yaml-cpp

FORK: A YAML parser and emitter in C++
git clone https://git.neptards.moe/neptards/yaml-cpp.git
Log | Files | Refs | README | LICENSE

gtest-port.cc (46442B)


      1 // Copyright 2008, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 
     30 
     31 #include "gtest/internal/gtest-port.h"
     32 
     33 #include <limits.h>
     34 #include <stdio.h>
     35 #include <stdlib.h>
     36 #include <string.h>
     37 #include <fstream>
     38 #include <memory>
     39 
     40 #if GTEST_OS_WINDOWS
     41 # include <windows.h>
     42 # include <io.h>
     43 # include <sys/stat.h>
     44 # include <map>  // Used in ThreadLocal.
     45 # ifdef _MSC_VER
     46 #  include <crtdbg.h>
     47 # endif  // _MSC_VER
     48 #else
     49 # include <unistd.h>
     50 #endif  // GTEST_OS_WINDOWS
     51 
     52 #if GTEST_OS_MAC
     53 # include <mach/mach_init.h>
     54 # include <mach/task.h>
     55 # include <mach/vm_map.h>
     56 #endif  // GTEST_OS_MAC
     57 
     58 #if GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD || \
     59     GTEST_OS_NETBSD || GTEST_OS_OPENBSD
     60 # include <sys/sysctl.h>
     61 # if GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD
     62 #  include <sys/user.h>
     63 # endif
     64 #endif
     65 
     66 #if GTEST_OS_QNX
     67 # include <devctl.h>
     68 # include <fcntl.h>
     69 # include <sys/procfs.h>
     70 #endif  // GTEST_OS_QNX
     71 
     72 #if GTEST_OS_AIX
     73 # include <procinfo.h>
     74 # include <sys/types.h>
     75 #endif  // GTEST_OS_AIX
     76 
     77 #if GTEST_OS_FUCHSIA
     78 # include <zircon/process.h>
     79 # include <zircon/syscalls.h>
     80 #endif  // GTEST_OS_FUCHSIA
     81 
     82 #include "gtest/gtest-spi.h"
     83 #include "gtest/gtest-message.h"
     84 #include "gtest/internal/gtest-internal.h"
     85 #include "gtest/internal/gtest-string.h"
     86 #include "src/gtest-internal-inl.h"
     87 
     88 namespace testing {
     89 namespace internal {
     90 
     91 #if defined(_MSC_VER) || defined(__BORLANDC__)
     92 // MSVC and C++Builder do not provide a definition of STDERR_FILENO.
     93 const int kStdOutFileno = 1;
     94 const int kStdErrFileno = 2;
     95 #else
     96 const int kStdOutFileno = STDOUT_FILENO;
     97 const int kStdErrFileno = STDERR_FILENO;
     98 #endif  // _MSC_VER
     99 
    100 #if GTEST_OS_LINUX
    101 
    102 namespace {
    103 template <typename T>
    104 T ReadProcFileField(const std::string& filename, int field) {
    105   std::string dummy;
    106   std::ifstream file(filename.c_str());
    107   while (field-- > 0) {
    108     file >> dummy;
    109   }
    110   T output = 0;
    111   file >> output;
    112   return output;
    113 }
    114 }  // namespace
    115 
    116 // Returns the number of active threads, or 0 when there is an error.
    117 size_t GetThreadCount() {
    118   const std::string filename =
    119       (Message() << "/proc/" << getpid() << "/stat").GetString();
    120   return ReadProcFileField<size_t>(filename, 19);
    121 }
    122 
    123 #elif GTEST_OS_MAC
    124 
    125 size_t GetThreadCount() {
    126   const task_t task = mach_task_self();
    127   mach_msg_type_number_t thread_count;
    128   thread_act_array_t thread_list;
    129   const kern_return_t status = task_threads(task, &thread_list, &thread_count);
    130   if (status == KERN_SUCCESS) {
    131     // task_threads allocates resources in thread_list and we need to free them
    132     // to avoid leaks.
    133     vm_deallocate(task,
    134                   reinterpret_cast<vm_address_t>(thread_list),
    135                   sizeof(thread_t) * thread_count);
    136     return static_cast<size_t>(thread_count);
    137   } else {
    138     return 0;
    139   }
    140 }
    141 
    142 #elif GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD || \
    143       GTEST_OS_NETBSD
    144 
    145 #if GTEST_OS_NETBSD
    146 #undef KERN_PROC
    147 #define KERN_PROC KERN_PROC2
    148 #define kinfo_proc kinfo_proc2
    149 #endif
    150 
    151 #if GTEST_OS_DRAGONFLY
    152 #define KP_NLWP(kp) (kp.kp_nthreads)
    153 #elif GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD
    154 #define KP_NLWP(kp) (kp.ki_numthreads)
    155 #elif GTEST_OS_NETBSD
    156 #define KP_NLWP(kp) (kp.p_nlwps)
    157 #endif
    158 
    159 // Returns the number of threads running in the process, or 0 to indicate that
    160 // we cannot detect it.
    161 size_t GetThreadCount() {
    162   int mib[] = {
    163     CTL_KERN,
    164     KERN_PROC,
    165     KERN_PROC_PID,
    166     getpid(),
    167 #if GTEST_OS_NETBSD
    168     sizeof(struct kinfo_proc),
    169     1,
    170 #endif
    171   };
    172   u_int miblen = sizeof(mib) / sizeof(mib[0]);
    173   struct kinfo_proc info;
    174   size_t size = sizeof(info);
    175   if (sysctl(mib, miblen, &info, &size, NULL, 0)) {
    176     return 0;
    177   }
    178   return static_cast<size_t>(KP_NLWP(info));
    179 }
    180 #elif GTEST_OS_OPENBSD
    181 
    182 // Returns the number of threads running in the process, or 0 to indicate that
    183 // we cannot detect it.
    184 size_t GetThreadCount() {
    185   int mib[] = {
    186     CTL_KERN,
    187     KERN_PROC,
    188     KERN_PROC_PID | KERN_PROC_SHOW_THREADS,
    189     getpid(),
    190     sizeof(struct kinfo_proc),
    191     0,
    192   };
    193   u_int miblen = sizeof(mib) / sizeof(mib[0]);
    194 
    195   // get number of structs
    196   size_t size;
    197   if (sysctl(mib, miblen, NULL, &size, NULL, 0)) {
    198     return 0;
    199   }
    200   mib[5] = size / mib[4];
    201 
    202   // populate array of structs
    203   struct kinfo_proc info[mib[5]];
    204   if (sysctl(mib, miblen, &info, &size, NULL, 0)) {
    205     return 0;
    206   }
    207 
    208   // exclude empty members
    209   int nthreads = 0;
    210   for (int i = 0; i < size / mib[4]; i++) {
    211     if (info[i].p_tid != -1)
    212       nthreads++;
    213   }
    214   return nthreads;
    215 }
    216 
    217 #elif GTEST_OS_QNX
    218 
    219 // Returns the number of threads running in the process, or 0 to indicate that
    220 // we cannot detect it.
