yaml-cpp

FORK: A YAML parser and emitter in C++
git clone https://git.neptards.moe/neptards/yaml-cpp.git
Log | Files | Refs | README | LICENSE

gtest-internal.h (53948B)


      1 // Copyright 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // The Google C++ Testing and Mocking Framework (Google Test)
     31 //
     32 // This header file declares functions and macros used internally by
     33 // Google Test.  They are subject to change without notice.
     34 
     35 // GOOGLETEST_CM0001 DO NOT DELETE
     36 
     37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     39 
     40 #include "gtest/internal/gtest-port.h"
     41 
     42 #if GTEST_OS_LINUX
     43 # include <stdlib.h>
     44 # include <sys/types.h>
     45 # include <sys/wait.h>
     46 # include <unistd.h>
     47 #endif  // GTEST_OS_LINUX
     48 
     49 #if GTEST_HAS_EXCEPTIONS
     50 # include <stdexcept>
     51 #endif
     52 
     53 #include <ctype.h>
     54 #include <float.h>
     55 #include <string.h>
     56 #include <iomanip>
     57 #include <limits>
     58 #include <map>
     59 #include <set>
     60 #include <string>
     61 #include <type_traits>
     62 #include <vector>
     63 
     64 #include "gtest/gtest-message.h"
     65 #include "gtest/internal/gtest-filepath.h"
     66 #include "gtest/internal/gtest-string.h"
     67 #include "gtest/internal/gtest-type-util.h"
     68 
     69 // Due to C++ preprocessor weirdness, we need double indirection to
     70 // concatenate two tokens when one of them is __LINE__.  Writing
     71 //
     72 //   foo ## __LINE__
     73 //
     74 // will result in the token foo__LINE__, instead of foo followed by
     75 // the current line number.  For more details, see
     76 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
     77 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
     78 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
     79 
     80 // Stringifies its argument.
     81 #define GTEST_STRINGIFY_(name) #name
     82 
     83 namespace proto2 { class Message; }
     84 
     85 namespace testing {
     86 
     87 // Forward declarations.
     88 
     89 class AssertionResult;                 // Result of an assertion.
     90 class Message;                         // Represents a failure message.
     91 class Test;                            // Represents a test.
     92 class TestInfo;                        // Information about a test.
     93 class TestPartResult;                  // Result of a test part.
     94 class UnitTest;                        // A collection of test suites.
     95 
     96 template <typename T>
     97 ::std::string PrintToString(const T& value);
     98 
     99 namespace internal {
    100 
    101 struct TraceInfo;                      // Information about a trace point.
    102 class TestInfoImpl;                    // Opaque implementation of TestInfo
    103 class UnitTestImpl;                    // Opaque implementation of UnitTest
    104 
    105 // The text used in failure messages to indicate the start of the
    106 // stack trace.
    107 GTEST_API_ extern const char kStackTraceMarker[];
    108 
    109 // An IgnoredValue object can be implicitly constructed from ANY value.
    110 class IgnoredValue {
    111   struct Sink {};
    112  public:
    113   // This constructor template allows any value to be implicitly
    114   // converted to IgnoredValue.  The object has no data member and
    115   // doesn't try to remember anything about the argument.  We
    116   // deliberately omit the 'explicit' keyword in order to allow the
    117   // conversion to be implicit.
    118   // Disable the conversion if T already has a magical conversion operator.
    119   // Otherwise we get ambiguity.
    120   template <typename T,
    121             typename std::enable_if<!std::is_convertible<T, Sink>::value,
    122                                     int>::type = 0>
    123   IgnoredValue(const T& /* ignored */) {}  // NOLINT(runtime/explicit)
    124 };
    125 
    126 // Appends the user-supplied message to the Google-Test-generated message.
    127 GTEST_API_ std::string AppendUserMessage(
    128     const std::string& gtest_msg, const Message& user_msg);
    129 
    130 #if GTEST_HAS_EXCEPTIONS
    131 
    132 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4275 \
    133 /* an exported class was derived from a class that was not exported */)
    134 
    135 // This exception is thrown by (and only by) a failed Google Test
    136 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
    137 // are enabled).  We derive it from std::runtime_error, which is for
    138 // errors presumably detectable only at run time.  Since
    139 // std::runtime_error inherits from std::exception, many testing
    140 // frameworks know how to extract and print the message inside it.
    141 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
    142  public:
    143   explicit GoogleTestFailureException(const TestPartResult& failure);
    144 };
    145 
    146 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4275
    147 
    148 #endif  // GTEST_HAS_EXCEPTIONS
    149 
    150 namespace edit_distance {
    151 // Returns the optimal edits to go from 'left' to 'right'.
    152 // All edits cost the same, with replace having lower priority than
    153 // add/remove.
    154 // Simple implementation of the Wagner-Fischer algorithm.
    155 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
    156 enum EditType { kMatch, kAdd, kRemove, kReplace };
    157 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
    158     const std::vector<size_t>& left, const std::vector<size_t>& right);
    159 
    160 // Same as above, but the input is represented as strings.
    161 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
    162     const std::vector<std::string>& left,
    163     const std::vector<std::string>& right);
    164 
    165 // Create a diff of the input strings in Unified diff format.
    166 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
    167                                          const std::vector<std::string>& right,
    168                                          size_t context = 2);
    169 
    170 }  // namespace edit_distance
    171 
    172 // Calculate the diff between 'left' and 'right' and return it in unified diff
    173 // format.
    174 // If not null, stores in 'total_line_count' the total number of lines found
    175 // in left + right.
    176 GTEST_API_ std::string DiffStrings(const std::string& left,
    177                                    const std::string& right,
    178                                    size_t* total_line_count);
    179 
    180 // Constructs and returns the message for an equality assertion
    181 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
    182 //
    183 // The first four parameters are the expressions used in the assertion
    184 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
    185 // where foo is 5 and bar is 6, we have:
    186 //
    187 //   expected_expression: "foo"
    188 //   actual_expression:   "bar"
    189 //   expected_value:      "5"
    190 //   actual_value:        "6"
    191 //
    192 // The ignoring_case parameter is true if and only if the assertion is a
    193 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
    194 // be inserted into the message.
