <typename T, typename U>
    987 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
    988 
    989 // This overload is used when k >= 1.
    990 template <typename T, typename U, size_t N>
    991 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
    992   return internal::ArrayEq(lhs, N, rhs);
    993 }
    994 
    995 // This helper reduces code bloat.  If we instead put its logic inside
    996 // the previous ArrayEq() function, arrays with different sizes would
    997 // lead to different copies of the template code.
    998 template <typename T, typename U>
    999 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
   1000   for (size_t i = 0; i != size; i++) {
   1001     if (!internal::ArrayEq(lhs[i], rhs[i]))
   1002       return false;
   1003   }
   1004   return true;
   1005 }
   1006 
   1007 // Finds the first element in the iterator range [begin, end) that
   1008 // equals elem.  Element may be a native array type itself.
   1009 template <typename Iter, typename Element>
   1010 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
   1011   for (Iter it = begin; it != end; ++it) {
   1012     if (internal::ArrayEq(*it, elem))
   1013       return it;
   1014   }
   1015   return end;
   1016 }
   1017 
   1018 // CopyArray() copies a k-dimensional native array using the elements'
   1019 // operator=, where k can be any integer >= 0.  When k is 0,
   1020 // CopyArray() degenerates into copying a single value.
   1021 
   1022 template <typename T, typename U>
   1023 void CopyArray(const T* from, size_t size, U* to);
   1024 
   1025 // This generic version is used when k is 0.
   1026 template <typename T, typename U>
   1027 inline void CopyArray(const T& from, U* to) { *to = from; }
   1028 
   1029 // This overload is used when k >= 1.
   1030 template <typename T, typename U, size_t N>
   1031 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
   1032   internal::CopyArray(from, N, *to);
   1033 }
   1034 
   1035 // This helper reduces code bloat.  If we instead put its logic inside
   1036 // the previous CopyArray() function, arrays with different sizes
   1037 // would lead to different copies of the template code.
   1038 template <typename T, typename U>
   1039 void CopyArray(const T* from, size_t size, U* to) {
   1040   for (size_t i = 0; i != size; i++) {
   1041     internal::CopyArray(from[i], to + i);
   1042   }
   1043 }
   1044 
   1045 // The relation between an NativeArray object (see below) and the
   1046 // native array it represents.
   1047 // We use 2 different structs to allow non-copyable types to be used, as long
   1048 // as RelationToSourceReference() is passed.
   1049 struct RelationToSourceReference {};
   1050 struct RelationToSourceCopy {};
   1051 
   1052 // Adapts a native array to a read-only STL-style container.  Instead
   1053 // of the complete STL container concept, this adaptor only implements
   1054 // members useful for Google Mock's container matchers.  New members
   1055 // should be added as needed.  To simplify the implementation, we only
   1056 // support Element being a raw type (i.e. having no top-level const or
   1057 // reference modifier).  It's the client's responsibility to satisfy
   1058 // this requirement.  Element can be an array type itself (hence
   1059 // multi-dimensional arrays are supported).
   1060 template <typename Element>
   1061 class NativeArray {
   1062  public:
   1063   // STL-style container typedefs.
   1064   typedef Element value_type;
   1065   typedef Element* iterator;
   1066   typedef const Element* const_iterator;
   1067 
   1068   // Constructs from a native array. References the source.
   1069   NativeArray(const Element* array, size_t count, RelationToSourceReference) {
   1070     InitRef(array, count);
   1071   }
   1072 
   1073   // Constructs from a native array. Copies the source.
   1074   NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
   1075     InitCopy(array, count);
   1076   }
   1077 
   1078   // Copy constructor.
   1079   NativeArray(const NativeArray& rhs) {
   1080     (this->*rhs.clone_)(rhs.array_, rhs.size_);
   1081   }
   1082 
   1083   ~NativeArray() {
   1084     if (clone_ != &NativeArray::InitRef)
   1085       delete[] array_;
   1086   }
   1087 
   1088   // STL-style container methods.
   1089   size_t size() const { return size_; }
   1090   const_iterator begin() const { return array_; }
   1091   const_iterator end() const { return array_ + size_; }
   1092   bool operator==(const NativeArray& rhs) const {
   1093     return size() == rhs.size() &&
   1094         ArrayEq(begin(), size(), rhs.begin());
   1095   }
   1096 
   1097  private:
   1098   static_assert(!std::is_const<Element>::value, "Type must not be const");
   1099   static_assert(!std::is_reference<Element>::value,
   1100                 "Type must not be a reference");
   1101 
   1102   // Initializes this object with a copy of the input.