    221 size_t GetThreadCount() {
    222   const int fd = open("/proc/self/as", O_RDONLY);
    223   if (fd < 0) {
    224     return 0;
    225   }
    226   procfs_info process_info;
    227   const int status =
    228       devctl(fd, DCMD_PROC_INFO, &process_info, sizeof(process_info), nullptr);
    229   close(fd);
    230   if (status == EOK) {
    231     return static_cast<size_t>(process_info.num_threads);
    232   } else {
    233     return 0;
    234   }
    235 }
    236 
    237 #elif GTEST_OS_AIX
    238 
    239 size_t GetThreadCount() {
    240   struct procentry64 entry;
    241   pid_t pid = getpid();
    242   int status = getprocs64(&entry, sizeof(entry), nullptr, 0, &pid, 1);
    243   if (status == 1) {
    244     return entry.pi_thcount;
    245   } else {
    246     return 0;
    247   }
    248 }
    249 
    250 #elif GTEST_OS_FUCHSIA
    251 
    252 size_t GetThreadCount() {
    253   int dummy_buffer;
    254   size_t avail;
    255   zx_status_t status = zx_object_get_info(
    256       zx_process_self(),
    257       ZX_INFO_PROCESS_THREADS,
    258       &dummy_buffer,
    259       0,
    260       nullptr,
    261       &avail);
    262   if (status == ZX_OK) {
    263     return avail;
    264   } else {
    265     return 0;
    266   }
    267 }
    268 
    269 #else
    270 
    271 size_t GetThreadCount() {
    272   // There's no portable way to detect the number of threads, so we just
    273   // return 0 to indicate that we cannot detect it.
    274   return 0;
    275 }
    276 
    277 #endif  // GTEST_OS_LINUX
    278 
    279 #if GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
    280 
    281 void SleepMilliseconds(int n) {
    282   ::Sleep(static_cast<DWORD>(n));
    283 }
    284 
    285 AutoHandle::AutoHandle()
    286     : handle_(INVALID_HANDLE_VALUE) {}
    287 
    288 AutoHandle::AutoHandle(Handle handle)
    289     : handle_(handle) {}
    290 
    291 AutoHandle::~AutoHandle() {
    292   Reset();
    293 }
    294 
    295 AutoHandle::Handle AutoHandle::Get() const {
    296   return handle_;
    297 }
    298 
    299 void AutoHandle::Reset() {
    300   Reset(INVALID_HANDLE_VALUE);
    301 }
    302 
    303 void AutoHandle::Reset(HANDLE handle) {
    304   // Resetting with the same handle we already own is invalid.
    305   if (handle_ != handle) {
    306     if (IsCloseable()) {
    307       ::CloseHandle(handle_);
    308     }
    309     handle_ = handle;
    310   } else {
    311     GTEST_CHECK_(!IsCloseable())
    312         << "Resetting a valid handle to itself is likely a programmer error "
    313             "and thus not allowed.";
    314   }
    315 }
    316 
    317 bool AutoHandle::IsCloseable() const {
    318   // Different Windows APIs may use either of these values to represent an
    319   // invalid handle.
    320   return handle_ != nullptr && handle_ != INVALID_HANDLE_VALUE;
    321 }
    322 
    323 Notification::Notification()
    324     : event_(::CreateEvent(nullptr,     // Default security attributes.
    325                            TRUE,        // Do not reset automatically.
    326                            FALSE,       // Initially unset.
    327                            nullptr)) {  // Anonymous event.
    328   GTEST_CHECK_(event_.Get() != nullptr);
    329 }
    330 
    331 void Notification::Notify() {
    332   GTEST_CHECK_(::SetEvent(event_.Get()) != FALSE);
    333 }
    334 
    335 void Notification::WaitForNotification() {
    336   GTEST_CHECK_(
    337       ::WaitForSingleObject(event_.Get(), INFINITE) == WAIT_OBJECT_0);
    338 }
    339 
    340 Mutex::Mutex()
    341     : owner_thread_id_(0),
    342       type_(kDynamic),
    343       critical_section_init_phase_(0),
    344       critical_section_(new CRITICAL_SECTION) {
    345   ::InitializeCriticalSection(critical_section_);
    346 }
    347 
    348 Mutex::~Mutex() {
    349   // Static mutexes are leaked intentionally. It is not thread-safe to try
    350   // to clean them up.
    351   if (type_ == kDynamic) {
    352     ::DeleteCriticalSection(critical_section_);
    353     delete critical_section_;
    354     critical_section_ = nullptr;
    355   }
    356 }
    357 
    358 void Mutex::Lock() {
    359   ThreadSafeLazyInit();
    360   ::EnterCriticalSection(critical_section_);
    361   owner_thread_id_ = ::GetCurrentThreadId();
    362 }
    363 
    364 void Mutex::Unlock() {
    365   ThreadSafeLazyInit();
    366   // We don't protect writing to owner_thread_id_ here, as it's the
    367   // caller's responsibility to ensure that the current thread holds the
    368   // mutex when this is called.
    369   owner_thread_id_ = 0;
    370   ::LeaveCriticalSection(critical_section_);
    371 }
    372 
    373 // Does nothing if the current thread holds the mutex. Otherwise, crashes
    374 // with high probability.
    375 void Mutex::AssertHeld() {
    376   ThreadSafeLazyInit();
    377   GTEST_CHECK_(owner_thread_id_ == ::GetCurrentThreadId())
    378       << "The current thread is not holding the mutex @" << this;
    379 }
    380 
    381 namespace {
    382 
    383 #ifdef _MSC_VER
    384 // Use the RAII idiom to flag mem allocs that are intentionally never
    385 // deallocated. The motivation is to silence the false positive mem leaks
    386 // that are reported by the debug version of MS's CRT which can only detect
    387 // if an alloc is missing a matching deallocation.
    388 // Example:
    389 //    MemoryIsNotDeallocated memory_is_not_deallocated;
    390 //    critical_section_ = new CRITICAL_SECTION;
    391 //
    392 class MemoryIsNotDeallocated
    393 {
    394  public:
    395   MemoryIsNotDeallocated() : old_crtdbg_flag_(0) {
    396     old_crtdbg_flag_ = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
    397     // Set heap allocation block type to _IGNORE_BLOCK so that MS debug CRT
    398     // doesn't report mem leak if there's no matching deallocation.
    399     _CrtSetDbgFlag(old_crtdbg_flag_ & ~_CRTDBG_ALLOC_MEM_DF);
    400   }
    401 
    402   ~MemoryIsNotDeallocated() {
    403     // Restore the original _CRTDBG_ALLOC_MEM_DF flag
    404     _CrtSetDbgFlag(old_crtdbg_flag_);
    405   }
    406 
    407  private:
    408   int old_crtdbg_flag_;
    409 
    410   GTEST_DISALLOW_COPY_AND_ASSIGN_(MemoryIsNotDeallocated);
    411 };
    412 #endif  // _MSC_VER
    413 
    414 }  // namespace
    415 
    416 // Initializes owner_thread_id_ and critical_section_ in static mutexes.
    417 void Mutex::ThreadSafeLazyInit() {
    418   // Dynamic mutexes are initialized in the constructor.
    419   if (type_ == kStatic) {
    420     switch (
    421         ::InterlockedCompareExchange(&critical_section_init_phase_, 1L, 0L)) {
    422       case 0:
    423         // If critical_section_init_phase_ was 0 before the exchange, we
    424         // are the first to test it and need to perform the initialization.