    195 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
    196                                      const char* actual_expression,
    197                                      const std::string& expected_value,
    198                                      const std::string& actual_value,
    199                                      bool ignoring_case);
    200 
    201 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
    202 GTEST_API_ std::string GetBoolAssertionFailureMessage(
    203     const AssertionResult& assertion_result,
    204     const char* expression_text,
    205     const char* actual_predicate_value,
    206     const char* expected_predicate_value);
    207 
    208 // This template class represents an IEEE floating-point number
    209 // (either single-precision or double-precision, depending on the
    210 // template parameters).
    211 //
    212 // The purpose of this class is to do more sophisticated number
    213 // comparison.  (Due to round-off error, etc, it's very unlikely that
    214 // two floating-points will be equal exactly.  Hence a naive
    215 // comparison by the == operation often doesn't work.)
    216 //
    217 // Format of IEEE floating-point:
    218 //
    219 //   The most-significant bit being the leftmost, an IEEE
    220 //   floating-point looks like
    221 //
    222 //     sign_bit exponent_bits fraction_bits
    223 //
    224 //   Here, sign_bit is a single bit that designates the sign of the
    225 //   number.
    226 //
    227 //   For float, there are 8 exponent bits and 23 fraction bits.
    228 //
    229 //   For double, there are 11 exponent bits and 52 fraction bits.
    230 //
    231 //   More details can be found at
    232 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
    233 //
    234 // Template parameter:
    235 //
    236 //   RawType: the raw floating-point type (either float or double)
    237 template <typename RawType>
    238 class FloatingPoint {
    239  public:
    240   // Defines the unsigned integer type that has the same size as the
    241   // floating point number.
    242   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
    243 
    244   // Constants.
    245 
    246   // # of bits in a number.
    247   static const size_t kBitCount = 8*sizeof(RawType);
    248 
    249   // # of fraction bits in a number.
    250   static const size_t kFractionBitCount =
    251     std::numeric_limits<RawType>::digits - 1;
    252 
    253   // # of exponent bits in a number.
    254   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
    255 
    256   // The mask for the sign bit.
    257   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
    258 
    259   // The mask for the fraction bits.
    260   static const Bits kFractionBitMask =
    261     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
    262 
    263   // The mask for the exponent bits.
    264   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
    265 
    266   // How many ULP's (Units in the Last Place) we want to tolerate when
    267   // comparing two numbers.  The larger the value, the more error we
    268   // allow.  A 0 value means that two numbers must be exactly the same
    269   // to be considered equal.
    270   //
    271   // The maximum error of a single floating-point operation is 0.5
    272   // units in the last place.  On Intel CPU's, all floating-point
    273   // calculations are done with 80-bit precision, while double has 64
    274   // bits.  Therefore, 4 should be enough for ordinary use.
    275   //
    276   // See the following article for more details on ULP:
    277   // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
    278   static const size_t kMaxUlps = 4;
    279 
    280   // Constructs a FloatingPoint from a raw floating-point number.
    281   //
    282   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
    283   // around may change its bits, although the new value is guaranteed
    284   // to be also a NAN.  Therefore, don't expect this constructor to
    285   // preserve the bits in x when x is a NAN.
    286   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
    287 
    288   // Static methods
    289 
    290   // Reinterprets a bit pattern as a floating-point number.
    291   //
    292   // This function is needed to test the AlmostEquals() method.
    293   static RawType ReinterpretBits(const Bits bits) {
    294     FloatingPoint fp(0);
    295     fp.u_.bits_ = bits;
    296     return fp.u_.value_;
    297   }
    298 
    299   // Returns the floating-point number that represent positive infinity.
    300   static RawType Infinity() {
    301     return ReinterpretBits(kExponentBitMask);
    302   }
    303 
    304   // Returns the maximum representable finite floating-point number.
    305   static RawType Max();
    306 
    307   // Non-static methods
    308 
    309   // Returns the bits that represents this number.
    310   const Bits &bits() const { return u_.bits_; }
    311 
    312   // Returns the exponent bits of this number.
    313   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
    314 
    315   // Returns the fraction bits of this number.
    316   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
    317 
    318   // Returns the sign bit of this number.
    319   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
    320 
    321   // Returns true if and only if this is NAN (not a number).
    322   bool is_nan() const {
    323     // It's a NAN if the exponent bits are all ones and the fraction
    324     // bits are not entirely zeros.
    325     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
    326   }
    327 
    328   // Returns true if and only if this number is at most kMaxUlps ULP's away
    329   // from rhs.  In particular, this function:
    330   //
    331   //   - returns false if either number is (or both are) NAN.
    332   //   - treats really large numbers as almost equal to infinity.
    333   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
    334   bool AlmostEquals(const FloatingPoint& rhs) const {
    335     // The IEEE standard says that any comparison operation involving
    336     // a NAN must return false.
    337     if (is_nan() || rhs.is_nan()) return false;
    338 
    339     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
    340         <= kMaxUlps;
    341   }
    342 
    343  private:
    344   // The data type used to store the actual floating-point number.
    345   union FloatingPointUnion {
    346     RawType value_;  // The raw floating-point number.
    347     Bits bits_;      // The bits that represent the number.
    348   };
    349 
    350   // Converts an integer from the sign-and-magnitude representation to
    351   // the biased representation.  More precisely, let N be 2 to the
    352   // power of (kBitCount - 1), an integer x is represented by the
    353   // unsigned number x + N.
    354   //
    355   // For instance,
    356   //
    357   //   -N + 1 (the most negative number representable using
    358   //          sign-and-magnitude) is represented by 1;
    359   //   0      is represented by N; and
    360   //   N - 1  (the biggest number representable using
    361   //          sign-and-magnitude) is represented by 2N - 1.
    362   //
    363   // Read http://en.wikipedia.org/wiki/Signed_number_representations
    364   // for more details on signed number representations.
    365   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
    366     if (kSignBitMask & sam) {
    367       // sam represents a negative number.
    368       return ~sam + 1;
    369     } else {
    370       // sam represents a positive number.
    371       return kSignBitMask | sam;
    372     }
    373   }
    374 
    375   // Given two numbers in the sign-and-magnitude representation,
    376   // returns the distance between them as an unsigned number.
