XBR.glsl (8745B)
1 // Hyllian's xBR-lv2-standalone Shader 2 3 // Copyright (C) 2011-2024 Hyllian - sergiogdb@gmail.com 4 5 // Permission is hereby granted, free of charge, to any person obtaining a copy 6 // of this software and associated documentation files (the "Software"), to deal 7 // in the Software without restriction, including without limitation the rights 8 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 // copies of the Software, and to permit persons to whom the Software is 10 // furnished to do so, subject to the following conditions: 11 12 // The above copyright notice and this permission notice shall be included in 13 // all copies or substantial portions of the Software. 14 15 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 // THE SOFTWARE. 22 23 24 /* 25 [configuration] 26 27 [OptionRangeFloat] 28 GUIName = COLOR DISTINCTION THRESHOLD 29 OptionName = XBR_EQ_THRESHOLD 30 MinValue = 0.0 31 MaxValue = 1.0 32 StepAmount = 0.01 33 DefaultValue = 0.32 34 35 [OptionRangeFloat] 36 GUIName = SMOOTHNESS THRESHOLD 37 OptionName = XBR_LV2_COEFFICIENT 38 MinValue = 0.0 39 MaxValue = 1.0 40 StepAmount = 0.1 41 DefaultValue = 0.3 42 43 [OptionRangeFloat] 44 GUIName = COLOR BLENDING 45 OptionName = XBR_BLENDING 46 MinValue = 0.0 47 MaxValue = 1.0 48 StepAmount = 1.0 49 DefaultValue = 1.0 50 51 [/configuration] 52 */ 53 54 // Uncomment just one of the three params below to choose the corner detection 55 //#define CORNER_A 56 //#define CORNER_B 57 #define CORNER_C 58 59 #define lv2_cf (GetOption(XBR_LV2_COEFFICIENT)+2.0) 60 #define P(x,y) (vec2(x,y)*vec2(dx,dy)) 61 62 const vec4 Ao = vec4( 1.0, -1.0, -1.0, 1.0 ); 63 const vec4 Bo = vec4( 1.0, 1.0, -1.0,-1.0 ); 64 const vec4 Co = vec4( 1.5, 0.5, -0.5, 0.5 ); 65 const vec4 Ax = vec4( 1.0, -1.0, -1.0, 1.0 ); 66 const vec4 Bx = vec4( 0.5, 2.0, -0.5,-2.0 ); 67 const vec4 Cx = vec4( 1.0, 1.0, -0.5, 0.0 ); 68 const vec4 Ay = vec4( 1.0, -1.0, -1.0, 1.0 ); 69 const vec4 By = vec4( 2.0, 0.5, -2.0,-0.5 ); 70 const vec4 Cy = vec4( 2.0, 0.0, -1.0, 0.5 ); 71 const vec4 Ci = vec4(0.25, 0.25, 0.25, 0.25); 72 73 const vec3 v2f = vec3( 65536, 256, 1); // vec to float encode 74 const vec3 Y = vec3(0.2627, 0.6780, 0.0593); 75 76 // Return if A components are less than or equal B ones. 77 vec4 LTE(vec4 A, vec4 B) 78 { 79 return step(A, B); 80 } 81 82 // Return if A components are less than B ones. 83 vec4 LT(vec4 A, vec4 B) 84 { 85 return vec4(lessThan(A, B)); 86 } 87 88 // Return logically inverted vector components. BEWARE: Only works with 0.0 or 1.0 components. 89 vec4 NOT(vec4 A) 90 { 91 return (vec4(1.0) - A); 92 } 93 94 // Compare two vectors and return their components are different. 