    425         owner_thread_id_ = 0;
    426         {
    427           // Use RAII to flag that following mem alloc is never deallocated.
    428 #ifdef _MSC_VER
    429           MemoryIsNotDeallocated memory_is_not_deallocated;
    430 #endif  // _MSC_VER
    431           critical_section_ = new CRITICAL_SECTION;
    432         }
    433         ::InitializeCriticalSection(critical_section_);
    434         // Updates the critical_section_init_phase_ to 2 to signal
    435         // initialization complete.
    436         GTEST_CHECK_(::InterlockedCompareExchange(
    437                           &critical_section_init_phase_, 2L, 1L) ==
    438                       1L);
    439         break;
    440       case 1:
    441         // Somebody else is already initializing the mutex; spin until they
    442         // are done.
    443         while (::InterlockedCompareExchange(&critical_section_init_phase_,
    444                                             2L,
    445                                             2L) != 2L) {
    446           // Possibly yields the rest of the thread's time slice to other
    447           // threads.
    448           ::Sleep(0);
    449         }
    450         break;
    451 
    452       case 2:
    453         break;  // The mutex is already initialized and ready for use.
    454 
    455       default:
    456         GTEST_CHECK_(false)
    457             << "Unexpected value of critical_section_init_phase_ "
    458             << "while initializing a static mutex.";
    459     }
    460   }
    461 }
    462 
    463 namespace {
    464 
    465 class ThreadWithParamSupport : public ThreadWithParamBase {
    466  public:
    467   static HANDLE CreateThread(Runnable* runnable,
    468                              Notification* thread_can_start) {
    469     ThreadMainParam* param = new ThreadMainParam(runnable, thread_can_start);
    470     DWORD thread_id;
    471     HANDLE thread_handle = ::CreateThread(
    472         nullptr,  // Default security.
    473         0,        // Default stack size.
    474         &ThreadWithParamSupport::ThreadMain,
    475         param,        // Parameter to ThreadMainStatic
    476         0x0,          // Default creation flags.
    477         &thread_id);  // Need a valid pointer for the call to work under Win98.
    478     GTEST_CHECK_(thread_handle != nullptr)
    479         << "CreateThread failed with error " << ::GetLastError() << ".";
    480     if (thread_handle == nullptr) {
    481       delete param;
    482     }
    483     return thread_handle;
    484   }
    485 
    486  private:
    487   struct ThreadMainParam {
    488     ThreadMainParam(Runnable* runnable, Notification* thread_can_start)
    489         : runnable_(runnable),
    490           thread_can_start_(thread_can_start) {
    491     }
    492     std::unique_ptr<Runnable> runnable_;
    493     // Does not own.
    494     Notification* thread_can_start_;
    495   };
    496 
    497   static DWORD WINAPI ThreadMain(void* ptr) {
    498     // Transfers ownership.
    499     std::unique_ptr<ThreadMainParam> param(static_cast<ThreadMainParam*>(ptr));
    500     if (param->thread_can_start_ != nullptr)
    501       param->thread_can_start_->WaitForNotification();
    502     param->runnable_->Run();
    503     return 0;
    504   }
    505 
    506   // Prohibit instantiation.
    507   ThreadWithParamSupport();
    508 
    509   GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadWithParamSupport);
    510 };
    511 
    512 }  // namespace
    513 
    514 ThreadWithParamBase::ThreadWithParamBase(Runnable *runnable,
    515                                          Notification* thread_can_start)
    516       : thread_(ThreadWithParamSupport::CreateThread(runnable,
    517                                                      thread_can_start)) {
    518 }
    519 
    520 ThreadWithParamBase::~ThreadWithParamBase() {
    521   Join();
    522 }
    523 
    524 void ThreadWithParamBase::Join() {
    525   GTEST_CHECK_(::WaitForSingleObject(thread_.Get(), INFINITE) == WAIT_OBJECT_0)
    526       << "Failed to join the thread with error " << ::GetLastError() << ".";
    527 }
    528 
    529 // Maps a thread to a set of ThreadIdToThreadLocals that have values
    530 // instantiated on that thread and notifies them when the thread exits.  A
    531 // ThreadLocal instance is expected to persist until all threads it has
    532 // values on have terminated.
    533 class ThreadLocalRegistryImpl {
    534  public:
    535   // Registers thread_local_instance as having value on the current thread.
    536   // Returns a value that can be used to identify the thread from other threads.
    537   static ThreadLocalValueHolderBase* GetValueOnCurrentThread(
    538       const ThreadLocalBase* thread_local_instance) {
    539     DWORD current_thread = ::GetCurrentThreadId();
    540     MutexLock lock(&mutex_);
    541     ThreadIdToThreadLocals* const thread_to_thread_locals =
    542         GetThreadLocalsMapLocked();
    543     ThreadIdToThreadLocals::iterator thread_local_pos =
    544         thread_to_thread_locals->find(current_thread);
    545     if (thread_local_pos == thread_to_thread_locals->end()) {
    546       thread_local_pos = thread_to_thread_locals->insert(
    547           std::make_pair(current_thread, ThreadLocalValues())).first;
    548       StartWatcherThreadFor(current_thread);
    549     }
    550     ThreadLocalValues& thread_local_values = thread_local_pos->second;
    551     ThreadLocalValues::iterator value_pos =
    552         thread_local_values.find(thread_local_instance);
    553     if (value_pos == thread_local_values.end()) {
    554       value_pos =
    555           thread_local_values
    556               .insert(std::make_pair(
    557                   thread_local_instance,
    558                   std::shared_ptr<ThreadLocalValueHolderBase>(
    559                       thread_local_instance->NewValueForCurrentThread())))
    560               .first;
    561     }
    562     return value_pos->second.get();
    563   }
    564 
    565   static void OnThreadLocalDestroyed(
    566       const ThreadLocalBase* thread_local_instance) {
    567     std::vector<std::shared_ptr<ThreadLocalValueHolderBase> > value_holders;
    568     // Clean up the ThreadLocalValues data structure while holding the lock, but
    569     // defer the destruction of the ThreadLocalValueHolderBases.
    570     {
    571       MutexLock lock(&mutex_);
    572       ThreadIdToThreadLocals* const thread_to_thread_locals =
    573           GetThreadLocalsMapLocked();
    574       for (ThreadIdToThreadLocals::iterator it =
    575           thread_to_thread_locals->begin();
    576           it != thread_to_thread_locals->end();
    577           ++it) {
    578         ThreadLocalValues& thread_local_values = it->second;
    579         ThreadLocalValues::iterator value_pos =
    580             thread_local_values.find(thread_local_instance);
    581         if (value_pos != thread_local_values.end()) {
    582           value_holders.push_back(value_pos->second);
    583           thread_local_values.erase(value_pos);
    584           // This 'if' can only be successful at most once, so theoretically we
    585           // could break out of the loop here, but we don't bother doing so.
    586         }
    587       }
    588     }
    589     // Outside the lock, let the destructor for 'value_holders' deallocate the
    590     // ThreadLocalValueHolderBases.
