gtest-internal.h (53948B)
1 // Copyright 2005, Google Inc. 2 // All rights reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // * Redistributions of source code must retain the above copyright 9 // notice, this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above 11 // copyright notice, this list of conditions and the following disclaimer 12 // in the documentation and/or other materials provided with the 13 // distribution. 14 // * Neither the name of Google Inc. nor the names of its 15 // contributors may be used to endorse or promote products derived from 16 // this software without specific prior written permission. 17 // 18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 // 30 // The Google C++ Testing and Mocking Framework (Google Test) 31 // 32 // This header file declares functions and macros used internally by 33 // Google Test. They are subject to change without notice. 34 35 // GOOGLETEST_CM0001 DO NOT DELETE 36 37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ 38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ 39 40 #include "gtest/internal/gtest-port.h" 41 42 #if GTEST_OS_LINUX 43 # include <stdlib.h> 44 # include <sys/types.h> 45 # include <sys/wait.h> 46 # include <unistd.h> 47 #endif // GTEST_OS_LINUX 48 49 #if GTEST_HAS_EXCEPTIONS 50 # include <stdexcept> 51 #endif 52 53 #include <ctype.h> 54 #include <float.h> 55 #include <string.h> 56 #include <iomanip> 57 #include <limits> 58 #include <map> 59 #include <set> 60 #include <string> 61 #include <type_traits> 62 #include <vector> 63 64 #include "gtest/gtest-message.h" 65 #include "gtest/internal/gtest-filepath.h" 66 #include "gtest/internal/gtest-string.h" 67 #include "gtest/internal/gtest-type-util.h" 68 69 // Due to C++ preprocessor weirdness, we need double indirection to 70 // concatenate two tokens when one of them is __LINE__. Writing 71 // 72 // foo ## __LINE__ 73 // 74 // will result in the token foo__LINE__, instead of foo followed by 75 // the current line number. For more details, see 76 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6 77 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar) 78 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar 79 80 // Stringifies its argument. 81 #define GTEST_STRINGIFY_(name) #name 82 83 namespace proto2 { class Message; } 84 85 namespace testing { 86 87 // Forward declarations. 88 89 class AssertionResult; // Result of an assertion. 90 class Message; // Represents a failure message. 91 class Test; // Represents a test. 92 class TestInfo; // Information about a test. 93 class TestPartResult; // Result of a test part. 94 class UnitTest; // A collection of test suites. 95 96 template <typename T> 97 ::std::string PrintToString(const T& value); 98 99 namespace internal { 100 101 struct TraceInfo; // Information about a trace point. 102 class TestInfoImpl; // Opaque implementation of TestInfo 103 class UnitTestImpl; // Opaque implementation of UnitTest 104 105 // The text used in failure messages to indicate the start of the 106 // stack trace. 107 GTEST_API_ extern const char kStackTraceMarker[]; 108 109 // An IgnoredValue object can be implicitly constructed from ANY value. 110 class IgnoredValue { 111 struct Sink {}; 112 public: 113 // This constructor template allows any value to be implicitly 114 // converted to IgnoredValue. The object has no data member and 115 // doesn't try to remember anything about the argument. We 116 // deliberately omit the 'explicit' keyword in order to allow the 117 // conversion to be implicit. 118 // Disable the conversion if T already has a magical conversion operator. 119 // Otherwise we get ambiguity. 120 template <typename T, 121 typename std::enable_if<!std::is_convertible<T, Sink>::value, 122 int>::type = 0> 123 IgnoredValue(const T& /* ignored */) {} // NOLINT(runtime/explicit) 124 }; 125 126 // Appends the user-supplied message to the Google-Test-generated message. 127 GTEST_API_ std::string AppendUserMessage( 128 const std::string& gtest_msg, const Message& user_msg); 129 130 #if GTEST_HAS_EXCEPTIONS 131 132 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4275 \ 133 /* an exported class was derived from a class that was not exported */) 134 135 // This exception is thrown by (and only by) a failed Google Test 136 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions 137 // are enabled). We derive it from std::runtime_error, which is for 138 // errors presumably detectable only at run time. Since 139 // std::runtime_error inherits from std::exception, many testing 140 // frameworks know how to extract and print the message inside it. 141 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error { 142 public: 143 explicit GoogleTestFailureException(const TestPartResult& failure); 144 }; 145 146 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4275 147 148 #endif // GTEST_HAS_EXCEPTIONS 149 150 namespace edit_distance { 151 // Returns the optimal edits to go from 'left' to 'right'. 152 // All edits cost the same, with replace having lower priority than 153 // add/remove. 154 // Simple implementation of the Wagner-Fischer algorithm. 155 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm 156 enum EditType { kMatch, kAdd, kRemove, kReplace }; 157 GTEST_API_ std::vector<EditType> CalculateOptimalEdits( 158 const std::vector<size_t>& left, const std::vector<size_t>& right); 159 160 // Same as above, but the input is represented as strings. 161 GTEST_API_ std::vector<EditType> CalculateOptimalEdits( 162 const std::vector<std::string>& left, 163 const std::vector<std::string>& right); 164 165 // Create a diff of the input strings in Unified diff format. 166 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left, 167 const std::vector<std::string>& right, 168 size_t context = 2); 169 170 } // namespace edit_distance 171 172 // Calculate the diff between 'left' and 'right' and return it in unified diff 173 // format. 174 // If not null, stores in 'total_line_count' the total number of lines found 175 // in left + right. 176 GTEST_API_ std::string DiffStrings(const std::string& left, 177 const std::string& right, 178 size_t* total_line_count); 179 180 // Constructs and returns the message for an equality assertion 181 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. 182 // 183 // The first four parameters are the expressions used in the assertion 184 // and their values, as strings. For example, for ASSERT_EQ(foo, bar) 185 // where foo is 5 and bar is 6, we have: 186 // 187 // expected_expression: "foo" 188 // actual_expression: "bar" 189 // expected_value: "5" 190 // actual_value: "6" 191 // 192 // The ignoring_case parameter is true if and only if the assertion is a 193 // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will 194 // be inserted into the message. 