95 vec4 diff(vec4 A, vec4 B) 96 { 97 return vec4(notEqual(A, B)); 98 } 99 100 float dist(vec3 A, vec3 B) 101 { 102 return dot(abs(A-B), Y); 103 } 104 105 // Calculate color distance between two vectors of four pixels 106 vec4 dist4(mat4x3 A, mat4x3 B) 107 { 108 return vec4(dist(A[0],B[0]), dist(A[1],B[1]), dist(A[2],B[2]), dist(A[3],B[3])); 109 } 110 111 // Tests if color components are under a threshold. In this case they are considered 'equal'. 112 vec4 eq(mat4x3 A, mat4x3 B) 113 { 114 return (step(dist4(A, B), vec4(GetOption(XBR_EQ_THRESHOLD)))); 115 } 116 117 // Determine if two vector components are NOT equal based on a threshold. 118 vec4 neq(mat4x3 A, mat4x3 B) 119 { 120 return (vec4(1.0, 1.0, 1.0, 1.0) - eq(A, B)); 121 } 122 123 // Calculate weighted distance among pixels in some directions. 124 vec4 weighted_distance(mat4x3 a, mat4x3 b, mat4x3 c, mat4x3 d, mat4x3 e, mat4x3 f, mat4x3 g, mat4x3 h) 125 { 126 return (dist4(a,b) + dist4(a,c) + dist4(d,e) + dist4(d,f) + 4.0*dist4(g,h)); 127 } 128 129 130 131 void main() 132 { 133 vec2 texCoord = GetCoordinates(); 134 vec2 SourceSize = 1.0 / GetInvNativePixelSize(); 135 float aa_factor = 2.0* (1.0/GetWindowSize().x) * SourceSize.x; 136 137 vec4 edri, edr, edr_l, edr_u, px; // px = pixel, edr = edge detection rule 138 vec4 irlv0, irlv1, irlv2l, irlv2u; 139 vec4 fx, fx_l, fx_u; // inequations of straight lines. 140 vec3 res1, res2; 141 vec4 fx45i, fx45, fx30, fx60; 142 143 float dx = 1.0/SourceSize.x; 144 float dy = 1.0/SourceSize.y; 145 146 vec2 loc = texCoord*SourceSize.xy; 147 148 vec2 fp = fract(loc); 149 150 vec2 tc = (floor(loc)+vec2(0.5,0.5))/SourceSize; 151 152 // A1 B1 C1 153 // A0 A B C C4 154 // D0 D E F F4 155 // G0 G H I I4 156 // G5 H5 I5 157 158 vec3 A1 = SampleLocation(tc+P(-1.0,-2.0)).xyz; 159 vec3 B1 = SampleLocation(tc+P( 0.0,-2.0)).xyz; 160 vec3 C1 = SampleLocation(tc+P( 1.0,-2.0)).xyz; 161 vec3 A = SampleLocation(tc+P(-1.0,-1.0)).xyz; 162 vec3 B = SampleLocation(tc+P( 0.0,-1.0)).xyz; 163 vec3 C = SampleLocation(tc+P( 1.0,-1.0)).xyz; 164 vec3 D = SampleLocation(tc+P(-1.0, 0.0)).xyz; 165 vec3 E = SampleLocation(tc+P( 0.0, 0.0)).xyz; 166 vec3 F = SampleLocation(tc+P( 1.0, 0.0)).xyz; 167 vec3 G = SampleLocation(tc+P(-1.0, 1.0)).xyz; 168 vec3 H = SampleLocation(tc+P( 0.0, 1.0)).xyz; 169 vec3 I = SampleLocation(tc+P( 1.0, 1.0)).xyz; 170 vec3 G5 = SampleLocation(tc+P(-1.0, 2.0)).xyz; 171 vec3 H5 = SampleLocation(tc+P( 0.0, 2.0)).xyz; 172 vec3 I5 = SampleLocation(tc+P( 1.0, 2.0)).xyz; 173 vec3 A0 = SampleLocation(tc+P(-2.0,-1.0)).xyz; 174 vec3 D0 = SampleLocation(tc+P(-2.0, 0.0)).xyz; 175 vec3 G0 = SampleLocation(tc+P(-2.0,-1.0)).xyz; 176 vec3 C4 = SampleLocation(tc+P( 2.0,-1.0)).xyz; 177 vec3 F4 = SampleLocation(tc+P( 2.0, 0.0)).xyz; 178 vec3 I4 = SampleLocation(tc+P( 2.0, 1.0)).xyz; 179 180 mat4x3 b = mat4x3(B, D, H, F); 181 mat4x3 c = mat4x3(C, A, G, I); 182 mat4x3 d = mat4x3(D, H, F, B); 183 mat4x3 e = mat4x3(E, E, E, E); 184 mat4x3 f = mat4x3(F, B, D, H); 185 mat4x3 g = mat4x3(G, I, C, A); 186 mat4x3 h = mat4x3(H, F, B, D); 187 mat4x3 i = mat4x3(I, C, A, G); 188 189 mat4x3 i4 = mat4x3(I4, C1, A0, G5); 190 mat4x3 i5 = mat4x3(I5, C4, A1, G0); 191 mat4x3 h5 = mat4x3(H5, F4, B1, D0); 192 mat4x3 f4 = mat4x3(F4, B1, D0, H5); 193 194 vec4 b_ = v2f * b; 195 vec4 c_ = v2f * c; 196 vec4 d_ = b_.yzwx; 197 vec4 e_ = v2f * e; 198 vec4 f_ = b_.wxyz; 199 vec4 g_ = c_.zwxy; 200 vec4 h_ = b_.zwxy; 201 vec4 i_ = c_.wxyz; 202 203 vec4 i4_ = v2f * i4; 204 vec4 i5_ = v2f * i5; 205 vec4 h5_ = v2f * h5; 206 vec4 f4_ = h5_.yzwx; 207 208 // These inequations define the line below which interpolation occurs. 209 fx = ( Ao*fp.y + Bo*fp.x ); 210 fx_l = ( Ax*fp.y + Bx*fp.x ); 211 fx_u = ( Ay*fp.y + By*fp.x ); 212 213 irlv0 = diff(e_,f_) * diff(e_,h_); 214 irlv1 = irlv0; 215 216 #ifdef CORNER_B 217 irlv1 = saturate(irlv0 * ( neq(f,b) * neq(h,d) + eq(e,i) * neq(f,i4) * neq(h,i5) + eq(e,g) + eq(e,c) ) ); 218 #endif 219 #ifdef CORNER_C 220 irlv1 = saturate(irlv0 * ( neq(f,b) * neq(f,c) + neq(h,d) * neq(h,g) + eq(e,i) * (neq(f,f4) * neq(f,i4) + neq(h,h5) * neq(h,i5)) + eq(e,g) + eq(e,c)) ); 221 #endif 222 223 irlv2l = diff(e_,g_) * diff( d_, g_); 224 irlv2u = diff(e_,c_) * diff( b_, c_); 225 226 if (GetOption(XBR_BLENDING) == 1.0) { 227 vec4 delta = vec4(aa_factor); 228 vec4 deltaL = vec4(0.5, 1.0, 0.5, 1.0) * aa_factor; 229 vec4 deltaU = deltaL.yxwz; 230 231 fx45i = saturate( 0.5 + (fx - Co - Ci) / delta ); 232 fx45 = saturate( 0.5 + (fx - Co ) / delta ); 233 fx30 = saturate( 0.5 + (fx_l - Cx ) / deltaL ); 234 fx60 = saturate( 0.5 + (fx_u - Cy ) / deltaU ); 235 } 236 else { 237 fx45i = LT( Co + Ci, fx ); 238 fx45 = LT( Co, fx ); 239 fx30 = LT( Cx, fx_l ); 240 fx60 = LT( Cy, fx_u ); 241 } 242 243 vec4 wd1 = weighted_distance( e, c, g, i, h5, f4, h, f); 244 vec4 wd2 = weighted_distance( h, d, i5, f, i4, b, e, i); 245 246 vec4 d_fg = dist4(f, g); 247 vec4 d_hc = dist4(h, c); 248 249 edri = LTE(wd1, wd2) * irlv0; 250 edr = LT( wd1, wd2) * irlv1 * NOT(edri.yzwx * edri.wxyz); 251 edr_l = LTE( lv2_cf * d_fg, d_hc ) * irlv2l * edr * (NOT(edri.yzwx) * eq(e, c)); 252 edr_u = LTE( lv2_cf * d_hc, d_fg ) * irlv2u * edr * (NOT(edri.wxyz) * eq(e, g)); 253 254 fx45i = edri * fx45i; 255 fx45 = edr * fx45; 256 fx30 = edr_l * fx30; 257 fx60 = edr_u * fx60; 258 259 px = LTE(dist4(e,f), dist4(e,h)); 260 261 vec4 maximos = max(max(fx30, fx60), max(fx45, fx45i)); 262 263 res1 = mix(E, mix(H, F, px.x), maximos.x); 264 res2 = mix(E, mix(B, D, px.z), maximos.z); 265 266 vec3 res1a = mix(res1, res2, step(dist(E, res1), dist(E, res2))); 267 268 res1 = mix(E, mix(F, B, px.y), maximos.y); 269 res2 = mix(E, mix(D, H, px.w), maximos.w); 270 271 vec3 res1b = mix(res1, res2, step(dist(E, res1), dist(E, res2))); 272 273 vec3 res = mix(res1a, res1b, step(dist(E, res1a), dist(E, res1b))); 274 275 SetOutput(vec4(res, 1.0)); 276 }