    591   }
    592 
    593   static void OnThreadExit(DWORD thread_id) {
    594     GTEST_CHECK_(thread_id != 0) << ::GetLastError();
    595     std::vector<std::shared_ptr<ThreadLocalValueHolderBase> > value_holders;
    596     // Clean up the ThreadIdToThreadLocals data structure while holding the
    597     // lock, but defer the destruction of the ThreadLocalValueHolderBases.
    598     {
    599       MutexLock lock(&mutex_);
    600       ThreadIdToThreadLocals* const thread_to_thread_locals =
    601           GetThreadLocalsMapLocked();
    602       ThreadIdToThreadLocals::iterator thread_local_pos =
    603           thread_to_thread_locals->find(thread_id);
    604       if (thread_local_pos != thread_to_thread_locals->end()) {
    605         ThreadLocalValues& thread_local_values = thread_local_pos->second;
    606         for (ThreadLocalValues::iterator value_pos =
    607             thread_local_values.begin();
    608             value_pos != thread_local_values.end();
    609             ++value_pos) {
    610           value_holders.push_back(value_pos->second);
    611         }
    612         thread_to_thread_locals->erase(thread_local_pos);
    613       }
    614     }
    615     // Outside the lock, let the destructor for 'value_holders' deallocate the
    616     // ThreadLocalValueHolderBases.
    617   }
    618 
    619  private:
    620   // In a particular thread, maps a ThreadLocal object to its value.
    621   typedef std::map<const ThreadLocalBase*,
    622                    std::shared_ptr<ThreadLocalValueHolderBase> >
    623       ThreadLocalValues;
    624   // Stores all ThreadIdToThreadLocals having values in a thread, indexed by
    625   // thread's ID.
    626   typedef std::map<DWORD, ThreadLocalValues> ThreadIdToThreadLocals;
    627 
    628   // Holds the thread id and thread handle that we pass from
    629   // StartWatcherThreadFor to WatcherThreadFunc.
    630   typedef std::pair<DWORD, HANDLE> ThreadIdAndHandle;
    631 
    632   static void StartWatcherThreadFor(DWORD thread_id) {
    633     // The returned handle will be kept in thread_map and closed by
    634     // watcher_thread in WatcherThreadFunc.
    635     HANDLE thread = ::OpenThread(SYNCHRONIZE | THREAD_QUERY_INFORMATION,
    636                                  FALSE,
    637                                  thread_id);
    638     GTEST_CHECK_(thread != nullptr);
    639     // We need to pass a valid thread ID pointer into CreateThread for it
    640     // to work correctly under Win98.
    641     DWORD watcher_thread_id;
    642     HANDLE watcher_thread = ::CreateThread(
    643         nullptr,  // Default security.
    644         0,        // Default stack size
    645         &ThreadLocalRegistryImpl::WatcherThreadFunc,
    646         reinterpret_cast<LPVOID>(new ThreadIdAndHandle(thread_id, thread)),
    647         CREATE_SUSPENDED, &watcher_thread_id);
    648     GTEST_CHECK_(watcher_thread != nullptr);
    649     // Give the watcher thread the same priority as ours to avoid being
    650     // blocked by it.
    651     ::SetThreadPriority(watcher_thread,
    652                         ::GetThreadPriority(::GetCurrentThread()));
    653     ::ResumeThread(watcher_thread);
    654     ::CloseHandle(watcher_thread);
    655   }
    656 
    657   // Monitors exit from a given thread and notifies those
    658   // ThreadIdToThreadLocals about thread termination.
    659   static DWORD WINAPI WatcherThreadFunc(LPVOID param) {
    660     const ThreadIdAndHandle* tah =
    661         reinterpret_cast<const ThreadIdAndHandle*>(param);
    662     GTEST_CHECK_(
    663         ::WaitForSingleObject(tah->second, INFINITE) == WAIT_OBJECT_0);
    664     OnThreadExit(tah->first);
    665     ::CloseHandle(tah->second);
    666     delete tah;
    667     return 0;
    668   }
    669 
    670   // Returns map of thread local instances.
    671   static ThreadIdToThreadLocals* GetThreadLocalsMapLocked() {
    672     mutex_.AssertHeld();
    673 #ifdef _MSC_VER
    674     MemoryIsNotDeallocated memory_is_not_deallocated;
    675 #endif  // _MSC_VER
    676     static ThreadIdToThreadLocals* map = new ThreadIdToThreadLocals();
    677     return map;
    678   }
    679 
    680   // Protects access to GetThreadLocalsMapLocked() and its return value.
    681   static Mutex mutex_;
    682   // Protects access to GetThreadMapLocked() and its return value.
    683   static Mutex thread_map_mutex_;
    684 };
    685 
    686 Mutex ThreadLocalRegistryImpl::mutex_(Mutex::kStaticMutex);
    687 Mutex ThreadLocalRegistryImpl::thread_map_mutex_(Mutex::kStaticMutex);
    688 
    689 ThreadLocalValueHolderBase* ThreadLocalRegistry::GetValueOnCurrentThread(
    690       const ThreadLocalBase* thread_local_instance) {
    691   return ThreadLocalRegistryImpl::GetValueOnCurrentThread(
    692       thread_local_instance);
    693 }
    694 
    695 void ThreadLocalRegistry::OnThreadLocalDestroyed(
    696       const ThreadLocalBase* thread_local_instance) {
    697   ThreadLocalRegistryImpl::OnThreadLocalDestroyed(thread_local_instance);
    698 }
    699 
    700 #endif  // GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
    701 
    702 #if GTEST_USES_POSIX_RE
    703 
    704 // Implements RE.  Currently only needed for death tests.
    705 
    706 RE::~RE() {
    707   if (is_valid_) {
    708     // regfree'ing an invalid regex might crash because the content
    709     // of the regex is undefined. Since the regex's are essentially
    710     // the same, one cannot be valid (or invalid) without the other
    711     // being so too.
    712     regfree(&partial_regex_);
    713     regfree(&full_regex_);
    714   }
    715   free(const_cast<char*>(pattern_));
    716 }
    717 
    718 // Returns true if and only if regular expression re matches the entire str.
    719 bool RE::FullMatch(const char* str, const RE& re) {
    720   if (!re.is_valid_) return false;
    721 
    722   regmatch_t match;
    723   return regexec(&re.full_regex_, str, 1, &match, 0) == 0;
    724 }
    725 
    726 // Returns true if and only if regular expression re matches a substring of
    727 // str (including str itself).
    728 bool RE::PartialMatch(const char* str, const RE& re) {
    729   if (!re.is_valid_) return false;
    730 
    731   regmatch_t match;
    732   return regexec(&re.partial_regex_, str, 1, &match, 0) == 0;
    733 }
    734 
    735 // Initializes an RE from its string representation.
    736 void RE::Init(const char* regex) {
    737   pattern_ = posix::StrDup(regex);
    738 
    739   // Reserves enough bytes to hold the regular expression used for a
    740   // full match.
    741   const size_t full_regex_len = strlen(regex) + 10;
    742   char* const full_pattern = new char[full_regex_len];
    743 
    744   snprintf(full_pattern, full_regex_len, "^(%s)$", regex);
    745   is_valid_ = regcomp(&full_regex_, full_pattern, REG_EXTENDED) == 0;
    746   // We want to call regcomp(&partial_regex_, ...) even if the
    747   // previous expression returns false.  Otherwise partial_regex_ may
    748   // not be properly initialized can may cause trouble when it's
    749   // freed.