195 GTEST_API_ AssertionResult EqFailure(const char* expected_expression, 196 const char* actual_expression, 197 const std::string& expected_value, 198 const std::string& actual_value, 199 bool ignoring_case); 200 201 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE. 202 GTEST_API_ std::string GetBoolAssertionFailureMessage( 203 const AssertionResult& assertion_result, 204 const char* expression_text, 205 const char* actual_predicate_value, 206 const char* expected_predicate_value); 207 208 // This template class represents an IEEE floating-point number 209 // (either single-precision or double-precision, depending on the 210 // template parameters). 211 // 212 // The purpose of this class is to do more sophisticated number 213 // comparison. (Due to round-off error, etc, it's very unlikely that 214 // two floating-points will be equal exactly. Hence a naive 215 // comparison by the == operation often doesn't work.) 216 // 217 // Format of IEEE floating-point: 218 // 219 // The most-significant bit being the leftmost, an IEEE 220 // floating-point looks like 221 // 222 // sign_bit exponent_bits fraction_bits 223 // 224 // Here, sign_bit is a single bit that designates the sign of the 225 // number. 226 // 227 // For float, there are 8 exponent bits and 23 fraction bits. 228 // 229 // For double, there are 11 exponent bits and 52 fraction bits. 230 // 231 // More details can be found at 232 // http://en.wikipedia.org/wiki/IEEE_floating-point_standard. 233 // 234 // Template parameter: 235 // 236 // RawType: the raw floating-point type (either float or double) 237 template <typename RawType> 238 class FloatingPoint { 239 public: 240 // Defines the unsigned integer type that has the same size as the 241 // floating point number. 242 typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits; 243 244 // Constants. 245 246 // # of bits in a number. 247 static const size_t kBitCount = 8*sizeof(RawType); 248 249 // # of fraction bits in a number. 250 static const size_t kFractionBitCount = 251 std::numeric_limits<RawType>::digits - 1; 252 253 // # of exponent bits in a number. 254 static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount; 255 256 // The mask for the sign bit. 257 static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1); 258 259 // The mask for the fraction bits. 260 static const Bits kFractionBitMask = 261 ~static_cast<Bits>(0) >> (kExponentBitCount + 1); 262 263 // The mask for the exponent bits. 264 static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask); 265 266 // How many ULP's (Units in the Last Place) we want to tolerate when 267 // comparing two numbers. The larger the value, the more error we 268 // allow. A 0 value means that two numbers must be exactly the same 269 // to be considered equal. 270 // 271 // The maximum error of a single floating-point operation is 0.5 272 // units in the last place. On Intel CPU's, all floating-point 273 // calculations are done with 80-bit precision, while double has 64 274 // bits. Therefore, 4 should be enough for ordinary use. 275 // 276 // See the following article for more details on ULP: 277 // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ 278 static const size_t kMaxUlps = 4; 279 280 // Constructs a FloatingPoint from a raw floating-point number. 281 // 282 // On an Intel CPU, passing a non-normalized NAN (Not a Number) 283 // around may change its bits, although the new value is guaranteed 284 // to be also a NAN. Therefore, don't expect this constructor to 285 // preserve the bits in x when x is a NAN. 286 explicit FloatingPoint(const RawType& x) { u_.value_ = x; } 287 288 // Static methods 289 290 // Reinterprets a bit pattern as a floating-point number. 291 // 292 // This function is needed to test the AlmostEquals() method. 293 static RawType ReinterpretBits(const Bits bits) { 294 FloatingPoint fp(0); 295 fp.u_.bits_ = bits; 296 return fp.u_.value_; 297 } 298 299 // Returns the floating-point number that represent positive infinity. 300 static RawType Infinity() { 301 return ReinterpretBits(kExponentBitMask); 302 } 303 304 // Returns the maximum representable finite floating-point number. 305 static RawType Max(); 306 307 // Non-static methods 308 309 // Returns the bits that represents this number. 310 const Bits &bits() const { return u_.bits_; } 311 312 // Returns the exponent bits of this number. 313 Bits exponent_bits() const { return kExponentBitMask & u_.bits_; } 314 315 // Returns the fraction bits of this number. 316 Bits fraction_bits() const { return kFractionBitMask & u_.bits_; } 317 318 // Returns the sign bit of this number. 319 Bits sign_bit() const { return kSignBitMask & u_.bits_; } 320 321 // Returns true if and only if this is NAN (not a number). 322 bool is_nan() const { 323 // It's a NAN if the exponent bits are all ones and the fraction 324 // bits are not entirely zeros. 325 return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0); 326 } 327 328 // Returns true if and only if this number is at most kMaxUlps ULP's away 329 // from rhs. In particular, this function: 330 // 331 // - returns false if either number is (or both are) NAN. 332 // - treats really large numbers as almost equal to infinity. 333 // - thinks +0.0 and -0.0 are 0 DLP's apart. 334 bool AlmostEquals(const FloatingPoint& rhs) const { 335 // The IEEE standard says that any comparison operation involving 336 // a NAN must return false. 337 if (is_nan() || rhs.is_nan()) return false; 338 339 return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) 340 <= kMaxUlps; 341 } 342 343 private: 344 // The data type used to store the actual floating-point number. 345 union FloatingPointUnion { 346 RawType value_; // The raw floating-point number. 347 Bits bits_; // The bits that represent the number. 348 }; 349 350 // Converts an integer from the sign-and-magnitude representation to 351 // the biased representation. More precisely, let N be 2 to the 352 // power of (kBitCount - 1), an integer x is represented by the 353 // unsigned number x + N. 354 // 355 // For instance, 356 // 357 // -N + 1 (the most negative number representable using 358 // sign-and-magnitude) is represented by 1; 359 // 0 is represented by N; and 360 // N - 1 (the biggest number representable using 361 // sign-and-magnitude) is represented by 2N - 1. 362 // 363 // Read http://en.wikipedia.org/wiki/Signed_number_representations 364 // for more details on signed number representations. 