duckstation

duckstation, but archived from the revision just before upstream changed it to a proprietary software project, this version is the libre one
git clone https://git.neptards.moe/u3shit/duckstation.git
Log | Files | Refs | README | LICENSE

mathematics.h (9563B)


      1 /*
      2  * copyright (c) 2005-2012 Michael Niedermayer <michaelni@gmx.at>
      3  *
      4  * This file is part of FFmpeg.
      5  *
      6  * FFmpeg is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU Lesser General Public
      8  * License as published by the Free Software Foundation; either
      9  * version 2.1 of the License, or (at your option) any later version.
     10  *
     11  * FFmpeg is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14  * Lesser General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU Lesser General Public
     17  * License along with FFmpeg; if not, write to the Free Software
     18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     19  */
     20 
     21 /**
     22  * @file
     23  * @addtogroup lavu_math
     24  * Mathematical utilities for working with timestamp and time base.
     25  */
     26 
     27 #ifndef AVUTIL_MATHEMATICS_H
     28 #define AVUTIL_MATHEMATICS_H
     29 
     30 #include <stdint.h>
     31 #include <math.h>
     32 #include "attributes.h"
     33 #include "rational.h"
     34 #include "intfloat.h"
     35 
     36 #ifndef M_E
     37 #define M_E            2.7182818284590452354   /* e */
     38 #endif
     39 #ifndef M_Ef
     40 #define M_Ef           2.7182818284590452354f  /* e */
     41 #endif
     42 #ifndef M_LN2
     43 #define M_LN2          0.69314718055994530942  /* log_e 2 */
     44 #endif
     45 #ifndef M_LN2f
     46 #define M_LN2f         0.69314718055994530942f /* log_e 2 */
     47 #endif
     48 #ifndef M_LN10
     49 #define M_LN10         2.30258509299404568402  /* log_e 10 */
     50 #endif
     51 #ifndef M_LN10f
     52 #define M_LN10f        2.30258509299404568402f /* log_e 10 */
     53 #endif
     54 #ifndef M_LOG2_10
     55 #define M_LOG2_10      3.32192809488736234787  /* log_2 10 */
     56 #endif
     57 #ifndef M_LOG2_10f
     58 #define M_LOG2_10f     3.32192809488736234787f /* log_2 10 */
     59 #endif
     60 #ifndef M_PHI
     61 #define M_PHI          1.61803398874989484820   /* phi / golden ratio */
     62 #endif
     63 #ifndef M_PHIf
     64 #define M_PHIf         1.61803398874989484820f  /* phi / golden ratio */
     65 #endif
     66 #ifndef M_PI
     67 #define M_PI           3.14159265358979323846  /* pi */
     68 #endif
     69 #ifndef M_PIf
     70 #define M_PIf          3.14159265358979323846f /* pi */
     71 #endif
     72 #ifndef M_PI_2
     73 #define M_PI_2         1.57079632679489661923  /* pi/2 */
     74 #endif
     75 #ifndef M_PI_2f
     76 #define M_PI_2f        1.57079632679489661923f /* pi/2 */
     77 #endif
     78 #ifndef M_PI_4
     79 #define M_PI_4         0.78539816339744830962  /* pi/4 */
     80 #endif
     81 #ifndef M_PI_4f
     82 #define M_PI_4f        0.78539816339744830962f /* pi/4 */
     83 #endif
     84 #ifndef M_1_PI
     85 #define M_1_PI         0.31830988618379067154  /* 1/pi */
     86 #endif
     87 #ifndef M_1_PIf
     88 #define M_1_PIf        0.31830988618379067154f /* 1/pi */
     89 #endif
     90 #ifndef M_2_PI
     91 #define M_2_PI         0.63661977236758134308  /* 2/pi */
     92 #endif
     93 #ifndef M_2_PIf
     94 #define M_2_PIf        0.63661977236758134308f /* 2/pi */
     95 #endif
     96 #ifndef M_2_SQRTPI
     97 #define M_2_SQRTPI     1.12837916709551257390  /* 2/sqrt(pi) */
     98 #endif
     99 #ifndef M_2_SQRTPIf
    100 #define M_2_SQRTPIf    1.12837916709551257390f /* 2/sqrt(pi) */
    101 #endif
    102 #ifndef M_SQRT1_2
    103 #define M_SQRT1_2      0.70710678118654752440  /* 1/sqrt(2) */
    104 #endif
    105 #ifndef M_SQRT1_2f
    106 #define M_SQRT1_2f     0.70710678118654752440f /* 1/sqrt(2) */
    107 #endif
    108 #ifndef M_SQRT2
    109 #define M_SQRT2        1.41421356237309504880  /* sqrt(2) */
    110 #endif
    111 #ifndef M_SQRT2f
    112 #define M_SQRT2f       1.41421356237309504880f /* sqrt(2) */
    113 #endif
    114 #ifndef NAN
    115 #define NAN            av_int2float(0x7fc00000)
    116 #endif
    117 #ifndef INFINITY
    118 #define INFINITY       av_int2float(0x7f800000)
    119 #endif
    120 
    121 /**
    122  * @addtogroup lavu_math
    123  *
    124  * @{
    125  */
    126 
    127 /**
    128  * Rounding methods.