    750   //
    751   // Some implementation of POSIX regex (e.g. on at least some
    752   // versions of Cygwin) doesn't accept the empty string as a valid
    753   // regex.  We change it to an equivalent form "()" to be safe.
    754   if (is_valid_) {
    755     const char* const partial_regex = (*regex == '\0') ? "()" : regex;
    756     is_valid_ = regcomp(&partial_regex_, partial_regex, REG_EXTENDED) == 0;
    757   }
    758   EXPECT_TRUE(is_valid_)
    759       << "Regular expression \"" << regex
    760       << "\" is not a valid POSIX Extended regular expression.";
    761 
    762   delete[] full_pattern;
    763 }
    764 
    765 #elif GTEST_USES_SIMPLE_RE
    766 
    767 // Returns true if and only if ch appears anywhere in str (excluding the
    768 // terminating '\0' character).
    769 bool IsInSet(char ch, const char* str) {
    770   return ch != '\0' && strchr(str, ch) != nullptr;
    771 }
    772 
    773 // Returns true if and only if ch belongs to the given classification.
    774 // Unlike similar functions in <ctype.h>, these aren't affected by the
    775 // current locale.
    776 bool IsAsciiDigit(char ch) { return '0' <= ch && ch <= '9'; }
    777 bool IsAsciiPunct(char ch) {
    778   return IsInSet(ch, "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~");
    779 }
    780 bool IsRepeat(char ch) { return IsInSet(ch, "?*+"); }
    781 bool IsAsciiWhiteSpace(char ch) { return IsInSet(ch, " \f\n\r\t\v"); }
    782 bool IsAsciiWordChar(char ch) {
    783   return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z') ||
    784       ('0' <= ch && ch <= '9') || ch == '_';
    785 }
    786 
    787 // Returns true if and only if "\\c" is a supported escape sequence.
    788 bool IsValidEscape(char c) {
    789   return (IsAsciiPunct(c) || IsInSet(c, "dDfnrsStvwW"));
    790 }
    791 
    792 // Returns true if and only if the given atom (specified by escaped and
    793 // pattern) matches ch.  The result is undefined if the atom is invalid.
    794 bool AtomMatchesChar(bool escaped, char pattern_char, char ch) {
    795   if (escaped) {  // "\\p" where p is pattern_char.
    796     switch (pattern_char) {
    797       case 'd': return IsAsciiDigit(ch);
    798       case 'D': return !IsAsciiDigit(ch);
    799       case 'f': return ch == '\f';
    800       case 'n': return ch == '\n';
    801       case 'r': return ch == '\r';
    802       case 's': return IsAsciiWhiteSpace(ch);
    803       case 'S': return !IsAsciiWhiteSpace(ch);
    804       case 't': return ch == '\t';
    805       case 'v': return ch == '\v';
    806       case 'w': return IsAsciiWordChar(ch);
    807       case 'W': return !IsAsciiWordChar(ch);
    808     }
    809     return IsAsciiPunct(pattern_char) && pattern_char == ch;
    810   }
    811 
    812   return (pattern_char == '.' && ch != '\n') || pattern_char == ch;
    813 }
    814 
    815 // Helper function used by ValidateRegex() to format error messages.
    816 static std::string FormatRegexSyntaxError(const char* regex, int index) {
    817   return (Message() << "Syntax error at index " << index
    818           << " in simple regular expression \"" << regex << "\": ").GetString();
    819 }
    820 
    821 // Generates non-fatal failures and returns false if regex is invalid;
    822 // otherwise returns true.
    823 bool ValidateRegex(const char* regex) {
    824   if (regex == nullptr) {
    825     ADD_FAILURE() << "NULL is not a valid simple regular expression.";
    826     return false;
    827   }
    828 
    829   bool is_valid = true;
    830 
    831   // True if and only if ?, *, or + can follow the previous atom.
    832   bool prev_repeatable = false;
    833   for (int i = 0; regex[i]; i++) {
    834     if (regex[i] == '\\') {  // An escape sequence
    835       i++;
    836       if (regex[i] == '\0') {
    837         ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
    838                       << "'\\' cannot appear at the end.";
    839         return false;
    840       }
    841 
    842       if (!IsValidEscape(regex[i])) {
    843         ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
    844                       << "invalid escape sequence \"\\" << regex[i] << "\".";
    845         is_valid = false;
    846       }
    847       prev_repeatable = true;
    848     } else {  // Not an escape sequence.
    849       const char ch = regex[i];
    850 
    851       if (ch == '^' && i > 0) {
    852         ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
    853                       << "'^' can only appear at the beginning.";
    854         is_valid = false;
    855       } else if (ch == '$' && regex[i + 1] != '\0') {
    856         ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
    857                       << "'$' can only appear at the end.";
    858         is_valid = false;
    859       } else if (IsInSet(ch, "()[]{}|")) {
    860         ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
    861                       << "'" << ch << "' is unsupported.";
    862         is_valid = false;
    863       } else if (IsRepeat(ch) && !prev_repeatable) {
    864         ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
    865                       << "'" << ch << "' can only follow a repeatable token.";
    866         is_valid = false;
    867       }
    868 
    869       prev_repeatable = !IsInSet(ch, "^$?*+");
    870     }
    871   }
    872 
    873   return is_valid;
    874 }
    875 
    876 // Matches a repeated regex atom followed by a valid simple regular
    877 // expression.  The regex atom is defined as c if escaped is false,
    878 // or \c otherwise.  repeat is the repetition meta character (?, *,
    879 // or +).  The behavior is undefined if str contains too many
    880 // characters to be indexable by size_t, in which case the test will
    881 // probably time out anyway.  We are fine with this limitation as
    882 // std::string has it too.
    883 bool MatchRepetitionAndRegexAtHead(
    884     bool escaped, char c, char repeat, const char* regex,
    885     const char* str) {
    886   const size_t min_count = (repeat == '+') ? 1 : 0;
    887   const size_t max_count = (repeat == '?') ? 1 :
    888       static_cast<size_t>(-1) - 1;
    889   // We cannot call numeric_limits::max() as it conflicts with the
    890   // max() macro on Windows.
    891 
    892   for (size_t i = 0; i <= max_count; ++i) {
    893     // We know that the atom matches each of the first i characters in str.
    894     if (i >= min_count && MatchRegexAtHead(regex, str + i)) {
    895       // We have enough matches at the head, and the tail matches too.
    896       // Since we only care about *whether* the pattern matches str
    897       // (as opposed to *how* it matches), there is no need to find a
    898       // greedy match.
    899       return true;
    900     }
    901     if (str[i] == '\0' || !AtomMatchesChar(escaped, c, str[i]))
    902       return false;
    903   }
    904   return false;
    905 }
    906 
    907 // Returns true if and only if regex matches a prefix of str. regex must
    908 // be a valid simple regular expression and not start with "^", or the
    909 // result is undefined.
    910 bool MatchRegexAtHead(const char* regex, const char* str) {
    911   if (*regex == '\0')  // An empty regex matches a prefix of anything.