   1103   void InitCopy(const Element* array, size_t a_size) {
   1104     Element* const copy = new Element[a_size];
   1105     CopyArray(array, a_size, copy);
   1106     array_ = copy;
   1107     size_ = a_size;
   1108     clone_ = &NativeArray::InitCopy;
   1109   }
   1110 
   1111   // Initializes this object with a reference of the input.
   1112   void InitRef(const Element* array, size_t a_size) {
   1113     array_ = array;
   1114     size_ = a_size;
   1115     clone_ = &NativeArray::InitRef;
   1116   }
   1117 
   1118   const Element* array_;
   1119   size_t size_;
   1120   void (NativeArray::*clone_)(const Element*, size_t);
   1121 
   1122   GTEST_DISALLOW_ASSIGN_(NativeArray);
   1123 };
   1124 
   1125 // Backport of std::index_sequence.
   1126 template <size_t... Is>
   1127 struct IndexSequence {
   1128   using type = IndexSequence;
   1129 };
   1130 
   1131 // Double the IndexSequence, and one if plus_one is true.
   1132 template <bool plus_one, typename T, size_t sizeofT>
   1133 struct DoubleSequence;
   1134 template <size_t... I, size_t sizeofT>
   1135 struct DoubleSequence<true, IndexSequence<I...>, sizeofT> {
   1136   using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>;
   1137 };
   1138 template <size_t... I, size_t sizeofT>
   1139 struct DoubleSequence<false, IndexSequence<I...>, sizeofT> {
   1140   using type = IndexSequence<I..., (sizeofT + I)...>;
   1141 };
   1142 
   1143 // Backport of std::make_index_sequence.
   1144 // It uses O(ln(N)) instantiation depth.
   1145 template <size_t N>
   1146 struct MakeIndexSequence
   1147     : DoubleSequence<N % 2 == 1, typename MakeIndexSequence<N / 2>::type,
   1148                      N / 2>::type {};
   1149 
   1150 template <>
   1151 struct MakeIndexSequence<0> : IndexSequence<> {};
   1152 
   1153 template <size_t>
   1154 struct Ignore {
   1155   Ignore(...);  // NOLINT
   1156 };
   1157 
   1158 template <typename>
   1159 struct ElemFromListImpl;
   1160 template <size_t... I>
   1161 struct ElemFromListImpl<IndexSequence<I...>> {
   1162   // We make Ignore a template to solve a problem with MSVC.
   1163   // A non-template Ignore would work fine with `decltype(Ignore(I))...`, but
   1164   // MSVC doesn't understand how to deal with that pack expansion.
   1165   // Use `0 * I` to have a single instantiation of Ignore.
   1166   template <typename R>
   1167   static R Apply(Ignore<0 * I>..., R (*)(), ...);
   1168 };
   1169 
   1170 template <size_t N, typename... T>
   1171 struct ElemFromList {
   1172   using type =
   1173       decltype(ElemFromListImpl<typename MakeIndexSequence<N>::type>::Apply(
   1174           static_cast<T (*)()>(nullptr)...));
   1175 };
   1176 
   1177 template <typename... T>
   1178 class FlatTuple;
   1179 
   1180 template <typename Derived, size_t I>
   1181 struct FlatTupleElemBase;
   1182 
   1183 template <typename... T, size_t I>
   1184 struct FlatTupleElemBase<FlatTuple<T...>, I> {
   1185   using value_type = typename ElemFromList<I, T...>::type;
   1186   FlatTupleElemBase() = default;
   1187   explicit FlatTupleElemBase(value_type t) : value(std::move(t)) {}
   1188   value_type value;
   1189 };
   1190 
   1191 template <typename Derived, typename Idx>
   1192 struct FlatTupleBase;
   1193 
   1194 template <size_t... Idx, typename... T>
   1195 struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>>
   1196     : FlatTupleElemBase<FlatTuple<T...>, Idx>... {
   1197   using Indices = IndexSequence<Idx...>;
   1198   FlatTupleBase() = default;
   1199   explicit FlatTupleBase(T... t)
   1200       : FlatTupleElemBase<FlatTuple<T...>, Idx>(std::move(t))... {}
   1201 };
   1202 
   1203 // Analog to std::tuple but with different tradeoffs.