    129  */
    130 enum AVRounding {
    131     AV_ROUND_ZERO     = 0, ///< Round toward zero.
    132     AV_ROUND_INF      = 1, ///< Round away from zero.
    133     AV_ROUND_DOWN     = 2, ///< Round toward -infinity.
    134     AV_ROUND_UP       = 3, ///< Round toward +infinity.
    135     AV_ROUND_NEAR_INF = 5, ///< Round to nearest and halfway cases away from zero.
    136     /**
    137      * Flag telling rescaling functions to pass `INT64_MIN`/`MAX` through
    138      * unchanged, avoiding special cases for #AV_NOPTS_VALUE.
    139      *
    140      * Unlike other values of the enumeration AVRounding, this value is a
    141      * bitmask that must be used in conjunction with another value of the
    142      * enumeration through a bitwise OR, in order to set behavior for normal
    143      * cases.
    144      *
    145      * @code{.c}
    146      * av_rescale_rnd(3, 1, 2, AV_ROUND_UP | AV_ROUND_PASS_MINMAX);
    147      * // Rescaling 3:
    148      * //     Calculating 3 * 1 / 2
    149      * //     3 / 2 is rounded up to 2
    150      * //     => 2
    151      *
    152      * av_rescale_rnd(AV_NOPTS_VALUE, 1, 2, AV_ROUND_UP | AV_ROUND_PASS_MINMAX);
    153      * // Rescaling AV_NOPTS_VALUE:
    154      * //     AV_NOPTS_VALUE == INT64_MIN
    155      * //     AV_NOPTS_VALUE is passed through
    156      * //     => AV_NOPTS_VALUE
    157      * @endcode
    158      */
    159     AV_ROUND_PASS_MINMAX = 8192,
    160 };
    161 
    162 /**
    163  * Compute the greatest common divisor of two integer operands.
    164  *
    165  * @param a Operand
    166  * @param b Operand
    167  * @return GCD of a and b up to sign; if a >= 0 and b >= 0, return value is >= 0;
    168  * if a == 0 and b == 0, returns 0.
    169  */
    170 int64_t av_const av_gcd(int64_t a, int64_t b);
    171 
    172 /**
    173  * Rescale a 64-bit integer with rounding to nearest.
    174  *
    175  * The operation is mathematically equivalent to `a * b / c`, but writing that
    176  * directly can overflow.
    177  *
    178  * This function is equivalent to av_rescale_rnd() with #AV_ROUND_NEAR_INF.
    179  *
    180  * @see av_rescale_rnd(), av_rescale_q(), av_rescale_q_rnd()
    181  */
    182 int64_t av_rescale(int64_t a, int64_t b, int64_t c) av_const;
    183 
    184 /**
    185  * Rescale a 64-bit integer with specified rounding.
    186  *
    187  * The operation is mathematically equivalent to `a * b / c`, but writing that
    188  * directly can overflow, and does not support different rounding methods.
    189  * If the result is not representable then INT64_MIN is returned.
    190  *
    191  * @see av_rescale(), av_rescale_q(), av_rescale_q_rnd()
    192  */
    193 int64_t av_rescale_rnd(int64_t a, int64_t b, int64_t c, enum AVRounding rnd) av_const;
    194 
    195 /**
    196  * Rescale a 64-bit integer by 2 rational numbers.
    197  *
    198  * The operation is mathematically equivalent to `a * bq / cq`.
    199  *
    200  * This function is equivalent to av_rescale_q_rnd() with #AV_ROUND_NEAR_INF.