    377   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
    378                                                      const Bits &sam2) {
    379     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
    380     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
    381     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
    382   }
    383 
    384   FloatingPointUnion u_;
    385 };
    386 
    387 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
    388 // macro defined by <windows.h>.
    389 template <>
    390 inline float FloatingPoint<float>::Max() { return FLT_MAX; }
    391 template <>
    392 inline double FloatingPoint<double>::Max() { return DBL_MAX; }
    393 
    394 // Typedefs the instances of the FloatingPoint template class that we
    395 // care to use.
    396 typedef FloatingPoint<float> Float;
    397 typedef FloatingPoint<double> Double;
    398 
    399 // In order to catch the mistake of putting tests that use different
    400 // test fixture classes in the same test suite, we need to assign
    401 // unique IDs to fixture classes and compare them.  The TypeId type is
    402 // used to hold such IDs.  The user should treat TypeId as an opaque
    403 // type: the only operation allowed on TypeId values is to compare
    404 // them for equality using the == operator.
    405 typedef const void* TypeId;
    406 
    407 template <typename T>
    408 class TypeIdHelper {
    409  public:
    410   // dummy_ must not have a const type.  Otherwise an overly eager
    411   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
    412   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
    413   static bool dummy_;
    414 };
    415 
    416 template <typename T>
    417 bool TypeIdHelper<T>::dummy_ = false;
    418 
    419 // GetTypeId<T>() returns the ID of type T.  Different values will be
    420 // returned for different types.  Calling the function twice with the
    421 // same type argument is guaranteed to return the same ID.
    422 template <typename T>
    423 TypeId GetTypeId() {
    424   // The compiler is required to allocate a different
    425   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
    426   // the template.  Therefore, the address of dummy_ is guaranteed to
    427   // be unique.
    428   return &(TypeIdHelper<T>::dummy_);
    429 }
    430 
    431 // Returns the type ID of ::testing::Test.  Always call this instead
    432 // of GetTypeId< ::testing::Test>() to get the type ID of
    433 // ::testing::Test, as the latter may give the wrong result due to a
    434 // suspected linker bug when compiling Google Test as a Mac OS X
    435 // framework.
    436 GTEST_API_ TypeId GetTestTypeId();
    437 
    438 // Defines the abstract factory interface that creates instances
    439 // of a Test object.
    440 class TestFactoryBase {
    441  public:
    442   virtual ~TestFactoryBase() {}
    443 
    444   // Creates a test instance to run. The instance is both created and destroyed
    445   // within TestInfoImpl::Run()
    446   virtual Test* CreateTest() = 0;
    447 
    448  protected:
    449   TestFactoryBase() {}
    450 
    451  private:
    452   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
    453 };
    454 
    455 // This class provides implementation of TeastFactoryBase interface.
    456 // It is used in TEST and TEST_F macros.
    457 template <class TestClass>
    458 class TestFactoryImpl : public TestFactoryBase {
    459  public:
    460   Test* CreateTest() override { return new TestClass; }
    461 };
    462 
    463 #if GTEST_OS_WINDOWS
    464 
    465 // Predicate-formatters for implementing the HRESULT checking macros
    466 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
    467 // We pass a long instead of HRESULT to avoid causing an
    468 // include dependency for the HRESULT type.
    469 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
    470                                             long hr);  // NOLINT
    471 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
    472                                             long hr);  // NOLINT
    473 
    474 #endif  // GTEST_OS_WINDOWS
    475 
    476 // Types of SetUpTestSuite() and TearDownTestSuite() functions.
    477 using SetUpTestSuiteFunc = void (*)();
    478 using TearDownTestSuiteFunc = void (*)();
    479 
    480 struct CodeLocation {
    481   CodeLocation(const std::string& a_file, int a_line)
    482       : file(a_file), line(a_line) {}
    483 
    484   std::string file;
    485   int line;
    486 };
    487 
    488 //  Helper to identify which setup function for TestCase / TestSuite to call.
    489 //  Only one function is allowed, either TestCase or TestSute but not both.
    490 
    491 // Utility functions to help SuiteApiResolver
    492 using SetUpTearDownSuiteFuncType = void (*)();
    493 
    494 inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
    495     SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
    496   return a == def ? nullptr : a;
    497 }
    498 
    499 template <typename T>
    500 //  Note that SuiteApiResolver inherits from T because
    501 //  SetUpTestSuite()/TearDownTestSuite() could be protected. Ths way
    502 //  SuiteApiResolver can access them.
    503 struct SuiteApiResolver : T {
    504   // testing::Test is only forward declared at this point. So we make it a
    505   // dependend class for the compiler to be OK with it.
    506   using Test =
    507       typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
    508 
    509   static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
    510                                                         int line_num) {
    511     SetUpTearDownSuiteFuncType test_case_fp =
    512         GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
    513     SetUpTearDownSuiteFuncType test_suite_fp =
    514         GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
    515 
    516     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
    517         << "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
    518            "make sure there is only one present at "
    519         << filename << ":" << line_num;
    520 
    521     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
    522   }
    523 
    524   static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename,
    525                                                            int line_num) {
    526     SetUpTearDownSuiteFuncType test_case_fp =
    527         GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
    528     SetUpTearDownSuiteFuncType test_suite_fp =
    529         GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
    530 
    531     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
    532         << "Test can not provide both TearDownTestSuite and TearDownTestCase,"
    533            " please make sure there is only one present at"
    534         << filename << ":" << line_num;
    535 
    536     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
    537   }
    538 };
    539 
    540 // Creates a new TestInfo object and registers it with Google Test;
    541 // returns the created object.
    542 //
    543 // Arguments:
    544 //
    545 //   test_suite_name:   name of the test suite
    546 //   name:             name of the test
    547 //   type_param        the name of the test's type parameter, or NULL if
    548 //                     this is not a typed or a type-parameterized test.
    549 //   value_param       text representation of the test's value parameter,
    550 //                     or NULL if this is not a type-parameterized test.
    551 //   code_location:    code location where the test is defined
    552 //   fixture_class_id: ID of the test fixture class
    553 //   set_up_tc:        pointer to the function that sets up the test suite
    554 //   tear_down_tc:     pointer to the function that tears down the test suite
    555 //   factory:          pointer to the factory that creates a test object.
    556 //                     The newly created TestInfo instance will assume
    557 //                     ownership of the factory object.