365 static Bits SignAndMagnitudeToBiased(const Bits &sam) { 366 if (kSignBitMask & sam) { 367 // sam represents a negative number. 368 return ~sam + 1; 369 } else { 370 // sam represents a positive number. 371 return kSignBitMask | sam; 372 } 373 } 374 375 // Given two numbers in the sign-and-magnitude representation, 376 // returns the distance between them as an unsigned number. 377 static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1, 378 const Bits &sam2) { 379 const Bits biased1 = SignAndMagnitudeToBiased(sam1); 380 const Bits biased2 = SignAndMagnitudeToBiased(sam2); 381 return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1); 382 } 383 384 FloatingPointUnion u_; 385 }; 386 387 // We cannot use std::numeric_limits<T>::max() as it clashes with the max() 388 // macro defined by <windows.h>. 389 template <> 390 inline float FloatingPoint<float>::Max() { return FLT_MAX; } 391 template <> 392 inline double FloatingPoint<double>::Max() { return DBL_MAX; } 393 394 // Typedefs the instances of the FloatingPoint template class that we 395 // care to use. 396 typedef FloatingPoint<float> Float; 397 typedef FloatingPoint<double> Double; 398 399 // In order to catch the mistake of putting tests that use different 400 // test fixture classes in the same test suite, we need to assign 401 // unique IDs to fixture classes and compare them. The TypeId type is 402 // used to hold such IDs. The user should treat TypeId as an opaque 403 // type: the only operation allowed on TypeId values is to compare 404 // them for equality using the == operator. 405 typedef const void* TypeId; 406 407 template <typename T> 408 class TypeIdHelper { 409 public: 410 // dummy_ must not have a const type. Otherwise an overly eager 411 // compiler (e.g. MSVC 7.1 & 8.0) may try to merge 412 // TypeIdHelper<T>::dummy_ for different Ts as an "optimization". 413 static bool dummy_; 414 }; 415 416 template <typename T> 417 bool TypeIdHelper<T>::dummy_ = false; 418 419 // GetTypeId<T>() returns the ID of type T. Different values will be 420 // returned for different types. Calling the function twice with the 421 // same type argument is guaranteed to return the same ID. 422 template <typename T> 423 TypeId GetTypeId() { 424 // The compiler is required to allocate a different 425 // TypeIdHelper<T>::dummy_ variable for each T used to instantiate 426 // the template. Therefore, the address of dummy_ is guaranteed to 427 // be unique. 428 return &(TypeIdHelper<T>::dummy_); 429 } 430 431 // Returns the type ID of ::testing::Test. Always call this instead 432 // of GetTypeId< ::testing::Test>() to get the type ID of 433 // ::testing::Test, as the latter may give the wrong result due to a 434 // suspected linker bug when compiling Google Test as a Mac OS X 435 // framework. 436 GTEST_API_ TypeId GetTestTypeId(); 437 438 // Defines the abstract factory interface that creates instances 439 // of a Test object. 440 class TestFactoryBase { 441 public: 442 virtual ~TestFactoryBase() {} 443 444 // Creates a test instance to run. The instance is both created and destroyed 445 // within TestInfoImpl::Run() 446 virtual Test* CreateTest() = 0; 447 448 protected: 449 TestFactoryBase() {} 450 451 private: 452 GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase); 453 }; 454 455 // This class provides implementation of TeastFactoryBase interface. 456 // It is used in TEST and TEST_F macros. 457 template <class TestClass> 458 class TestFactoryImpl : public TestFactoryBase { 459 public: 460 Test* CreateTest() override { return new TestClass; } 461 }; 462 463 #if GTEST_OS_WINDOWS 464 465 // Predicate-formatters for implementing the HRESULT checking macros 466 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED} 467 // We pass a long instead of HRESULT to avoid causing an 468 // include dependency for the HRESULT type. 469 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr, 470 long hr); // NOLINT 471 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr, 472 long hr); // NOLINT 473 474 #endif // GTEST_OS_WINDOWS 475 476 // Types of SetUpTestSuite() and TearDownTestSuite() functions. 477 using SetUpTestSuiteFunc = void (*)(); 478 using TearDownTestSuiteFunc = void (*)(); 479 480 struct CodeLocation { 481 CodeLocation(const std::string& a_file, int a_line) 482 : file(a_file), line(a_line) {} 483 484 std::string file; 485 int line; 486 }; 487 488 // Helper to identify which setup function for TestCase / TestSuite to call. 489 // Only one function is allowed, either TestCase or TestSute but not both. 490 491 // Utility functions to help SuiteApiResolver 492 using SetUpTearDownSuiteFuncType = void (*)(); 493 494 inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull( 495 SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) { 496 return a == def ? nullptr : a; 497 } 498 499 template <typename T> 500 // Note that SuiteApiResolver inherits from T because 501 // SetUpTestSuite()/TearDownTestSuite() could be protected. Ths way 502 // SuiteApiResolver can access them. 503 struct SuiteApiResolver : T { 504 // testing::Test is only forward declared at this point. So we make it a 505 // dependend class for the compiler to be OK with it. 506 using Test = 507 typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type; 508 509 static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename, 510 int line_num) { 511 SetUpTearDownSuiteFuncType test_case_fp = 512 GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase); 513 SetUpTearDownSuiteFuncType test_suite_fp = 514 GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite); 515 516 GTEST_CHECK_(!test_case_fp || !test_suite_fp) 517 << "Test can not provide both SetUpTestSuite and SetUpTestCase, please " 518 "make sure there is only one present at " 519 << filename << ":" << line_num; 520 521 return test_case_fp != nullptr ? test_case_fp : test_suite_fp; 522 } 523 524 static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename, 525 int line_num) { 526 SetUpTearDownSuiteFuncType test_case_fp = 527 GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase); 528 SetUpTearDownSuiteFuncType test_suite_fp = 529 GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite); 530 531 GTEST_CHECK_(!test_case_fp || !test_suite_fp) 532 << "Test can not provide both TearDownTestSuite and TearDownTestCase," 533 " please make sure there is only one present at" 534 << filename << ":" << line_num; 535 536 return test_case_fp != nullptr ? test_case_fp : test_suite_fp; 537 } 538 }; 539 540 // Creates a new TestInfo object and registers it with Google Test; 541 // returns the created object. 