    201  *
    202  * @see av_rescale(), av_rescale_rnd(), av_rescale_q_rnd()
    203  */
    204 int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq) av_const;
    205 
    206 /**
    207  * Rescale a 64-bit integer by 2 rational numbers with specified rounding.
    208  *
    209  * The operation is mathematically equivalent to `a * bq / cq`.
    210  *
    211  * @see av_rescale(), av_rescale_rnd(), av_rescale_q()
    212  */
    213 int64_t av_rescale_q_rnd(int64_t a, AVRational bq, AVRational cq,
    214                          enum AVRounding rnd) av_const;
    215 
    216 /**
    217  * Compare two timestamps each in its own time base.
    218  *
    219  * @return One of the following values:
    220  *         - -1 if `ts_a` is before `ts_b`
    221  *         - 1 if `ts_a` is after `ts_b`
    222  *         - 0 if they represent the same position
    223  *
    224  * @warning
    225  * The result of the function is undefined if one of the timestamps is outside
    226  * the `int64_t` range when represented in the other's timebase.
    227  */
    228 int av_compare_ts(int64_t ts_a, AVRational tb_a, int64_t ts_b, AVRational tb_b);
    229 
    230 /**
    231  * Compare the remainders of two integer operands divided by a common divisor.
    232  *
    233  * In other words, compare the least significant `log2(mod)` bits of integers
    234  * `a` and `b`.
    235  *
    236  * @code{.c}
    237  * av_compare_mod(0x11, 0x02, 0x10) < 0 // since 0x11 % 0x10  (0x1) < 0x02 % 0x10  (0x2)
    238  * av_compare_mod(0x11, 0x02, 0x20) > 0 // since 0x11 % 0x20 (0x11) > 0x02 % 0x20 (0x02)
    239  * @endcode
    240  *
    241  * @param a Operand
    242  * @param b Operand
    243  * @param mod Divisor; must be a power of 2
    244  * @return
    245  *         - a negative value if `a % mod < b % mod`
    246  *         - a positive value if `a % mod > b % mod`
    247  *         - zero             if `a % mod == b % mod`
    248  */
    249 int64_t av_compare_mod(uint64_t a, uint64_t b, uint64_t mod);
    250 
    251 /**
    252  * Rescale a timestamp while preserving known durations.
    253  *
    254  * This function is designed to be called per audio packet to scale the input
    255  * timestamp to a different time base. Compared to a simple av_rescale_q()
    256  * call, this function is robust against possible inconsistent frame durations.
    257  *
    258  * The `last` parameter is a state variable that must be preserved for all
    259  * subsequent calls for the same stream. For the first call, `*last` should be
    260  * initialized to #AV_NOPTS_VALUE.
    261  *
    262  * @param[in]     in_tb    Input time base
    263  * @param[in]     in_ts    Input timestamp
    264  * @param[in]     fs_tb    Duration time base; typically this is finer-grained
    265  *                         (greater) than `in_tb` and `out_tb`
    266  * @param[in]     duration Duration till the next call to this function (i.e.
    267  *                         duration of the current packet/frame)
    268  * @param[in,out] last     Pointer to a timestamp expressed in terms of
    269  *                         `fs_tb`, acting as a state variable
    270  * @param[in]     out_tb   Output timebase
    271  * @return        Timestamp expressed in terms of `out_tb`
    272  *
    273  * @note In the context of this function, "duration" is in term of samples, not
    274  *       seconds.
    275  */
    276 int64_t av_rescale_delta(AVRational in_tb, int64_t in_ts,  AVRational fs_tb, int duration, int64_t *last, AVRational out_tb);
    277 
    278 /**
    279  * Add a value to a timestamp.
    280  *
    281  * This function guarantees that when the same value is repeatly added that
    282  * no accumulation of rounding errors occurs.
    283  *
    284  * @param[in] ts     Input timestamp
    285  * @param[in] ts_tb  Input timestamp time base
    286  * @param[in] inc    Value to be added
    287  * @param[in] inc_tb Time base of `inc`
    288  */
    289 int64_t av_add_stable(AVRational ts_tb, int64_t ts, AVRational inc_tb, int64_t inc);
    290 
    291 /**
    292  * 0th order modified bessel function of the first kind.
    293  */
    294 double av_bessel_i0(double x);
    295 
    296 /**
    297  * @}
    298  */
    299 
    300 #endif /* AVUTIL_MATHEMATICS_H */