    558 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
    559     const char* test_suite_name, const char* name, const char* type_param,
    560     const char* value_param, CodeLocation code_location,
    561     TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
    562     TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
    563 
    564 // If *pstr starts with the given prefix, modifies *pstr to be right
    565 // past the prefix and returns true; otherwise leaves *pstr unchanged
    566 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
    567 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
    568 
    569 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    570 
    571 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
    572 /* class A needs to have dll-interface to be used by clients of class B */)
    573 
    574 // State of the definition of a type-parameterized test suite.
    575 class GTEST_API_ TypedTestSuitePState {
    576  public:
    577   TypedTestSuitePState() : registered_(false) {}
    578 
    579   // Adds the given test name to defined_test_names_ and return true
    580   // if the test suite hasn't been registered; otherwise aborts the
    581   // program.
    582   bool AddTestName(const char* file, int line, const char* case_name,
    583                    const char* test_name) {
    584     if (registered_) {
    585       fprintf(stderr,
    586               "%s Test %s must be defined before "
    587               "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
    588               FormatFileLocation(file, line).c_str(), test_name, case_name);
    589       fflush(stderr);
    590       posix::Abort();
    591     }
    592     registered_tests_.insert(
    593         ::std::make_pair(test_name, CodeLocation(file, line)));
    594     return true;
    595   }
    596 
    597   bool TestExists(const std::string& test_name) const {
    598     return registered_tests_.count(test_name) > 0;
    599   }
    600 
    601   const CodeLocation& GetCodeLocation(const std::string& test_name) const {
    602     RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
    603     GTEST_CHECK_(it != registered_tests_.end());
    604     return it->second;
    605   }
    606 
    607   // Verifies that registered_tests match the test names in
    608   // defined_test_names_; returns registered_tests if successful, or
    609   // aborts the program otherwise.
    610   const char* VerifyRegisteredTestNames(
    611       const char* file, int line, const char* registered_tests);
    612 
    613  private:
    614   typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
    615 
    616   bool registered_;
    617   RegisteredTestsMap registered_tests_;
    618 };
    619 
    620 //  Legacy API is deprecated but still available
    621 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
    622 using TypedTestCasePState = TypedTestSuitePState;
    623 #endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
    624 
    625 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251
    626 
    627 // Skips to the first non-space char after the first comma in 'str';
    628 // returns NULL if no comma is found in 'str'.
    629 inline const char* SkipComma(const char* str) {
    630   const char* comma = strchr(str, ',');
    631   if (comma == nullptr) {
    632     return nullptr;
    633   }
    634   while (IsSpace(*(++comma))) {}
    635   return comma;
    636 }
    637 
    638 // Returns the prefix of 'str' before the first comma in it; returns
    639 // the entire string if it contains no comma.
    640 inline std::string GetPrefixUntilComma(const char* str) {
    641   const char* comma = strchr(str, ',');
    642   return comma == nullptr ? str : std::string(str, comma);
    643 }
    644 
    645 // Splits a given string on a given delimiter, populating a given
    646 // vector with the fields.
    647 void SplitString(const ::std::string& str, char delimiter,
    648                  ::std::vector< ::std::string>* dest);
    649 
    650 // The default argument to the template below for the case when the user does
    651 // not provide a name generator.
    652 struct DefaultNameGenerator {
    653   template <typename T>
    654   static std::string GetName(int i) {
    655     return StreamableToString(i);
    656   }
    657 };
    658 
    659 template <typename Provided = DefaultNameGenerator>
    660 struct NameGeneratorSelector {
    661   typedef Provided type;
    662 };
    663 
    664 template <typename NameGenerator>
    665 void GenerateNamesRecursively(Types0, std::vector<std::string>*, int) {}
    666 
    667 template <typename NameGenerator, typename Types>
    668 void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
    669   result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
    670   GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
    671                                           i + 1);
    672 }
    673 
    674 template <typename NameGenerator, typename Types>
    675 std::vector<std::string> GenerateNames() {
    676   std::vector<std::string> result;
    677   GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
    678   return result;
    679 }
    680 
    681 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
    682 // registers a list of type-parameterized tests with Google Test.  The
    683 // return value is insignificant - we just need to return something
    684 // such that we can call this function in a namespace scope.
    685 //
    686 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
    687 // template parameter.  It's defined in gtest-type-util.h.
    688 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
    689 class TypeParameterizedTest {
    690  public:
    691   // 'index' is the index of the test in the type list 'Types'
    692   // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
    693   // Types).  Valid values for 'index' are [0, N - 1] where N is the
    694   // length of Types.
    695   static bool Register(const char* prefix, const CodeLocation& code_location,
    696                        const char* case_name, const char* test_names, int index,
    697                        const std::vector<std::string>& type_names =
    698                            GenerateNames<DefaultNameGenerator, Types>()) {
    699     typedef typename Types::Head Type;
    700     typedef Fixture<Type> FixtureClass;
    701     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
    702 
    703     // First, registers the first type-parameterized test in the type
    704     // list.
    705     MakeAndRegisterTestInfo(
    706         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
    707          "/" + type_names[static_cast<size_t>(index)])
    708             .c_str(),
    709         StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
    710         GetTypeName<Type>().c_str(),
    711         nullptr,  // No value parameter.
    712         code_location, GetTypeId<FixtureClass>(),
    713         SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(
    714             code_location.file.c_str(), code_location.line),
    715         SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(
    716             code_location.file.c_str(), code_location.line),
    717         new TestFactoryImpl<TestClass>);
    718 
    719     // Next, recurses (at compile time) with the tail of the type list.
    720     return TypeParameterizedTest<Fixture, TestSel,
    721                                  typename Types::Tail>::Register(prefix,
    722                                                                  code_location,
    723                                                                  case_name,
    724                                                                  test_names,
    725                                                                  index + 1,
    726                                                                  type_names);
    727   }
    728 };
    729 
    730 // The base case for the compile time recursion.