   1204 // This class minimizes the template instantiation depth, thus allowing more
   1205 // elements than std::tuple would. std::tuple has been seen to require an
   1206 // instantiation depth of more than 10x the number of elements in some
   1207 // implementations.
   1208 // FlatTuple and ElemFromList are not recursive and have a fixed depth
   1209 // regardless of T...
   1210 // MakeIndexSequence, on the other hand, it is recursive but with an
   1211 // instantiation depth of O(ln(N)).
   1212 template <typename... T>
   1213 class FlatTuple
   1214     : private FlatTupleBase<FlatTuple<T...>,
   1215                             typename MakeIndexSequence<sizeof...(T)>::type> {
   1216   using Indices = typename FlatTupleBase<
   1217       FlatTuple<T...>, typename MakeIndexSequence<sizeof...(T)>::type>::Indices;
   1218 
   1219  public:
   1220   FlatTuple() = default;
   1221   explicit FlatTuple(T... t) : FlatTuple::FlatTupleBase(std::move(t)...) {}
   1222 
   1223   template <size_t I>
   1224   const typename ElemFromList<I, T...>::type& Get() const {
   1225     return static_cast<const FlatTupleElemBase<FlatTuple, I>*>(this)->value;
   1226   }
   1227 
   1228   template <size_t I>
   1229   typename ElemFromList<I, T...>::type& Get() {
   1230     return static_cast<FlatTupleElemBase<FlatTuple, I>*>(this)->value;
   1231   }
   1232 };
   1233 
   1234 // Utility functions to be called with static_assert to induce deprecation
   1235 // warnings.
   1236 GTEST_INTERNAL_DEPRECATED(
   1237     "INSTANTIATE_TEST_CASE_P is deprecated, please use "
   1238     "INSTANTIATE_TEST_SUITE_P")
   1239 constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
   1240 
   1241 GTEST_INTERNAL_DEPRECATED(
   1242     "TYPED_TEST_CASE_P is deprecated, please use "
   1243     "TYPED_TEST_SUITE_P")
   1244 constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
   1245 
   1246 GTEST_INTERNAL_DEPRECATED(
   1247     "TYPED_TEST_CASE is deprecated, please use "
   1248     "TYPED_TEST_SUITE")
   1249 constexpr bool TypedTestCaseIsDeprecated() { return true; }
   1250 
   1251 GTEST_INTERNAL_DEPRECATED(
   1252     "REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
   1253     "REGISTER_TYPED_TEST_SUITE_P")
   1254 constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
   1255 
   1256 GTEST_INTERNAL_DEPRECATED(
   1257     "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
   1258     "INSTANTIATE_TYPED_TEST_SUITE_P")
   1259 constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
   1260 
   1261 }  // namespace internal
   1262 }  // namespace testing
   1263 
   1264 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
   1265   ::testing::internal::AssertHelper(result_type, file, line, message) \
   1266     = ::testing::Message()
   1267 
   1268 #define GTEST_MESSAGE_(message, result_type) \
   1269   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
   1270 
   1271 #define GTEST_FATAL_FAILURE_(message) \
   1272   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
   1273 
   1274 #define GTEST_NONFATAL_FAILURE_(message) \
   1275   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
   1276 
   1277 #define GTEST_SUCCESS_(message) \
   1278   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
   1279 
   1280 #define GTEST_SKIP_(message) \
   1281   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
   1282 
   1283 // Suppress MSVC warning 4072 (unreachable code) for the code following
   1284 // statement if it returns or throws (or doesn't return or throw in some
   1285 // situations).
