yaml-cpp

FORK: A YAML parser and emitter in C++
git clone https://git.neptards.moe/neptards/yaml-cpp.git
Log | Files | Refs | README | LICENSE

gmock-actions.h (39706B)


      1 // Copyright 2007, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 
     30 
     31 // Google Mock - a framework for writing C++ mock classes.
     32 //
     33 // This file implements some commonly used actions.
     34 
     35 // GOOGLETEST_CM0002 DO NOT DELETE
     36 
     37 #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
     38 #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
     39 
     40 #ifndef _WIN32_WCE
     41 # include <errno.h>
     42 #endif
     43 
     44 #include <algorithm>
     45 #include <functional>
     46 #include <memory>
     47 #include <string>
     48 #include <type_traits>
     49 #include <utility>
     50 
     51 #include "gmock/internal/gmock-internal-utils.h"
     52 #include "gmock/internal/gmock-port.h"
     53 
     54 #ifdef _MSC_VER
     55 # pragma warning(push)
     56 # pragma warning(disable:4100)
     57 #endif
     58 
     59 namespace testing {
     60 
     61 // To implement an action Foo, define:
     62 //   1. a class FooAction that implements the ActionInterface interface, and
     63 //   2. a factory function that creates an Action object from a
     64 //      const FooAction*.
     65 //
     66 // The two-level delegation design follows that of Matcher, providing
     67 // consistency for extension developers.  It also eases ownership
     68 // management as Action objects can now be copied like plain values.
     69 
     70 namespace internal {
     71 
     72 // BuiltInDefaultValueGetter<T, true>::Get() returns a
     73 // default-constructed T value.  BuiltInDefaultValueGetter<T,
     74 // false>::Get() crashes with an error.
     75 //
     76 // This primary template is used when kDefaultConstructible is true.
     77 template <typename T, bool kDefaultConstructible>
     78 struct BuiltInDefaultValueGetter {
     79   static T Get() { return T(); }
     80 };
     81 template <typename T>
     82 struct BuiltInDefaultValueGetter<T, false> {
     83   static T Get() {
     84     Assert(false, __FILE__, __LINE__,
     85            "Default action undefined for the function return type.");
     86     return internal::Invalid<T>();
     87     // The above statement will never be reached, but is required in
     88     // order for this function to compile.
     89   }
     90 };
     91 
     92 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value
     93 // for type T, which is NULL when T is a raw pointer type, 0 when T is
     94 // a numeric type, false when T is bool, or "" when T is string or
     95 // std::string.  In addition, in C++11 and above, it turns a
     96 // default-constructed T value if T is default constructible.  For any
     97 // other type T, the built-in default T value is undefined, and the
     98 // function will abort the process.
     99 template <typename T>
    100 class BuiltInDefaultValue {
    101  public:
    102   // This function returns true if and only if type T has a built-in default
    103   // value.
    104   static bool Exists() {
    105     return ::std::is_default_constructible<T>::value;
    106   }
    107 
    108   static T Get() {
    109     return BuiltInDefaultValueGetter<
    110         T, ::std::is_default_constructible<T>::value>::Get();
    111   }
    112 };
    113 
    114 // This partial specialization says that we use the same built-in
    115 // default value for T and const T.
    116 template <typename T>
    117 class BuiltInDefaultValue<const T> {
    118  public:
    119   static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
    120   static T Get() { return BuiltInDefaultValue<T>::Get(); }
    121 };
    122 
    123 // This partial specialization defines the default values for pointer
    124 // types.
    125 template <typename T>
    126 class BuiltInDefaultValue<T*> {
    127  public:
    128   static bool Exists() { return true; }
    129   static T* Get() { return nullptr; }
    130 };
    131 
    132 // The following specializations define the default values for
    133 // specific types we care about.
    134 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
    135   template <> \
    136   class BuiltInDefaultValue<type> { \
    137    public: \
    138     static bool Exists() { return true; } \
    139     static type Get() { return value; } \
    140   }
    141 
    142 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
    143 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
    144 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
    145 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
    146 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
    147 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
    148 
    149 // There's no need for a default action for signed wchar_t, as that
    150 // type is the same as wchar_t for gcc, and invalid for MSVC.
    151 //
    152 // There's also no need for a default action for unsigned wchar_t, as
    153 // that type is the same as unsigned int for gcc, and invalid for
    154 // MSVC.