    731 template <GTEST_TEMPLATE_ Fixture, class TestSel>
    732 class TypeParameterizedTest<Fixture, TestSel, Types0> {
    733  public:
    734   static bool Register(const char* /*prefix*/, const CodeLocation&,
    735                        const char* /*case_name*/, const char* /*test_names*/,
    736                        int /*index*/,
    737                        const std::vector<std::string>& =
    738                            std::vector<std::string>() /*type_names*/) {
    739     return true;
    740   }
    741 };
    742 
    743 // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
    744 // registers *all combinations* of 'Tests' and 'Types' with Google
    745 // Test.  The return value is insignificant - we just need to return
    746 // something such that we can call this function in a namespace scope.
    747 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
    748 class TypeParameterizedTestSuite {
    749  public:
    750   static bool Register(const char* prefix, CodeLocation code_location,
    751                        const TypedTestSuitePState* state, const char* case_name,
    752                        const char* test_names,
    753                        const std::vector<std::string>& type_names =
    754                            GenerateNames<DefaultNameGenerator, Types>()) {
    755     std::string test_name = StripTrailingSpaces(
    756         GetPrefixUntilComma(test_names));
    757     if (!state->TestExists(test_name)) {
    758       fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
    759               case_name, test_name.c_str(),
    760               FormatFileLocation(code_location.file.c_str(),
    761                                  code_location.line).c_str());
    762       fflush(stderr);
    763       posix::Abort();
    764     }
    765     const CodeLocation& test_location = state->GetCodeLocation(test_name);
    766 
    767     typedef typename Tests::Head Head;
    768 
    769     // First, register the first test in 'Test' for each type in 'Types'.
    770     TypeParameterizedTest<Fixture, Head, Types>::Register(
    771         prefix, test_location, case_name, test_names, 0, type_names);
    772 
    773     // Next, recurses (at compile time) with the tail of the test list.
    774     return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
    775                                       Types>::Register(prefix, code_location,
    776                                                        state, case_name,
    777                                                        SkipComma(test_names),
    778                                                        type_names);
    779   }
    780 };
    781 
    782 // The base case for the compile time recursion.
    783 template <GTEST_TEMPLATE_ Fixture, typename Types>
    784 class TypeParameterizedTestSuite<Fixture, Templates0, Types> {
    785  public:
    786   static bool Register(const char* /*prefix*/, const CodeLocation&,
    787                        const TypedTestSuitePState* /*state*/,
    788                        const char* /*case_name*/, const char* /*test_names*/,
    789                        const std::vector<std::string>& =
    790                            std::vector<std::string>() /*type_names*/) {
    791     return true;
    792   }
    793 };
    794 
    795 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    796 
    797 // Returns the current OS stack trace as an std::string.
    798 //
    799 // The maximum number of stack frames to be included is specified by
    800 // the gtest_stack_trace_depth flag.  The skip_count parameter
    801 // specifies the number of top frames to be skipped, which doesn't
    802 // count against the number of frames to be included.
    803 //
    804 // For example, if Foo() calls Bar(), which in turn calls
    805 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
    806 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
    807 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
    808     UnitTest* unit_test, int skip_count);
    809 
    810 // Helpers for suppressing warnings on unreachable code or constant
    811 // condition.
    812 
    813 // Always returns true.
    814 GTEST_API_ bool AlwaysTrue();
    815 
    816 // Always returns false.
    817 inline bool AlwaysFalse() { return !AlwaysTrue(); }
    818 
    819 // Helper for suppressing false warning from Clang on a const char*
    820 // variable declared in a conditional expression always being NULL in
    821 // the else branch.
    822 struct GTEST_API_ ConstCharPtr {
    823   ConstCharPtr(const char* str) : value(str) {}
    824   operator bool() const { return true; }
    825   const char* value;
    826 };
    827 
    828 // A simple Linear Congruential Generator for generating random
    829 // numbers with a uniform distribution.  Unlike rand() and srand(), it
    830 // doesn't use global state (and therefore can't interfere with user
    831 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
    832 // but it's good enough for our purposes.
    833 class GTEST_API_ Random {
    834  public:
    835   static const UInt32 kMaxRange = 1u << 31;
    836 
    837   explicit Random(UInt32 seed) : state_(seed) {}
    838 
    839   void Reseed(UInt32 seed) { state_ = seed; }
    840 
    841   // Generates a random number from [0, range).  Crashes if 'range' is
    842   // 0 or greater than kMaxRange.
    843   UInt32 Generate(UInt32 range);
    844 
    845  private:
    846   UInt32 state_;
    847   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
    848 };
    849 
    850 // Turns const U&, U&, const U, and U all into U.
    851 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
    852   typename std::remove_const<typename std::remove_reference<T>::type>::type
    853 
    854 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
    855 // true if and only if T is type proto2::Message or a subclass of it.
    856 template <typename T>
    857 struct IsAProtocolMessage
    858     : public bool_constant<
    859           std::is_convertible<const T*, const ::proto2::Message*>::value> {};
    860 
    861 // When the compiler sees expression IsContainerTest<C>(0), if C is an
    862 // STL-style container class, the first overload of IsContainerTest
    863 // will be viable (since both C::iterator* and C::const_iterator* are
    864 // valid types and NULL can be implicitly converted to them).  It will
    865 // be picked over the second overload as 'int' is a perfect match for
    866 // the type of argument 0.  If C::iterator or C::const_iterator is not
    867 // a valid type, the first overload is not viable, and the second
    868 // overload will be picked.  Therefore, we can determine whether C is
    869 // a container class by checking the type of IsContainerTest<C>(0).
    870 // The value of the expression is insignificant.
    871 //
    872 // In C++11 mode we check the existence of a const_iterator and that an
    873 // iterator is properly implemented for the container.
    874 //
    875 // For pre-C++11 that we look for both C::iterator and C::const_iterator.
    876 // The reason is that C++ injects the name of a class as a member of the
    877 // class itself (e.g. you can refer to class iterator as either
    878 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
    879 // only, for example, we would mistakenly think that a class named
    880 // iterator is an STL container.
    881 //
    882 // Also note that the simpler approach of overloading
    883 // IsContainerTest(typename C::const_iterator*) and
    884 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
    885 typedef int IsContainer;
    886 template <class C,
    887           class Iterator = decltype(::std::declval<const C&>().begin()),
    888           class = decltype(::std::declval<const C&>().end()),
    889           class = decltype(++::std::declval<Iterator&>()),
    890           class = decltype(*::std::declval<Iterator>()),
    891           class = typename C::const_iterator>
    892 IsContainer IsContainerTest(int /* dummy */) {
    893   return 0;
    894 }
    895 
    896 typedef char IsNotContainer;
    897 template <class C>
    898 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
    899 
    900 // Trait to detect whether a type T is a hash table.