542 // 543 // Arguments: 544 // 545 // test_suite_name: name of the test suite 546 // name: name of the test 547 // type_param the name of the test's type parameter, or NULL if 548 // this is not a typed or a type-parameterized test. 549 // value_param text representation of the test's value parameter, 550 // or NULL if this is not a type-parameterized test. 551 // code_location: code location where the test is defined 552 // fixture_class_id: ID of the test fixture class 553 // set_up_tc: pointer to the function that sets up the test suite 554 // tear_down_tc: pointer to the function that tears down the test suite 555 // factory: pointer to the factory that creates a test object. 556 // The newly created TestInfo instance will assume 557 // ownership of the factory object. 558 GTEST_API_ TestInfo* MakeAndRegisterTestInfo( 559 const char* test_suite_name, const char* name, const char* type_param, 560 const char* value_param, CodeLocation code_location, 561 TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc, 562 TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory); 563 564 // If *pstr starts with the given prefix, modifies *pstr to be right 565 // past the prefix and returns true; otherwise leaves *pstr unchanged 566 // and returns false. None of pstr, *pstr, and prefix can be NULL. 567 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr); 568 569 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P 570 571 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ 572 /* class A needs to have dll-interface to be used by clients of class B */) 573 574 // State of the definition of a type-parameterized test suite. 575 class GTEST_API_ TypedTestSuitePState { 576 public: 577 TypedTestSuitePState() : registered_(false) {} 578 579 // Adds the given test name to defined_test_names_ and return true 580 // if the test suite hasn't been registered; otherwise aborts the 581 // program. 582 bool AddTestName(const char* file, int line, const char* case_name, 583 const char* test_name) { 584 if (registered_) { 585 fprintf(stderr, 586 "%s Test %s must be defined before " 587 "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n", 588 FormatFileLocation(file, line).c_str(), test_name, case_name); 589 fflush(stderr); 590 posix::Abort(); 591 } 592 registered_tests_.insert( 593 ::std::make_pair(test_name, CodeLocation(file, line))); 594 return true; 595 } 596 597 bool TestExists(const std::string& test_name) const { 598 return registered_tests_.count(test_name) > 0; 599 } 600 601 const CodeLocation& GetCodeLocation(const std::string& test_name) const { 602 RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name); 603 GTEST_CHECK_(it != registered_tests_.end()); 604 return it->second; 605 } 606 607 // Verifies that registered_tests match the test names in 608 // defined_test_names_; returns registered_tests if successful, or 609 // aborts the program otherwise. 610 const char* VerifyRegisteredTestNames( 611 const char* file, int line, const char* registered_tests); 612 613 private: 614 typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap; 615 616 bool registered_; 617 RegisteredTestsMap registered_tests_; 618 }; 619 620 // Legacy API is deprecated but still available 621 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ 622 using TypedTestCasePState = TypedTestSuitePState; 623 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ 624 625 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 626 627 // Skips to the first non-space char after the first comma in 'str'; 628 // returns NULL if no comma is found in 'str'. 629 inline const char* SkipComma(const char* str) { 630 const char* comma = strchr(str, ','); 631 if (comma == nullptr) { 632 return nullptr; 633 } 634 while (IsSpace(*(++comma))) {} 635 return comma; 636 } 637 638 // Returns the prefix of 'str' before the first comma in it; returns 639 // the entire string if it contains no comma. 640 inline std::string GetPrefixUntilComma(const char* str) { 641 const char* comma = strchr(str, ','); 642 return comma == nullptr ? str : std::string(str, comma); 643 } 644 645 // Splits a given string on a given delimiter, populating a given 646 // vector with the fields. 647 void SplitString(const ::std::string& str, char delimiter, 648 ::std::vector< ::std::string>* dest); 649 650 // The default argument to the template below for the case when the user does 651 // not provide a name generator. 652 struct DefaultNameGenerator { 653 template <typename T> 654 static std::string GetName(int i) { 655 return StreamableToString(i); 656 } 657 }; 658 659 template <typename Provided = DefaultNameGenerator> 660 struct NameGeneratorSelector { 661 typedef Provided type; 662 }; 663 664 template <typename NameGenerator> 665 void GenerateNamesRecursively(Types0, std::vector<std::string>*, int) {} 666 667 template <typename NameGenerator, typename Types> 668 void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) { 669 result->push_back(NameGenerator::template GetName<typename Types::Head>(i)); 670 GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result, 671 i + 1); 672 } 673 674 template <typename NameGenerator, typename Types> 675 std::vector<std::string> GenerateNames() { 676 std::vector<std::string> result; 677 GenerateNamesRecursively<NameGenerator>(Types(), &result, 0); 678 return result; 679 } 680 681 // TypeParameterizedTest<Fixture, TestSel, Types>::Register() 682 // registers a list of type-parameterized tests with Google Test. The 683 // return value is insignificant - we just need to return something 684 // such that we can call this function in a namespace scope. 685 // 686 // Implementation note: The GTEST_TEMPLATE_ macro declares a template 687 // template parameter. It's defined in gtest-type-util.h. 688 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types> 689 class TypeParameterizedTest { 690 public: 691 // 'index' is the index of the test in the type list 'Types' 692 // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite, 693 // Types). Valid values for 'index' are [0, N - 1] where N is the 694 // length of Types. 695 static bool Register(const char* prefix, const CodeLocation& code_location, 696 const char* case_name, const char* test_names, int index, 697 const std::vector<std::string>& type_names = 698 GenerateNames<DefaultNameGenerator, Types>()) { 699 typedef typename Types::Head Type; 700 typedef Fixture<Type> FixtureClass; 701 typedef typename GTEST_BIND_(TestSel, Type) TestClass; 702 703 // First, registers the first type-parameterized test in the type 704 // list. 705 MakeAndRegisterTestInfo( 706 (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + 707 "/" + type_names[static_cast<size_t>(index)]) 708 .c_str(), 709 StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(), 710 GetTypeName<Type>().c_str(), 711 nullptr, // No value parameter. 