   1286 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
   1287   if (::testing::internal::AlwaysTrue()) { statement; }
   1288 
   1289 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
   1290   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1291   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
   1292     bool gtest_caught_expected = false; \
   1293     try { \
   1294       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1295     } \
   1296     catch (expected_exception const&) { \
   1297       gtest_caught_expected = true; \
   1298     } \
   1299     catch (...) { \
   1300       gtest_msg.value = \
   1301           "Expected: " #statement " throws an exception of type " \
   1302           #expected_exception ".\n  Actual: it throws a different type."; \
   1303       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1304     } \
   1305     if (!gtest_caught_expected) { \
   1306       gtest_msg.value = \
   1307           "Expected: " #statement " throws an exception of type " \
   1308           #expected_exception ".\n  Actual: it throws nothing."; \
   1309       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1310     } \
   1311   } else \
   1312     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
   1313       fail(gtest_msg.value)
   1314 
   1315 #if GTEST_HAS_EXCEPTIONS
   1316 
   1317 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
   1318   catch (std::exception const& e) { \
   1319     gtest_msg.value = ( \
   1320       "it throws std::exception-derived exception with description: \"" \
   1321     ); \
   1322     gtest_msg.value += e.what(); \
   1323     gtest_msg.value += "\"."; \
   1324     goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
   1325   }
   1326 
   1327 #else  // GTEST_HAS_EXCEPTIONS
   1328 
   1329 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()
   1330 
   1331 #endif  // GTEST_HAS_EXCEPTIONS
   1332 
   1333 #define GTEST_TEST_NO_THROW_(statement, fail) \
   1334   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1335   if (::testing::internal::TrueWithString gtest_msg{}) { \
   1336     try { \
   1337       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1338     } \
   1339     GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
   1340     catch (...) { \
   1341       gtest_msg.value = "it throws."; \
   1342       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
   1343     } \
   1344   } else \
   1345     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
   1346       fail(("Expected: " #statement " doesn't throw an exception.\n" \
   1347             "  Actual: " + gtest_msg.value).c_str())
   1348 
   1349 #define GTEST_TEST_ANY_THROW_(statement, fail) \
   1350   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1351   if (::testing::internal::AlwaysTrue()) { \
   1352     bool gtest_caught_any = false; \
   1353     try { \
   1354       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1355     } \
   1356     catch (...) { \
   1357       gtest_caught_any = true; \
   1358     } \
   1359     if (!gtest_caught_any) { \
   1360       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
   1361     } \
   1362   } else \
   1363     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
   1364       fail("Expected: " #statement " throws an exception.\n" \
   1365            "  Actual: it doesn't.")
   1366 
   1367 
   1368 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
   1369 // either a boolean expression or an AssertionResult. text is a textual
   1370 // represenation of expression as it was passed into the EXPECT_TRUE.
   1371 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
   1372   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1373   if (const ::testing::AssertionResult gtest_ar_ = \
   1374       ::testing::AssertionResult(expression)) \
   1375     ; \
   1376   else \
   1377     fail(::testing::internal::GetBoolAssertionFailureMessage(\
   1378         gtest_ar_, text, #actual, #expected).c_str())
   1379 
   1380 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
   1381   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1382   if (::testing::internal::AlwaysTrue()) { \
   1383     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
   1384     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1385     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
   1386       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
   1387     } \
   1388   } else \
   1389     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
   1390       fail("Expected: " #statement " doesn't generate new fatal " \
   1391            "failures in the current thread.\n" \
   1392            "  Actual: it does.")
   1393 
   1394 // Expands to the name of the class that implements the given test.
   1395 #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
   1396   test_suite_name##_##test_name##_Test
   1397 
   1398 // Helper macro for defining tests.
   1399 #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id)      \
   1400   static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1,                \
   1401                 "test_suite_name must not be empty");                         \
   1402   static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1,                      \
   1403                 "test_name must not be empty");                               \
   1404   class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                    \
   1405       : public parent_class {                                                 \
   1406    public:                                                                    \
   1407     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() {}                   \
   1408     ~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default; \
   1409     GTEST_DISALLOW_COPY_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name,   \
   1410                                                            test_name));       \
   1411     GTEST_DISALLOW_MOVE_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name,   \
   1412                                                            test_name));       \
   1413                                                                               \
   1414    private:                                                                   \
   1415     void TestBody() override;                                                 \
   1416     static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;     \
   1417   };                                                                          \
   1418                                                                               \
   1419   ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name,          \
   1420                                                     test_name)::test_info_ =  \
   1421       ::testing::internal::MakeAndRegisterTestInfo(                           \
   1422           #test_suite_name, #test_name, nullptr, nullptr,                     \
   1423           ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \
   1424           ::testing::internal::SuiteApiResolver<                              \
   1425               parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__),         \
   1426           ::testing::internal::SuiteApiResolver<                              \
   1427               parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__),      \
   1428           new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_(    \
   1429               test_suite_name, test_name)>);                                  \
   1430   void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
   1431 
   1432 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_