    901 // The heuristic used is that the type contains an inner type `hasher` and does
    902 // not contain an inner type `reverse_iterator`.
    903 // If the container is iterable in reverse, then order might actually matter.
    904 template <typename T>
    905 struct IsHashTable {
    906  private:
    907   template <typename U>
    908   static char test(typename U::hasher*, typename U::reverse_iterator*);
    909   template <typename U>
    910   static int test(typename U::hasher*, ...);
    911   template <typename U>
    912   static char test(...);
    913 
    914  public:
    915   static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
    916 };
    917 
    918 template <typename T>
    919 const bool IsHashTable<T>::value;
    920 
    921 template <typename C,
    922           bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
    923 struct IsRecursiveContainerImpl;
    924 
    925 template <typename C>
    926 struct IsRecursiveContainerImpl<C, false> : public std::false_type {};
    927 
    928 // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
    929 // obey the same inconsistencies as the IsContainerTest, namely check if
    930 // something is a container is relying on only const_iterator in C++11 and
    931 // is relying on both const_iterator and iterator otherwise
    932 template <typename C>
    933 struct IsRecursiveContainerImpl<C, true> {
    934   using value_type = decltype(*std::declval<typename C::const_iterator>());
    935   using type =
    936       std::is_same<typename std::remove_const<
    937                        typename std::remove_reference<value_type>::type>::type,
    938                    C>;
    939 };
    940 
    941 // IsRecursiveContainer<Type> is a unary compile-time predicate that
    942 // evaluates whether C is a recursive container type. A recursive container
    943 // type is a container type whose value_type is equal to the container type
    944 // itself. An example for a recursive container type is
    945 // boost::filesystem::path, whose iterator has a value_type that is equal to
    946 // boost::filesystem::path.
    947 template <typename C>
    948 struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
    949 
    950 // Utilities for native arrays.
    951 
    952 // ArrayEq() compares two k-dimensional native arrays using the
    953 // elements' operator==, where k can be any integer >= 0.  When k is
    954 // 0, ArrayEq() degenerates into comparing a single pair of values.
    955 
    956 template <typename T, typename U>
    957 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
    958 
    959 // This generic version is used when k is 0.
    960 template <typename T, typename U>
    961 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
    962 
    963 // This overload is used when k >= 1.
    964 template <typename T, typename U, size_t N>
    965 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
    966   return internal::ArrayEq(lhs, N, rhs);
    967 }
    968 
    969 // This helper reduces code bloat.  If we instead put its logic inside
    970 // the previous ArrayEq() function, arrays with different sizes would
    971 // lead to different copies of the template code.
    972 template <typename T, typename U>
    973 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
    974   for (size_t i = 0; i != size; i++) {
    975     if (!internal::ArrayEq(lhs[i], rhs[i]))
    976       return false;
    977   }
    978   return true;
    979 }
    980 
    981 // Finds the first element in the iterator range [begin, end) that
    982 // equals elem.  Element may be a native array type itself.
    983 template <typename Iter, typename Element>
    984 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
    985   for (Iter it = begin; it != end; ++it) {
    986     if (internal::ArrayEq(*it, elem))
    987       return it;
    988   }
    989   return end;
    990 }
    991 
    992 // CopyArray() copies a k-dimensional native array using the elements'
    993 // operator=, where k can be any integer >= 0.  When k is 0,
    994 // CopyArray() degenerates into copying a single value.
    995 
    996 template <typename T, typename U>
    997 void CopyArray(const T* from, size_t size, U* to);
    998 
    999 // This generic version is used when k is 0.
   1000 template <typename T, typename U>
   1001 inline void CopyArray(const T& from, U* to) { *to = from; }
   1002 
   1003 // This overload is used when k >= 1.
   1004 template <typename T, typename U, size_t N>
   1005 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
   1006   internal::CopyArray(from, N, *to);
   1007 }
   1008 
   1009 // This helper reduces code bloat.  If we instead put its logic inside
   1010 // the previous CopyArray() function, arrays with different sizes
   1011 // would lead to different copies of the template code.
   1012 template <typename T, typename U>
   1013 void CopyArray(const T* from, size_t size, U* to) {
   1014   for (size_t i = 0; i != size; i++) {
   1015     internal::CopyArray(from[i], to + i);
   1016   }
   1017 }
   1018 
   1019 // The relation between an NativeArray object (see below) and the
   1020 // native array it represents.
   1021 // We use 2 different structs to allow non-copyable types to be used, as long
   1022 // as RelationToSourceReference() is passed.
   1023 struct RelationToSourceReference {};
   1024 struct RelationToSourceCopy {};
   1025 
   1026 // Adapts a native array to a read-only STL-style container.  Instead
   1027 // of the complete STL container concept, this adaptor only implements
   1028 // members useful for Google Mock's container matchers.  New members
   1029 // should be added as needed.  To simplify the implementation, we only
   1030 // support Element being a raw type (i.e. having no top-level const or
   1031 // reference modifier).  It's the client's responsibility to satisfy
   1032 // this requirement.  Element can be an array type itself (hence
   1033 // multi-dimensional arrays are supported).
   1034 template <typename Element>
   1035 class NativeArray {
   1036  public:
   1037   // STL-style container typedefs.
   1038   typedef Element value_type;
   1039   typedef Element* iterator;
   1040   typedef const Element* const_iterator;
   1041 
   1042   // Constructs from a native array. References the source.
   1043   NativeArray(const Element* array, size_t count, RelationToSourceReference) {
   1044     InitRef(array, count);
   1045   }
   1046 
   1047   // Constructs from a native array. Copies the source.
   1048   NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
   1049     InitCopy(array, count);
   1050   }
   1051 
   1052   // Copy constructor.
   1053   NativeArray(const NativeArray& rhs) {
   1054     (this->*rhs.clone_)(rhs.array_, rhs.size_);
   1055   }
   1056 
   1057   ~NativeArray() {
   1058     if (clone_ != &NativeArray::InitRef)
   1059       delete[] array_;
   1060   }
   1061 
   1062   // STL-style container methods.