712 code_location, GetTypeId<FixtureClass>(), 713 SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite( 714 code_location.file.c_str(), code_location.line), 715 SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite( 716 code_location.file.c_str(), code_location.line), 717 new TestFactoryImpl<TestClass>); 718 719 // Next, recurses (at compile time) with the tail of the type list. 720 return TypeParameterizedTest<Fixture, TestSel, 721 typename Types::Tail>::Register(prefix, 722 code_location, 723 case_name, 724 test_names, 725 index + 1, 726 type_names); 727 } 728 }; 729 730 // The base case for the compile time recursion. 731 template <GTEST_TEMPLATE_ Fixture, class TestSel> 732 class TypeParameterizedTest<Fixture, TestSel, Types0> { 733 public: 734 static bool Register(const char* /*prefix*/, const CodeLocation&, 735 const char* /*case_name*/, const char* /*test_names*/, 736 int /*index*/, 737 const std::vector<std::string>& = 738 std::vector<std::string>() /*type_names*/) { 739 return true; 740 } 741 }; 742 743 // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register() 744 // registers *all combinations* of 'Tests' and 'Types' with Google 745 // Test. The return value is insignificant - we just need to return 746 // something such that we can call this function in a namespace scope. 747 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types> 748 class TypeParameterizedTestSuite { 749 public: 750 static bool Register(const char* prefix, CodeLocation code_location, 751 const TypedTestSuitePState* state, const char* case_name, 752 const char* test_names, 753 const std::vector<std::string>& type_names = 754 GenerateNames<DefaultNameGenerator, Types>()) { 755 std::string test_name = StripTrailingSpaces( 756 GetPrefixUntilComma(test_names)); 757 if (!state->TestExists(test_name)) { 758 fprintf(stderr, "Failed to get code location for test %s.%s at %s.", 759 case_name, test_name.c_str(), 760 FormatFileLocation(code_location.file.c_str(), 761 code_location.line).c_str()); 762 fflush(stderr); 763 posix::Abort(); 764 } 765 const CodeLocation& test_location = state->GetCodeLocation(test_name); 766 767 typedef typename Tests::Head Head; 768 769 // First, register the first test in 'Test' for each type in 'Types'. 770 TypeParameterizedTest<Fixture, Head, Types>::Register( 771 prefix, test_location, case_name, test_names, 0, type_names); 772 773 // Next, recurses (at compile time) with the tail of the test list. 774 return TypeParameterizedTestSuite<Fixture, typename Tests::Tail, 775 Types>::Register(prefix, code_location, 776 state, case_name, 777 SkipComma(test_names), 778 type_names); 779 } 780 }; 781 782 // The base case for the compile time recursion. 783 template <GTEST_TEMPLATE_ Fixture, typename Types> 784 class TypeParameterizedTestSuite<Fixture, Templates0, Types> { 785 public: 786 static bool Register(const char* /*prefix*/, const CodeLocation&, 787 const TypedTestSuitePState* /*state*/, 788 const char* /*case_name*/, const char* /*test_names*/, 789 const std::vector<std::string>& = 790 std::vector<std::string>() /*type_names*/) { 791 return true; 792 } 793 }; 794 795 #endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P 796 797 // Returns the current OS stack trace as an std::string. 798 // 799 // The maximum number of stack frames to be included is specified by 800 // the gtest_stack_trace_depth flag. The skip_count parameter 801 // specifies the number of top frames to be skipped, which doesn't 802 // count against the number of frames to be included. 803 // 804 // For example, if Foo() calls Bar(), which in turn calls 805 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in 806 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. 807 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop( 808 UnitTest* unit_test, int skip_count); 809 810 // Helpers for suppressing warnings on unreachable code or constant 811 // condition. 812 813 // Always returns true. 814 GTEST_API_ bool AlwaysTrue(); 815 816 // Always returns false. 817 inline bool AlwaysFalse() { return !AlwaysTrue(); } 818 819 // Helper for suppressing false warning from Clang on a const char* 820 // variable declared in a conditional expression always being NULL in 821 // the else branch. 822 struct GTEST_API_ ConstCharPtr { 823 ConstCharPtr(const char* str) : value(str) {} 824 operator bool() const { return true; } 825 const char* value; 826 }; 827 828 // A simple Linear Congruential Generator for generating random 829 // numbers with a uniform distribution. Unlike rand() and srand(), it 830 // doesn't use global state (and therefore can't interfere with user 831 // code). Unlike rand_r(), it's portable. An LCG isn't very random, 832 // but it's good enough for our purposes. 833 class GTEST_API_ Random { 834 public: 835 static const UInt32 kMaxRange = 1u << 31; 836 837 explicit Random(UInt32 seed) : state_(seed) {} 838 839 void Reseed(UInt32 seed) { state_ = seed; } 840 841 // Generates a random number from [0, range). Crashes if 'range' is 842 // 0 or greater than kMaxRange. 843 UInt32 Generate(UInt32 range); 844 845 private: 846 UInt32 state_; 847 GTEST_DISALLOW_COPY_AND_ASSIGN_(Random); 848 }; 849 850 // Turns const U&, U&, const U, and U all into U. 851 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \ 852 typename std::remove_const<typename std::remove_reference<T>::type>::type 853 854 // IsAProtocolMessage<T>::value is a compile-time bool constant that's 855 // true if and only if T is type proto2::Message or a subclass of it. 856 template <typename T> 857 struct IsAProtocolMessage 858 : public bool_constant< 859 std::is_convertible<const T*, const ::proto2::Message*>::value> {}; 860 861 // When the compiler sees expression IsContainerTest<C>(0), if C is an 862 // STL-style container class, the first overload of IsContainerTest 863 // will be viable (since both C::iterator* and C::const_iterator* are 864 // valid types and NULL can be implicitly converted to them). It will 865 // be picked over the second overload as 'int' is a perfect match for 866 // the type of argument 0. If C::iterator or C::const_iterator is not 867 // a valid type, the first overload is not viable, and the second 868 // overload will be picked. Therefore, we can determine whether C is 869 // a container class by checking the type of IsContainerTest<C>(0). 870 // The value of the expression is insignificant. 