    912     return true;
    913 
    914   // "$" only matches the end of a string.  Note that regex being
    915   // valid guarantees that there's nothing after "$" in it.
    916   if (*regex == '$')
    917     return *str == '\0';
    918 
    919   // Is the first thing in regex an escape sequence?
    920   const bool escaped = *regex == '\\';
    921   if (escaped)
    922     ++regex;
    923   if (IsRepeat(regex[1])) {
    924     // MatchRepetitionAndRegexAtHead() calls MatchRegexAtHead(), so
    925     // here's an indirect recursion.  It terminates as the regex gets
    926     // shorter in each recursion.
    927     return MatchRepetitionAndRegexAtHead(
    928         escaped, regex[0], regex[1], regex + 2, str);
    929   } else {
    930     // regex isn't empty, isn't "$", and doesn't start with a
    931     // repetition.  We match the first atom of regex with the first
    932     // character of str and recurse.
    933     return (*str != '\0') && AtomMatchesChar(escaped, *regex, *str) &&
    934         MatchRegexAtHead(regex + 1, str + 1);
    935   }
    936 }
    937 
    938 // Returns true if and only if regex matches any substring of str.  regex must
    939 // be a valid simple regular expression, or the result is undefined.
    940 //
    941 // The algorithm is recursive, but the recursion depth doesn't exceed
    942 // the regex length, so we won't need to worry about running out of
    943 // stack space normally.  In rare cases the time complexity can be
    944 // exponential with respect to the regex length + the string length,
    945 // but usually it's must faster (often close to linear).
    946 bool MatchRegexAnywhere(const char* regex, const char* str) {
    947   if (regex == nullptr || str == nullptr) return false;
    948 
    949   if (*regex == '^')
    950     return MatchRegexAtHead(regex + 1, str);
    951 
    952   // A successful match can be anywhere in str.
    953   do {
    954     if (MatchRegexAtHead(regex, str))
    955       return true;
    956   } while (*str++ != '\0');
    957   return false;
    958 }
    959 
    960 // Implements the RE class.
    961 
    962 RE::~RE() {
    963   free(const_cast<char*>(pattern_));
    964   free(const_cast<char*>(full_pattern_));
    965 }
    966 
    967 // Returns true if and only if regular expression re matches the entire str.
    968 bool RE::FullMatch(const char* str, const RE& re) {
    969   return re.is_valid_ && MatchRegexAnywhere(re.full_pattern_, str);
    970 }
    971 
    972 // Returns true if and only if regular expression re matches a substring of
    973 // str (including str itself).
    974 bool RE::PartialMatch(const char* str, const RE& re) {
    975   return re.is_valid_ && MatchRegexAnywhere(re.pattern_, str);
    976 }
    977 
    978 // Initializes an RE from its string representation.
    979 void RE::Init(const char* regex) {
    980   pattern_ = full_pattern_ = nullptr;
    981   if (regex != nullptr) {
    982     pattern_ = posix::StrDup(regex);
    983   }
    984 
    985   is_valid_ = ValidateRegex(regex);
    986   if (!is_valid_) {
    987     // No need to calculate the full pattern when the regex is invalid.
    988     return;
    989   }
    990 
    991   const size_t len = strlen(regex);
    992   // Reserves enough bytes to hold the regular expression used for a
    993   // full match: we need space to prepend a '^', append a '$', and
    994   // terminate the string with '\0'.
    995   char* buffer = static_cast<char*>(malloc(len + 3));
    996   full_pattern_ = buffer;
    997 
    998   if (*regex != '^')
    999     *buffer++ = '^';  // Makes sure full_pattern_ starts with '^'.
   1000 
   1001   // We don't use snprintf or strncpy, as they trigger a warning when
   1002   // compiled with VC++ 8.0.
   1003   memcpy(buffer, regex, len);
   1004   buffer += len;
   1005 
   1006   if (len == 0 || regex[len - 1] != '$')
   1007     *buffer++ = '$';  // Makes sure full_pattern_ ends with '$'.
   1008 
   1009   *buffer = '\0';
   1010 }
   1011 
   1012 #endif  // GTEST_USES_POSIX_RE
   1013 
   1014 const char kUnknownFile[] = "unknown file";
   1015 
   1016 // Formats a source file path and a line number as they would appear
   1017 // in an error message from the compiler used to compile this code.
   1018 GTEST_API_ ::std::string FormatFileLocation(const char* file, int line) {
   1019   const std::string file_name(file == nullptr ? kUnknownFile : file);
   1020 
   1021   if (line < 0) {
   1022     return file_name + ":";
   1023   }
   1024 #ifdef _MSC_VER
   1025   return file_name + "(" + StreamableToString(line) + "):";
   1026 #else
   1027   return file_name + ":" + StreamableToString(line) + ":";
   1028 #endif  // _MSC_VER
   1029 }
   1030 
   1031 // Formats a file location for compiler-independent XML output.
   1032 // Although this function is not platform dependent, we put it next to
   1033 // FormatFileLocation in order to contrast the two functions.
   1034 // Note that FormatCompilerIndependentFileLocation() does NOT append colon
   1035 // to the file location it produces, unlike FormatFileLocation().
   1036 GTEST_API_ ::std::string FormatCompilerIndependentFileLocation(
   1037     const char* file, int line) {
   1038   const std::string file_name(file == nullptr ? kUnknownFile : file);
   1039 
   1040   if (line < 0)
   1041     return file_name;
   1042   else
   1043     return file_name + ":" + StreamableToString(line);
   1044 }
   1045 
   1046 GTestLog::GTestLog(GTestLogSeverity severity, const char* file, int line)
   1047     : severity_(severity) {
   1048   const char* const marker =
   1049       severity == GTEST_INFO ?    "[  INFO ]" :
   1050       severity == GTEST_WARNING ? "[WARNING]" :
   1051       severity == GTEST_ERROR ?   "[ ERROR ]" : "[ FATAL ]";
   1052   GetStream() << ::std::endl << marker << " "
   1053               << FormatFileLocation(file, line).c_str() << ": ";
   1054 }
   1055 
   1056 // Flushes the buffers and, if severity is GTEST_FATAL, aborts the program.
   1057 GTestLog::~GTestLog() {
   1058   GetStream() << ::std::endl;
   1059   if (severity_ == GTEST_FATAL) {
   1060     fflush(stderr);
   1061     posix::Abort();
   1062   }
   1063 }
   1064 
   1065 // Disable Microsoft deprecation warnings for POSIX functions called from
   1066 // this class (creat, dup, dup2, and close)
   1067 GTEST_DISABLE_MSC_DEPRECATED_PUSH_()
   1068 
   1069 #if GTEST_HAS_STREAM_REDIRECTION
   1070 
   1071 // Object that captures an output stream (stdout/stderr).
   1072 class CapturedStream {
   1073  public:
   1074   // The ctor redirects the stream to a temporary file.