   1063   size_t size() const { return size_; }
   1064   const_iterator begin() const { return array_; }
   1065   const_iterator end() const { return array_ + size_; }
   1066   bool operator==(const NativeArray& rhs) const {
   1067     return size() == rhs.size() &&
   1068         ArrayEq(begin(), size(), rhs.begin());
   1069   }
   1070 
   1071  private:
   1072   static_assert(!std::is_const<Element>::value, "Type must not be const");
   1073   static_assert(!std::is_reference<Element>::value,
   1074                 "Type must not be a reference");
   1075 
   1076   // Initializes this object with a copy of the input.
   1077   void InitCopy(const Element* array, size_t a_size) {
   1078     Element* const copy = new Element[a_size];
   1079     CopyArray(array, a_size, copy);
   1080     array_ = copy;
   1081     size_ = a_size;
   1082     clone_ = &NativeArray::InitCopy;
   1083   }
   1084 
   1085   // Initializes this object with a reference of the input.
   1086   void InitRef(const Element* array, size_t a_size) {
   1087     array_ = array;
   1088     size_ = a_size;
   1089     clone_ = &NativeArray::InitRef;
   1090   }
   1091 
   1092   const Element* array_;
   1093   size_t size_;
   1094   void (NativeArray::*clone_)(const Element*, size_t);
   1095 
   1096   GTEST_DISALLOW_ASSIGN_(NativeArray);
   1097 };
   1098 
   1099 // Backport of std::index_sequence.
   1100 template <size_t... Is>
   1101 struct IndexSequence {
   1102   using type = IndexSequence;
   1103 };
   1104 
   1105 // Double the IndexSequence, and one if plus_one is true.
   1106 template <bool plus_one, typename T, size_t sizeofT>
   1107 struct DoubleSequence;
   1108 template <size_t... I, size_t sizeofT>
   1109 struct DoubleSequence<true, IndexSequence<I...>, sizeofT> {
   1110   using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>;
   1111 };
   1112 template <size_t... I, size_t sizeofT>
   1113 struct DoubleSequence<false, IndexSequence<I...>, sizeofT> {
   1114   using type = IndexSequence<I..., (sizeofT + I)...>;
   1115 };
   1116 
   1117 // Backport of std::make_index_sequence.
   1118 // It uses O(ln(N)) instantiation depth.
   1119 template <size_t N>
   1120 struct MakeIndexSequence
   1121     : DoubleSequence<N % 2 == 1, typename MakeIndexSequence<N / 2>::type,
   1122                      N / 2>::type {};
   1123 
   1124 template <>
   1125 struct MakeIndexSequence<0> : IndexSequence<> {};
   1126 
   1127 // FIXME: This implementation of ElemFromList is O(1) in instantiation depth,
   1128 // but it is O(N^2) in total instantiations. Not sure if this is the best
   1129 // tradeoff, as it will make it somewhat slow to compile.
   1130 template <typename T, size_t, size_t>
   1131 struct ElemFromListImpl {};
   1132 
   1133 template <typename T, size_t I>
   1134 struct ElemFromListImpl<T, I, I> {
   1135   using type = T;
   1136 };
   1137 
   1138 // Get the Nth element from T...
   1139 // It uses O(1) instantiation depth.
   1140 template <size_t N, typename I, typename... T>
   1141 struct ElemFromList;
   1142 
   1143 template <size_t N, size_t... I, typename... T>
   1144 struct ElemFromList<N, IndexSequence<I...>, T...>
   1145     : ElemFromListImpl<T, N, I>... {};
   1146 
   1147 template <typename... T>
   1148 class FlatTuple;
   1149 
   1150 template <typename Derived, size_t I>
   1151 struct FlatTupleElemBase;
   1152 
   1153 template <typename... T, size_t I>
   1154 struct FlatTupleElemBase<FlatTuple<T...>, I> {
   1155   using value_type =
   1156       typename ElemFromList<I, typename MakeIndexSequence<sizeof...(T)>::type,
   1157                             T...>::type;
   1158   FlatTupleElemBase() = default;
   1159   explicit FlatTupleElemBase(value_type t) : value(std::move(t)) {}
   1160   value_type value;
   1161 };
   1162 
   1163 template <typename Derived, typename Idx>
   1164 struct FlatTupleBase;
   1165 
   1166 template <size_t... Idx, typename... T>
   1167 struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>>
   1168     : FlatTupleElemBase<FlatTuple<T...>, Idx>... {
   1169   using Indices = IndexSequence<Idx...>;
   1170   FlatTupleBase() = default;
   1171   explicit FlatTupleBase(T... t)
   1172       : FlatTupleElemBase<FlatTuple<T...>, Idx>(std::move(t))... {}
   1173 };
   1174 
   1175 // Analog to std::tuple but with different tradeoffs.
   1176 // This class minimizes the template instantiation depth, thus allowing more
   1177 // elements that std::tuple would. std::tuple has been seen to require an
   1178 // instantiation depth of more than 10x the number of elements in some
   1179 // implementations.
   1180 // FlatTuple and ElemFromList are not recursive and have a fixed depth
   1181 // regardless of T...
   1182 // MakeIndexSequence, on the other hand, it is recursive but with an
   1183 // instantiation depth of O(ln(N)).
   1184 template <typename... T>
   1185 class FlatTuple
   1186     : private FlatTupleBase<FlatTuple<T...>,
   1187                             typename MakeIndexSequence<sizeof...(T)>::type> {
   1188   using Indices = typename FlatTuple::FlatTupleBase::Indices;
   1189 
   1190  public:
   1191   FlatTuple() = default;
   1192   explicit FlatTuple(T... t) : FlatTuple::FlatTupleBase(std::move(t)...) {}
   1193 
   1194   template <size_t I>
   1195   const typename ElemFromList<I, Indices, T...>::type& Get() const {
   1196     return static_cast<const FlatTupleElemBase<FlatTuple, I>*>(this)->value;
   1197   }
   1198 
   1199   template <size_t I>
   1200   typename ElemFromList<I, Indices, T...>::type& Get() {
   1201     return static_cast<FlatTupleElemBase<FlatTuple, I>*>(this)->value;
   1202   }
   1203 };
   1204 
   1205 // Utility functions to be called with static_assert to induce deprecation
   1206 // warnings.