871 // 872 // In C++11 mode we check the existence of a const_iterator and that an 873 // iterator is properly implemented for the container. 874 // 875 // For pre-C++11 that we look for both C::iterator and C::const_iterator. 876 // The reason is that C++ injects the name of a class as a member of the 877 // class itself (e.g. you can refer to class iterator as either 878 // 'iterator' or 'iterator::iterator'). If we look for C::iterator 879 // only, for example, we would mistakenly think that a class named 880 // iterator is an STL container. 881 // 882 // Also note that the simpler approach of overloading 883 // IsContainerTest(typename C::const_iterator*) and 884 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++. 885 typedef int IsContainer; 886 template <class C, 887 class Iterator = decltype(::std::declval<const C&>().begin()), 888 class = decltype(::std::declval<const C&>().end()), 889 class = decltype(++::std::declval<Iterator&>()), 890 class = decltype(*::std::declval<Iterator>()), 891 class = typename C::const_iterator> 892 IsContainer IsContainerTest(int /* dummy */) { 893 return 0; 894 } 895 896 typedef char IsNotContainer; 897 template <class C> 898 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; } 899 900 // Trait to detect whether a type T is a hash table. 901 // The heuristic used is that the type contains an inner type `hasher` and does 902 // not contain an inner type `reverse_iterator`. 903 // If the container is iterable in reverse, then order might actually matter. 904 template <typename T> 905 struct IsHashTable { 906 private: 907 template <typename U> 908 static char test(typename U::hasher*, typename U::reverse_iterator*); 909 template <typename U> 910 static int test(typename U::hasher*, ...); 911 template <typename U> 912 static char test(...); 913 914 public: 915 static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int); 916 }; 917 918 template <typename T> 919 const bool IsHashTable<T>::value; 920 921 template <typename C, 922 bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)> 923 struct IsRecursiveContainerImpl; 924 925 template <typename C> 926 struct IsRecursiveContainerImpl<C, false> : public std::false_type {}; 927 928 // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to 929 // obey the same inconsistencies as the IsContainerTest, namely check if 930 // something is a container is relying on only const_iterator in C++11 and 931 // is relying on both const_iterator and iterator otherwise 932 template <typename C> 933 struct IsRecursiveContainerImpl<C, true> { 934 using value_type = decltype(*std::declval<typename C::const_iterator>()); 935 using type = 936 std::is_same<typename std::remove_const< 937 typename std::remove_reference<value_type>::type>::type, 938 C>; 939 }; 940 941 // IsRecursiveContainer<Type> is a unary compile-time predicate that 942 // evaluates whether C is a recursive container type. A recursive container 943 // type is a container type whose value_type is equal to the container type 944 // itself. An example for a recursive container type is 945 // boost::filesystem::path, whose iterator has a value_type that is equal to 946 // boost::filesystem::path. 947 template <typename C> 948 struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {}; 949 950 // Utilities for native arrays. 951 952 // ArrayEq() compares two k-dimensional native arrays using the 953 // elements' operator==, where k can be any integer >= 0. When k is 954 // 0, ArrayEq() degenerates into comparing a single pair of values. 955 956 template <typename T, typename U> 957 bool ArrayEq(const T* lhs, size_t size, const U* rhs); 958 959 // This generic version is used when k is 0. 960 template <typename T, typename U> 961 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; } 962 963 // This overload is used when k >= 1. 964 template <typename T, typename U, size_t N> 965 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) { 966 return internal::ArrayEq(lhs, N, rhs); 967 } 968 969 // This helper reduces code bloat. If we instead put its logic inside 970 // the previous ArrayEq() function, arrays with different sizes would 971 // lead to different copies of the template code. 972 template <typename T, typename U> 973 bool ArrayEq(const T* lhs, size_t size, const U* rhs) { 974 for (size_t i = 0; i != size; i++) { 975 if (!internal::ArrayEq(lhs[i], rhs[i])) 976 return false; 977 } 978 return true; 979 } 980 981 // Finds the first element in the iterator range [begin, end) that 982 // equals elem. Element may be a native array type itself. 983 template <typename Iter, typename Element> 984 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) { 985 for (Iter it = begin; it != end; ++it) { 986 if (internal::ArrayEq(*it, elem)) 987 return it; 988 } 989 return end; 990 } 991 992 // CopyArray() copies a k-dimensional native array using the elements' 993 // operator=, where k can be any integer >= 0. When k is 0, 994 // CopyArray() degenerates into copying a single value. 995 996 template <typename T, typename U> 997 void CopyArray(const T* from, size_t size, U* to); 998 999 // This generic version is used when k is 0. 1000 template <typename T, typename U> 1001 inline void CopyArray(const T& from, U* to) { *to = from; } 1002 1003 // This overload is used when k >= 1. 1004 template <typename T, typename U, size_t N> 1005 inline void CopyArray(const T(&from)[N], U(*to)[N]) { 1006 internal::CopyArray(from, N, *to); 1007 } 1008 1009 // This helper reduces code bloat. If we instead put its logic inside 1010 // the previous CopyArray() function, arrays with different sizes 1011 // would lead to different copies of the template code. 1012 template <typename T, typename U> 1013 void CopyArray(const T* from, size_t size, U* to) { 1014 for (size_t i = 0; i != size; i++) { 1015 internal::CopyArray(from[i], to + i); 1016 } 1017 } 1018 1019 // The relation between an NativeArray object (see below) and the 1020 // native array it represents. 1021 // We use 2 different structs to allow non-copyable types to be used, as long 1022 // as RelationToSourceReference() is passed. 1023 struct RelationToSourceReference {}; 1024 struct RelationToSourceCopy {}; 1025 1026 // Adapts a native array to a read-only STL-style container. Instead 1027 // of the complete STL container concept, this adaptor only implements 1028 // members useful for Google Mock's container matchers. New members 1029 // should be added as needed. To simplify the implementation, we only 1030 // support Element being a raw type (i.e. having no top-level const or 1031 // reference modifier). It's the client's responsibility to satisfy 1032 // this requirement. Element can be an array type itself (hence 1033 // multi-dimensional arrays are supported). 