   1075   explicit CapturedStream(int fd) : fd_(fd), uncaptured_fd_(dup(fd)) {
   1076 # if GTEST_OS_WINDOWS
   1077     char temp_dir_path[MAX_PATH + 1] = { '\0' };  // NOLINT
   1078     char temp_file_path[MAX_PATH + 1] = { '\0' };  // NOLINT
   1079 
   1080     ::GetTempPathA(sizeof(temp_dir_path), temp_dir_path);
   1081     const UINT success = ::GetTempFileNameA(temp_dir_path,
   1082                                             "gtest_redir",
   1083                                             0,  // Generate unique file name.
   1084                                             temp_file_path);
   1085     GTEST_CHECK_(success != 0)
   1086         << "Unable to create a temporary file in " << temp_dir_path;
   1087     const int captured_fd = creat(temp_file_path, _S_IREAD | _S_IWRITE);
   1088     GTEST_CHECK_(captured_fd != -1) << "Unable to open temporary file "
   1089                                     << temp_file_path;
   1090     filename_ = temp_file_path;
   1091 # else
   1092     // There's no guarantee that a test has write access to the current
   1093     // directory, so we create the temporary file in the /tmp directory
   1094     // instead. We use /tmp on most systems, and /sdcard on Android.
   1095     // That's because Android doesn't have /tmp.
   1096 #  if GTEST_OS_LINUX_ANDROID
   1097     // Note: Android applications are expected to call the framework's
   1098     // Context.getExternalStorageDirectory() method through JNI to get
   1099     // the location of the world-writable SD Card directory. However,
   1100     // this requires a Context handle, which cannot be retrieved
   1101     // globally from native code. Doing so also precludes running the
   1102     // code as part of a regular standalone executable, which doesn't
   1103     // run in a Dalvik process (e.g. when running it through 'adb shell').
   1104     //
   1105     // The location /data/local/tmp is directly accessible from native code.
   1106     // '/sdcard' and other variants cannot be relied on, as they are not
   1107     // guaranteed to be mounted, or may have a delay in mounting.
   1108     char name_template[] = "/data/local/tmp/gtest_captured_stream.XXXXXX";
   1109 #  else
   1110     char name_template[] = "/tmp/captured_stream.XXXXXX";
   1111 #  endif  // GTEST_OS_LINUX_ANDROID
   1112     const int captured_fd = mkstemp(name_template);
   1113     if (captured_fd == -1) {
   1114       GTEST_LOG_(WARNING)
   1115           << "Failed to create tmp file " << name_template
   1116           << " for test; does the test have access to the /tmp directory?";
   1117     }
   1118     filename_ = name_template;
   1119 # endif  // GTEST_OS_WINDOWS
   1120     fflush(nullptr);
   1121     dup2(captured_fd, fd_);
   1122     close(captured_fd);
   1123   }
   1124 
   1125   ~CapturedStream() {
   1126     remove(filename_.c_str());
   1127   }
   1128 
   1129   std::string GetCapturedString() {
   1130     if (uncaptured_fd_ != -1) {
   1131       // Restores the original stream.
   1132       fflush(nullptr);
   1133       dup2(uncaptured_fd_, fd_);
   1134       close(uncaptured_fd_);
   1135       uncaptured_fd_ = -1;
   1136     }
   1137 
   1138     FILE* const file = posix::FOpen(filename_.c_str(), "r");
   1139     if (file == nullptr) {
   1140       GTEST_LOG_(FATAL) << "Failed to open tmp file " << filename_
   1141                         << " for capturing stream.";
   1142     }
   1143     const std::string content = ReadEntireFile(file);
   1144     posix::FClose(file);
   1145     return content;
   1146   }
   1147 
   1148  private:
   1149   const int fd_;  // A stream to capture.
   1150   int uncaptured_fd_;
   1151   // Name of the temporary file holding the stderr output.
   1152   ::std::string filename_;
   1153 
   1154   GTEST_DISALLOW_COPY_AND_ASSIGN_(CapturedStream);
   1155 };
   1156 
   1157 GTEST_DISABLE_MSC_DEPRECATED_POP_()
   1158 
   1159 static CapturedStream* g_captured_stderr = nullptr;
   1160 static CapturedStream* g_captured_stdout = nullptr;
   1161 
   1162 // Starts capturing an output stream (stdout/stderr).
   1163 static void CaptureStream(int fd, const char* stream_name,
   1164                           CapturedStream** stream) {
   1165   if (*stream != nullptr) {
   1166     GTEST_LOG_(FATAL) << "Only one " << stream_name
   1167                       << " capturer can exist at a time.";
   1168   }
   1169   *stream = new CapturedStream(fd);
   1170 }
   1171 
   1172 // Stops capturing the output stream and returns the captured string.
   1173 static std::string GetCapturedStream(CapturedStream** captured_stream) {
   1174   const std::string content = (*captured_stream)->GetCapturedString();
   1175 
   1176   delete *captured_stream;
   1177   *captured_stream = nullptr;
   1178 
   1179   return content;
   1180 }
   1181 
   1182 // Starts capturing stdout.
   1183 void CaptureStdout() {
   1184   CaptureStream(kStdOutFileno, "stdout", &g_captured_stdout);
   1185 }
   1186 
   1187 // Starts capturing stderr.
   1188 void CaptureStderr() {
   1189   CaptureStream(kStdErrFileno, "stderr", &g_captured_stderr);
   1190 }
   1191 
   1192 // Stops capturing stdout and returns the captured string.
   1193 std::string GetCapturedStdout() {
   1194   return GetCapturedStream(&g_captured_stdout);
   1195 }
   1196 
   1197 // Stops capturing stderr and returns the captured string.
   1198 std::string GetCapturedStderr() {
   1199   return GetCapturedStream(&g_captured_stderr);
   1200 }
   1201 
   1202 #endif  // GTEST_HAS_STREAM_REDIRECTION
   1203 
   1204 
   1205 
   1206 
   1207 
   1208 size_t GetFileSize(FILE* file) {
   1209   fseek(file, 0, SEEK_END);
   1210   return static_cast<size_t>(ftell(file));
   1211 }
   1212 
   1213 std::string ReadEntireFile(FILE* file) {
   1214   const size_t file_size = GetFileSize(file);
   1215   char* const buffer = new char[file_size];
   1216 
   1217   size_t bytes_last_read = 0;  // # of bytes read in the last fread()
   1218   size_t bytes_read = 0;       // # of bytes read so far
   1219 
   1220   fseek(file, 0, SEEK_SET);
   1221 
   1222   // Keeps reading the file until we cannot read further or the
   1223   // pre-determined file size is reached.
   1224   do {
   1225     bytes_last_read = fread(buffer+bytes_read, 1, file_size-bytes_read, file);
   1226     bytes_read += bytes_last_read;
   1227   } while (bytes_last_read > 0 && bytes_read < file_size);
   1228 
   1229   const std::string content(buffer, bytes_read);
   1230   delete[] buffer;
   1231 
   1232   return content;
   1233 }
   1234 
   1235 #if GTEST_HAS_DEATH_TEST
   1236 static const std::vector<std::string>* g_injected_test_argvs =
   1237     nullptr;  // Owned.