    155 #if GMOCK_WCHAR_T_IS_NATIVE_
    156 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
    157 #endif
    158 
    159 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
    160 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
    161 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
    162 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
    163 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
    164 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
    165 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
    166 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
    167 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
    168 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
    169 
    170 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
    171 
    172 }  // namespace internal
    173 
    174 // When an unexpected function call is encountered, Google Mock will
    175 // let it return a default value if the user has specified one for its
    176 // return type, or if the return type has a built-in default value;
    177 // otherwise Google Mock won't know what value to return and will have
    178 // to abort the process.
    179 //
    180 // The DefaultValue<T> class allows a user to specify the
    181 // default value for a type T that is both copyable and publicly
    182 // destructible (i.e. anything that can be used as a function return
    183 // type).  The usage is:
    184 //
    185 //   // Sets the default value for type T to be foo.
    186 //   DefaultValue<T>::Set(foo);
    187 template <typename T>
    188 class DefaultValue {
    189  public:
    190   // Sets the default value for type T; requires T to be
    191   // copy-constructable and have a public destructor.
    192   static void Set(T x) {
    193     delete producer_;
    194     producer_ = new FixedValueProducer(x);
    195   }
    196 
    197   // Provides a factory function to be called to generate the default value.
    198   // This method can be used even if T is only move-constructible, but it is not
    199   // limited to that case.
    200   typedef T (*FactoryFunction)();
    201   static void SetFactory(FactoryFunction factory) {
    202     delete producer_;
    203     producer_ = new FactoryValueProducer(factory);
    204   }
    205 
    206   // Unsets the default value for type T.
    207   static void Clear() {
    208     delete producer_;
    209     producer_ = nullptr;
    210   }
    211 
    212   // Returns true if and only if the user has set the default value for type T.
    213   static bool IsSet() { return producer_ != nullptr; }
    214 
    215   // Returns true if T has a default return value set by the user or there
    216   // exists a built-in default value.
    217   static bool Exists() {
    218     return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
    219   }
    220 
    221   // Returns the default value for type T if the user has set one;
    222   // otherwise returns the built-in default value. Requires that Exists()
    223   // is true, which ensures that the return value is well-defined.
    224   static T Get() {
    225     return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
    226                                 : producer_->Produce();
    227   }
    228 
    229  private:
    230   class ValueProducer {
    231    public:
    232     virtual ~ValueProducer() {}
    233     virtual T Produce() = 0;
    234   };
    235 
    236   class FixedValueProducer : public ValueProducer {
    237    public:
    238     explicit FixedValueProducer(T value) : value_(value) {}
    239     T Produce() override { return value_; }
    240 
    241    private:
    242     const T value_;
    243     GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
    244   };
    245 
    246   class FactoryValueProducer : public ValueProducer {
    247    public:
    248     explicit FactoryValueProducer(FactoryFunction factory)
    249         : factory_(factory) {}
    250     T Produce() override { return factory_(); }
    251 
    252    private:
    253     const FactoryFunction factory_;
    254     GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
    255   };
    256 
    257   static ValueProducer* producer_;
    258 };
    259 
    260 // This partial specialization allows a user to set default values for
    261 // reference types.
    262 template <typename T>
    263 class DefaultValue<T&> {
    264  public:
    265   // Sets the default value for type T&.
    266   static void Set(T& x) {  // NOLINT
    267     address_ = &x;
    268   }
    269 
    270   // Unsets the default value for type T&.
    271   static void Clear() { address_ = nullptr; }
    272 
    273   // Returns true if and only if the user has set the default value for type T&.
    274   static bool IsSet() { return address_ != nullptr; }
    275 
    276   // Returns true if T has a default return value set by the user or there
    277   // exists a built-in default value.
    278   static bool Exists() {
    279     return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
    280   }
    281 
    282   // Returns the default value for type T& if the user has set one;
    283   // otherwise returns the built-in default value if there is one;
    284   // otherwise aborts the process.
    285   static T& Get() {
    286     return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
    287                                : *address_;
    288   }
    289 
    290  private:
    291   static T* address_;
    292 };
    293 
    294 // This specialization allows DefaultValue<void>::Get() to
    295 // compile.
    296 template <>
    297 class DefaultValue<void> {
    298  public:
    299   static bool Exists() { return true; }
    300   static void Get() {}
    301 };
    302 
    303 // Points to the user-set default value for type T.
    304 template <typename T>
    305 typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
    306 
    307 // Points to the user-set default value for type T&.
    308 template <typename T>
    309 T* DefaultValue<T&>::address_ = nullptr;
    310 
    311 // Implement this interface to define an action for function type F.