1034 template <typename Element> 1035 class NativeArray { 1036 public: 1037 // STL-style container typedefs. 1038 typedef Element value_type; 1039 typedef Element* iterator; 1040 typedef const Element* const_iterator; 1041 1042 // Constructs from a native array. References the source. 1043 NativeArray(const Element* array, size_t count, RelationToSourceReference) { 1044 InitRef(array, count); 1045 } 1046 1047 // Constructs from a native array. Copies the source. 1048 NativeArray(const Element* array, size_t count, RelationToSourceCopy) { 1049 InitCopy(array, count); 1050 } 1051 1052 // Copy constructor. 1053 NativeArray(const NativeArray& rhs) { 1054 (this->*rhs.clone_)(rhs.array_, rhs.size_); 1055 } 1056 1057 ~NativeArray() { 1058 if (clone_ != &NativeArray::InitRef) 1059 delete[] array_; 1060 } 1061 1062 // STL-style container methods. 1063 size_t size() const { return size_; } 1064 const_iterator begin() const { return array_; } 1065 const_iterator end() const { return array_ + size_; } 1066 bool operator==(const NativeArray& rhs) const { 1067 return size() == rhs.size() && 1068 ArrayEq(begin(), size(), rhs.begin()); 1069 } 1070 1071 private: 1072 static_assert(!std::is_const<Element>::value, "Type must not be const"); 1073 static_assert(!std::is_reference<Element>::value, 1074 "Type must not be a reference"); 1075 1076 // Initializes this object with a copy of the input. 1077 void InitCopy(const Element* array, size_t a_size) { 1078 Element* const copy = new Element[a_size]; 1079 CopyArray(array, a_size, copy); 1080 array_ = copy; 1081 size_ = a_size; 1082 clone_ = &NativeArray::InitCopy; 1083 } 1084 1085 // Initializes this object with a reference of the input. 1086 void InitRef(const Element* array, size_t a_size) { 1087 array_ = array; 1088 size_ = a_size; 1089 clone_ = &NativeArray::InitRef; 1090 } 1091 1092 const Element* array_; 1093 size_t size_; 1094 void (NativeArray::*clone_)(const Element*, size_t); 1095 1096 GTEST_DISALLOW_ASSIGN_(NativeArray); 1097 }; 1098 1099 // Backport of std::index_sequence. 1100 template <size_t... Is> 1101 struct IndexSequence { 1102 using type = IndexSequence; 1103 }; 1104 1105 // Double the IndexSequence, and one if plus_one is true. 1106 template <bool plus_one, typename T, size_t sizeofT> 1107 struct DoubleSequence; 1108 template <size_t... I, size_t sizeofT> 1109 struct DoubleSequence<true, IndexSequence<I...>, sizeofT> { 1110 using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>; 1111 }; 1112 template <size_t... I, size_t sizeofT> 1113 struct DoubleSequence<false, IndexSequence<I...>, sizeofT> { 1114 using type = IndexSequence<I..., (sizeofT + I)...>; 1115 }; 1116 1117 // Backport of std::make_index_sequence. 1118 // It uses O(ln(N)) instantiation depth. 1119 template <size_t N> 1120 struct MakeIndexSequence 1121 : DoubleSequence<N % 2 == 1, typename MakeIndexSequence<N / 2>::type, 1122 N / 2>::type {}; 1123 1124 template <> 1125 struct MakeIndexSequence<0> : IndexSequence<> {}; 1126 1127 // FIXME: This implementation of ElemFromList is O(1) in instantiation depth, 1128 // but it is O(N^2) in total instantiations. Not sure if this is the best 1129 // tradeoff, as it will make it somewhat slow to compile. 1130 template <typename T, size_t, size_t> 1131 struct ElemFromListImpl {}; 1132 1133 template <typename T, size_t I> 1134 struct ElemFromListImpl<T, I, I> { 1135 using type = T; 1136 }; 1137 1138 // Get the Nth element from T... 1139 // It uses O(1) instantiation depth. 1140 template <size_t N, typename I, typename... T> 1141 struct ElemFromList; 1142 1143 template <size_t N, size_t... I, typename... T> 1144 struct ElemFromList<N, IndexSequence<I...>, T...> 1145 : ElemFromListImpl<T, N, I>... {}; 1146 1147 template <typename... T> 1148 class FlatTuple; 1149 1150 template <typename Derived, size_t I> 1151 struct FlatTupleElemBase; 1152 1153 template <typename... T, size_t I> 1154 struct FlatTupleElemBase<FlatTuple<T...>, I> { 1155 using value_type = 1156 typename ElemFromList<I, typename MakeIndexSequence<sizeof...(T)>::type, 1157 T...>::type; 1158 FlatTupleElemBase() = default; 1159 explicit FlatTupleElemBase(value_type t) : value(std::move(t)) {} 1160 value_type value; 1161 }; 1162 1163 template <typename Derived, typename Idx> 1164 struct FlatTupleBase; 1165 1166 template <size_t... Idx, typename... T> 1167 struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>> 1168 : FlatTupleElemBase<FlatTuple<T...>, Idx>... { 1169 using Indices = IndexSequence<Idx...>; 1170 FlatTupleBase() = default; 1171 explicit FlatTupleBase(T... t) 1172 : FlatTupleElemBase<FlatTuple<T...>, Idx>(std::move(t))... {} 1173 }; 1174 1175 // Analog to std::tuple but with different tradeoffs. 1176 // This class minimizes the template instantiation depth, thus allowing more 1177 // elements that std::tuple would. std::tuple has been seen to require an 1178 // instantiation depth of more than 10x the number of elements in some 1179 // implementations. 1180 // FlatTuple and ElemFromList are not recursive and have a fixed depth 1181 // regardless of T... 1182 // MakeIndexSequence, on the other hand, it is recursive but with an 1183 // instantiation depth of O(ln(N)). 1184 template <typename... T> 1185 class FlatTuple 1186 : private FlatTupleBase<FlatTuple<T...>, 1187 typename MakeIndexSequence<sizeof...(T)>::type> { 1188 using Indices = typename FlatTuple::FlatTupleBase::Indices; 1189 1190 public: 1191 FlatTuple() = default; 1192 explicit FlatTuple(T... t) : FlatTuple::FlatTupleBase(std::move(t)...) {} 1193 1194 template <size_t I> 1195 const typename ElemFromList<I, Indices, T...>::type& Get() const { 1196 return static_cast<const FlatTupleElemBase<FlatTuple, I>*>(this)->value; 1197 } 1198 1199 template <size_t I> 1200 typename ElemFromList<I, Indices, T...>::type& Get() { 1201 return static_cast<FlatTupleElemBase<FlatTuple, I>*>(this)->value; 1202 } 1203 }; 1204 1205 // Utility functions to be called with static_assert to induce deprecation 1206 // warnings. 