   1238 
   1239 std::vector<std::string> GetInjectableArgvs() {
   1240   if (g_injected_test_argvs != nullptr) {
   1241     return *g_injected_test_argvs;
   1242   }
   1243   return GetArgvs();
   1244 }
   1245 
   1246 void SetInjectableArgvs(const std::vector<std::string>* new_argvs) {
   1247   if (g_injected_test_argvs != new_argvs) delete g_injected_test_argvs;
   1248   g_injected_test_argvs = new_argvs;
   1249 }
   1250 
   1251 void SetInjectableArgvs(const std::vector<std::string>& new_argvs) {
   1252   SetInjectableArgvs(
   1253       new std::vector<std::string>(new_argvs.begin(), new_argvs.end()));
   1254 }
   1255 
   1256 void ClearInjectableArgvs() {
   1257   delete g_injected_test_argvs;
   1258   g_injected_test_argvs = nullptr;
   1259 }
   1260 #endif  // GTEST_HAS_DEATH_TEST
   1261 
   1262 #if GTEST_OS_WINDOWS_MOBILE
   1263 namespace posix {
   1264 void Abort() {
   1265   DebugBreak();
   1266   TerminateProcess(GetCurrentProcess(), 1);
   1267 }
   1268 }  // namespace posix
   1269 #endif  // GTEST_OS_WINDOWS_MOBILE
   1270 
   1271 // Returns the name of the environment variable corresponding to the
   1272 // given flag.  For example, FlagToEnvVar("foo") will return
   1273 // "GTEST_FOO" in the open-source version.
   1274 static std::string FlagToEnvVar(const char* flag) {
   1275   const std::string full_flag =
   1276       (Message() << GTEST_FLAG_PREFIX_ << flag).GetString();
   1277 
   1278   Message env_var;
   1279   for (size_t i = 0; i != full_flag.length(); i++) {
   1280     env_var << ToUpper(full_flag.c_str()[i]);
   1281   }
   1282 
   1283   return env_var.GetString();
   1284 }
   1285 
   1286 // Parses 'str' for a 32-bit signed integer.  If successful, writes
   1287 // the result to *value and returns true; otherwise leaves *value
   1288 // unchanged and returns false.
   1289 bool ParseInt32(const Message& src_text, const char* str, Int32* value) {
   1290   // Parses the environment variable as a decimal integer.
   1291   char* end = nullptr;
   1292   const long long_value = strtol(str, &end, 10);  // NOLINT
   1293 
   1294   // Has strtol() consumed all characters in the string?
   1295   if (*end != '\0') {
   1296     // No - an invalid character was encountered.
   1297     Message msg;
   1298     msg << "WARNING: " << src_text
   1299         << " is expected to be a 32-bit integer, but actually"
   1300         << " has value \"" << str << "\".\n";
   1301     printf("%s", msg.GetString().c_str());
   1302     fflush(stdout);
   1303     return false;
   1304   }
   1305 
   1306   // Is the parsed value in the range of an Int32?
   1307   const Int32 result = static_cast<Int32>(long_value);
   1308   if (long_value == LONG_MAX || long_value == LONG_MIN ||
   1309       // The parsed value overflows as a long.  (strtol() returns
   1310       // LONG_MAX or LONG_MIN when the input overflows.)
   1311       result != long_value
   1312       // The parsed value overflows as an Int32.
   1313       ) {
   1314     Message msg;
   1315     msg << "WARNING: " << src_text
   1316         << " is expected to be a 32-bit integer, but actually"
   1317         << " has value " << str << ", which overflows.\n";
   1318     printf("%s", msg.GetString().c_str());
   1319     fflush(stdout);
   1320     return false;
   1321   }
   1322 
   1323   *value = result;
   1324   return true;
   1325 }
   1326 
   1327 // Reads and returns the Boolean environment variable corresponding to
   1328 // the given flag; if it's not set, returns default_value.
   1329 //
   1330 // The value is considered true if and only if it's not "0".
   1331 bool BoolFromGTestEnv(const char* flag, bool default_value) {
   1332 #if defined(GTEST_GET_BOOL_FROM_ENV_)
   1333   return GTEST_GET_BOOL_FROM_ENV_(flag, default_value);
   1334 #else
   1335   const std::string env_var = FlagToEnvVar(flag);
   1336   const char* const string_value = posix::GetEnv(env_var.c_str());
   1337   return string_value == nullptr ? default_value
   1338                                  : strcmp(string_value, "0") != 0;
   1339 #endif  // defined(GTEST_GET_BOOL_FROM_ENV_)
   1340 }
   1341 
   1342 // Reads and returns a 32-bit integer stored in the environment
   1343 // variable corresponding to the given flag; if it isn't set or
   1344 // doesn't represent a valid 32-bit integer, returns default_value.
   1345 Int32 Int32FromGTestEnv(const char* flag, Int32 default_value) {
   1346 #if defined(GTEST_GET_INT32_FROM_ENV_)
   1347   return GTEST_GET_INT32_FROM_ENV_(flag, default_value);
   1348 #else
   1349   const std::string env_var = FlagToEnvVar(flag);
   1350   const char* const string_value = posix::GetEnv(env_var.c_str());
   1351   if (string_value == nullptr) {
   1352     // The environment variable is not set.
   1353     return default_value;
   1354   }
   1355 
   1356   Int32 result = default_value;
   1357   if (!ParseInt32(Message() << "Environment variable " << env_var,
   1358                   string_value, &result)) {
   1359     printf("The default value %s is used.\n",
   1360            (Message() << default_value).GetString().c_str());
   1361     fflush(stdout);
   1362     return default_value;
   1363   }
   1364 
   1365   return result;
   1366 #endif  // defined(GTEST_GET_INT32_FROM_ENV_)
   1367 }
   1368 
   1369 // As a special case for the 'output' flag, if GTEST_OUTPUT is not
   1370 // set, we look for XML_OUTPUT_FILE, which is set by the Bazel build
   1371 // system.  The value of XML_OUTPUT_FILE is a filename without the
   1372 // "xml:" prefix of GTEST_OUTPUT.
   1373 // Note that this is meant to be called at the call site so it does
   1374 // not check that the flag is 'output'
   1375 // In essence this checks an env variable called XML_OUTPUT_FILE
   1376 // and if it is set we prepend "xml:" to its value, if it not set we return ""
   1377 std::string OutputFlagAlsoCheckEnvVar(){
   1378   std::string default_value_for_output_flag = "";
   1379   const char* xml_output_file_env = posix::GetEnv("XML_OUTPUT_FILE");
   1380   if (nullptr != xml_output_file_env) {
   1381     default_value_for_output_flag = std::string("xml:") + xml_output_file_env;
   1382   }
   1383   return default_value_for_output_flag;
   1384 }
   1385 
   1386 // Reads and returns the string environment variable corresponding to
   1387 // the given flag; if it's not set, returns default_value.
   1388 const char* StringFromGTestEnv(const char* flag, const char* default_value) {
   1389 #if defined(GTEST_GET_STRING_FROM_ENV_)
   1390   return GTEST_GET_STRING_FROM_ENV_(flag, default_value);
   1391 #else
   1392   const std::string env_var = FlagToEnvVar(flag);
   1393   const char* const value = posix::GetEnv(env_var.c_str());
   1394   return value == nullptr ? default_value : value;
   1395 #endif  // defined(GTEST_GET_STRING_FROM_ENV_)
   1396 }
   1397 
   1398 }  // namespace internal
   1399 }  // namespace testing