   1207 GTEST_INTERNAL_DEPRECATED(
   1208     "INSTANTIATE_TEST_CASE_P is deprecated, please use "
   1209     "INSTANTIATE_TEST_SUITE_P")
   1210 constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
   1211 
   1212 GTEST_INTERNAL_DEPRECATED(
   1213     "TYPED_TEST_CASE_P is deprecated, please use "
   1214     "TYPED_TEST_SUITE_P")
   1215 constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
   1216 
   1217 GTEST_INTERNAL_DEPRECATED(
   1218     "TYPED_TEST_CASE is deprecated, please use "
   1219     "TYPED_TEST_SUITE")
   1220 constexpr bool TypedTestCaseIsDeprecated() { return true; }
   1221 
   1222 GTEST_INTERNAL_DEPRECATED(
   1223     "REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
   1224     "REGISTER_TYPED_TEST_SUITE_P")
   1225 constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
   1226 
   1227 GTEST_INTERNAL_DEPRECATED(
   1228     "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
   1229     "INSTANTIATE_TYPED_TEST_SUITE_P")
   1230 constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
   1231 
   1232 }  // namespace internal
   1233 }  // namespace testing
   1234 
   1235 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
   1236   ::testing::internal::AssertHelper(result_type, file, line, message) \
   1237     = ::testing::Message()
   1238 
   1239 #define GTEST_MESSAGE_(message, result_type) \
   1240   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
   1241 
   1242 #define GTEST_FATAL_FAILURE_(message) \
   1243   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
   1244 
   1245 #define GTEST_NONFATAL_FAILURE_(message) \
   1246   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
   1247 
   1248 #define GTEST_SUCCESS_(message) \
   1249   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
   1250 
   1251 #define GTEST_SKIP_(message) \
   1252   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
   1253 
   1254 // Suppress MSVC warning 4072 (unreachable code) for the code following
   1255 // statement if it returns or throws (or doesn't return or throw in some
   1256 // situations).
   1257 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
   1258   if (::testing::internal::AlwaysTrue()) { statement; }
   1259 
   1260 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
   1261   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1262   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
   1263     bool gtest_caught_expected = false; \
   1264     try { \
   1265       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1266     } \
   1267     catch (expected_exception const&) { \
   1268       gtest_caught_expected = true; \
   1269     } \
   1270     catch (...) { \
   1271       gtest_msg.value = \
   1272           "Expected: " #statement " throws an exception of type " \
   1273           #expected_exception ".\n  Actual: it throws a different type."; \
   1274       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1275     } \
   1276     if (!gtest_caught_expected) { \
   1277       gtest_msg.value = \
   1278           "Expected: " #statement " throws an exception of type " \
   1279           #expected_exception ".\n  Actual: it throws nothing."; \
   1280       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1281     } \
   1282   } else \
   1283     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
   1284       fail(gtest_msg.value)
   1285 
   1286 #define GTEST_TEST_NO_THROW_(statement, fail) \
   1287   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1288   if (::testing::internal::AlwaysTrue()) { \
   1289     try { \
   1290       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1291     } \
   1292     catch (...) { \
   1293       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
   1294     } \
   1295   } else \
   1296     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
   1297       fail("Expected: " #statement " doesn't throw an exception.\n" \
   1298            "  Actual: it throws.")
   1299 
   1300 #define GTEST_TEST_ANY_THROW_(statement, fail) \
   1301   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1302   if (::testing::internal::AlwaysTrue()) { \
   1303     bool gtest_caught_any = false; \
   1304     try { \
   1305       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1306     } \
   1307     catch (...) { \
   1308       gtest_caught_any = true; \
   1309     } \
   1310     if (!gtest_caught_any) { \
   1311       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
   1312     } \
   1313   } else \
   1314     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
   1315       fail("Expected: " #statement " throws an exception.\n" \
   1316            "  Actual: it doesn't.")
   1317 
   1318 
   1319 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
   1320 // either a boolean expression or an AssertionResult. text is a textual
   1321 // represenation of expression as it was passed into the EXPECT_TRUE.
   1322 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
   1323   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1324   if (const ::testing::AssertionResult gtest_ar_ = \
   1325       ::testing::AssertionResult(expression)) \
   1326     ; \
   1327   else \
   1328     fail(::testing::internal::GetBoolAssertionFailureMessage(\
   1329         gtest_ar_, text, #actual, #expected).c_str())
   1330 
   1331 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
   1332   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1333   if (::testing::internal::AlwaysTrue()) { \
   1334     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
   1335     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1336     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
   1337       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
   1338     } \
   1339   } else \
   1340     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
   1341       fail("Expected: " #statement " doesn't generate new fatal " \
   1342            "failures in the current thread.\n" \
   1343            "  Actual: it does.")
   1344 
   1345 // Expands to the name of the class that implements the given test.
   1346 #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
   1347   test_suite_name##_##test_name##_Test
   1348 
   1349 // Helper macro for defining tests.
   1350 #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id)      \
   1351   static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1,                \
   1352                 "test_suite_name must not be empty");                         \
   1353   static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1,                      \
   1354                 "test_name must not be empty");                               \
   1355   class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                    \
   1356       : public parent_class {                                                 \
   1357    public:                                                                    \
   1358     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() {}                   \
   1359                                                                               \
   1360    private:                                                                   \
   1361     virtual void TestBody();                                                  \
   1362     static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;     \
   1363     GTEST_DISALLOW_COPY_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name,   \
   1364                                                            test_name));       \
   1365   };                                                                          \
   1366                                                                               \
   1367   ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name,          \
   1368                                                     test_name)::test_info_ =  \
   1369       ::testing::internal::MakeAndRegisterTestInfo(                           \
   1370           #test_suite_name, #test_name, nullptr, nullptr,                     \
   1371           ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \
   1372           ::testing::internal::SuiteApiResolver<                              \
   1373               parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__),         \
   1374           ::testing::internal::SuiteApiResolver<                              \
   1375               parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__),      \
   1376           new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_(    \
   1377               test_suite_name, test_name)>);                                  \
   1378   void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
   1379 
   1380 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_