1207 GTEST_INTERNAL_DEPRECATED( 1208 "INSTANTIATE_TEST_CASE_P is deprecated, please use " 1209 "INSTANTIATE_TEST_SUITE_P") 1210 constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; } 1211 1212 GTEST_INTERNAL_DEPRECATED( 1213 "TYPED_TEST_CASE_P is deprecated, please use " 1214 "TYPED_TEST_SUITE_P") 1215 constexpr bool TypedTestCase_P_IsDeprecated() { return true; } 1216 1217 GTEST_INTERNAL_DEPRECATED( 1218 "TYPED_TEST_CASE is deprecated, please use " 1219 "TYPED_TEST_SUITE") 1220 constexpr bool TypedTestCaseIsDeprecated() { return true; } 1221 1222 GTEST_INTERNAL_DEPRECATED( 1223 "REGISTER_TYPED_TEST_CASE_P is deprecated, please use " 1224 "REGISTER_TYPED_TEST_SUITE_P") 1225 constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; } 1226 1227 GTEST_INTERNAL_DEPRECATED( 1228 "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use " 1229 "INSTANTIATE_TYPED_TEST_SUITE_P") 1230 constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; } 1231 1232 } // namespace internal 1233 } // namespace testing 1234 1235 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \ 1236 ::testing::internal::AssertHelper(result_type, file, line, message) \ 1237 = ::testing::Message() 1238 1239 #define GTEST_MESSAGE_(message, result_type) \ 1240 GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type) 1241 1242 #define GTEST_FATAL_FAILURE_(message) \ 1243 return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure) 1244 1245 #define GTEST_NONFATAL_FAILURE_(message) \ 1246 GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure) 1247 1248 #define GTEST_SUCCESS_(message) \ 1249 GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess) 1250 1251 #define GTEST_SKIP_(message) \ 1252 return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip) 1253 1254 // Suppress MSVC warning 4072 (unreachable code) for the code following 1255 // statement if it returns or throws (or doesn't return or throw in some 1256 // situations). 1257 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \ 1258 if (::testing::internal::AlwaysTrue()) { statement; } 1259 1260 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \ 1261 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ 1262 if (::testing::internal::ConstCharPtr gtest_msg = "") { \ 1263 bool gtest_caught_expected = false; \ 1264 try { \ 1265 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ 1266 } \ 1267 catch (expected_exception const&) { \ 1268 gtest_caught_expected = true; \ 1269 } \ 1270 catch (...) { \ 1271 gtest_msg.value = \ 1272 "Expected: " #statement " throws an exception of type " \ 1273 #expected_exception ".\n Actual: it throws a different type."; \ 1274 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ 1275 } \ 1276 if (!gtest_caught_expected) { \ 1277 gtest_msg.value = \ 1278 "Expected: " #statement " throws an exception of type " \ 1279 #expected_exception ".\n Actual: it throws nothing."; \ 1280 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ 1281 } \ 1282 } else \ 1283 GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \ 1284 fail(gtest_msg.value) 1285 1286 #define GTEST_TEST_NO_THROW_(statement, fail) \ 1287 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ 1288 if (::testing::internal::AlwaysTrue()) { \ 1289 try { \ 1290 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ 1291 } \ 1292 catch (...) { \ 1293 goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \ 1294 } \ 1295 } else \ 1296 GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \ 1297 fail("Expected: " #statement " doesn't throw an exception.\n" \ 1298 " Actual: it throws.") 1299 1300 #define GTEST_TEST_ANY_THROW_(statement, fail) \ 1301 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ 1302 if (::testing::internal::AlwaysTrue()) { \ 1303 bool gtest_caught_any = false; \ 1304 try { \ 1305 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ 1306 } \ 1307 catch (...) { \ 1308 gtest_caught_any = true; \ 1309 } \ 1310 if (!gtest_caught_any) { \ 1311 goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \ 1312 } \ 1313 } else \ 1314 GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \ 1315 fail("Expected: " #statement " throws an exception.\n" \ 1316 " Actual: it doesn't.") 1317 1318 1319 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be 1320 // either a boolean expression or an AssertionResult. text is a textual 1321 // represenation of expression as it was passed into the EXPECT_TRUE. 1322 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \ 1323 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ 1324 if (const ::testing::AssertionResult gtest_ar_ = \ 1325 ::testing::AssertionResult(expression)) \ 1326 ; \ 1327 else \ 1328 fail(::testing::internal::GetBoolAssertionFailureMessage(\ 1329 gtest_ar_, text, #actual, #expected).c_str()) 1330 1331 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \ 1332 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ 1333 if (::testing::internal::AlwaysTrue()) { \ 1334 ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \ 1335 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ 1336 if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \ 1337 goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \ 1338 } \ 1339 } else \ 1340 GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \ 1341 fail("Expected: " #statement " doesn't generate new fatal " \ 1342 "failures in the current thread.\n" \ 1343 " Actual: it does.") 1344 1345 // Expands to the name of the class that implements the given test. 1346 #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ 1347 test_suite_name##_##test_name##_Test 1348 1349 // Helper macro for defining tests. 1350 #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id) \ 1351 static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1, \ 1352 "test_suite_name must not be empty"); \ 1353 static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1, \ 1354 "test_name must not be empty"); \ 1355 class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ 1356 : public parent_class { \ 1357 public: \ 1358 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() {} \ 1359 \ 1360 private: \ 1361 virtual void TestBody(); \ 1362 static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_; \ 1363 GTEST_DISALLOW_COPY_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name, \ 1364 test_name)); \ 1365 }; \ 1366 \ 1367 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name, \ 1368 test_name)::test_info_ = \ 1369 ::testing::internal::MakeAndRegisterTestInfo( \ 1370 #test_suite_name, #test_name, nullptr, nullptr, \ 1371 ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \ 1372 ::testing::internal::SuiteApiResolver< \ 1373 parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__), \ 1374 ::testing::internal::SuiteApiResolver< \ 1375 parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__), \ 1376 new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_( \ 1377 test_suite_name, test_name)>); \ 1378 void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody() 1379 1380 #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_