    312 template <typename F>
    313 class ActionInterface {
    314  public:
    315   typedef typename internal::Function<F>::Result Result;
    316   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
    317 
    318   ActionInterface() {}
    319   virtual ~ActionInterface() {}
    320 
    321   // Performs the action.  This method is not const, as in general an
    322   // action can have side effects and be stateful.  For example, a
    323   // get-the-next-element-from-the-collection action will need to
    324   // remember the current element.
    325   virtual Result Perform(const ArgumentTuple& args) = 0;
    326 
    327  private:
    328   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
    329 };
    330 
    331 // An Action<F> is a copyable and IMMUTABLE (except by assignment)
    332 // object that represents an action to be taken when a mock function
    333 // of type F is called.  The implementation of Action<T> is just a
    334 // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action!
    335 // You can view an object implementing ActionInterface<F> as a
    336 // concrete action (including its current state), and an Action<F>
    337 // object as a handle to it.
    338 template <typename F>
    339 class Action {
    340   // Adapter class to allow constructing Action from a legacy ActionInterface.
    341   // New code should create Actions from functors instead.
    342   struct ActionAdapter {
    343     // Adapter must be copyable to satisfy std::function requirements.
    344     ::std::shared_ptr<ActionInterface<F>> impl_;
    345 
    346     template <typename... Args>
    347     typename internal::Function<F>::Result operator()(Args&&... args) {
    348       return impl_->Perform(
    349           ::std::forward_as_tuple(::std::forward<Args>(args)...));
    350     }
    351   };
    352 
    353  public:
    354   typedef typename internal::Function<F>::Result Result;
    355   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
    356 
    357   // Constructs a null Action.  Needed for storing Action objects in
    358   // STL containers.
    359   Action() {}
    360 
    361   // Construct an Action from a specified callable.
    362   // This cannot take std::function directly, because then Action would not be
    363   // directly constructible from lambda (it would require two conversions).
    364   template <typename G,
    365             typename = typename ::std::enable_if<
    366                 ::std::is_constructible<::std::function<F>, G>::value>::type>
    367   Action(G&& fun) : fun_(::std::forward<G>(fun)) {}  // NOLINT
    368 
    369   // Constructs an Action from its implementation.
    370   explicit Action(ActionInterface<F>* impl)
    371       : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
    372 
    373   // This constructor allows us to turn an Action<Func> object into an
    374   // Action<F>, as long as F's arguments can be implicitly converted
    375   // to Func's and Func's return type can be implicitly converted to F's.
    376   template <typename Func>
    377   explicit Action(const Action<Func>& action) : fun_(action.fun_) {}
    378 
    379   // Returns true if and only if this is the DoDefault() action.
    380   bool IsDoDefault() const { return fun_ == nullptr; }
    381 
    382   // Performs the action.  Note that this method is const even though
    383   // the corresponding method in ActionInterface is not.  The reason
    384   // is that a const Action<F> means that it cannot be re-bound to
    385   // another concrete action, not that the concrete action it binds to
    386   // cannot change state.  (Think of the difference between a const
    387   // pointer and a pointer to const.)
    388   Result Perform(ArgumentTuple args) const {
    389     if (IsDoDefault()) {
    390       internal::IllegalDoDefault(__FILE__, __LINE__);
    391     }
    392     return internal::Apply(fun_, ::std::move(args));
    393   }
    394 
    395  private:
    396   template <typename G>
    397   friend class Action;
    398 
    399   // fun_ is an empty function if and only if this is the DoDefault() action.
    400   ::std::function<F> fun_;
    401 };
    402 
    403 // The PolymorphicAction class template makes it easy to implement a
    404 // polymorphic action (i.e. an action that can be used in mock
    405 // functions of than one type, e.g. Return()).
    406 //
    407 // To define a polymorphic action, a user first provides a COPYABLE
    408 // implementation class that has a Perform() method template:
    409 //
    410 //   class FooAction {
    411 //    public:
    412 //     template <typename Result, typename ArgumentTuple>
    413 //     Result Perform(const ArgumentTuple& args) const {
    414 //       // Processes the arguments and returns a result, using
    415 //       // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
    416 //     }
    417 //     ...
    418 //   };
    419 //
    420 // Then the user creates the polymorphic action using
    421 // MakePolymorphicAction(object) where object has type FooAction.  See
    422 // the definition of Return(void) and SetArgumentPointee<N>(value) for
    423 // complete examples.
    424 template <typename Impl>
    425 class PolymorphicAction {
    426  public:
    427   explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
    428 
    429   template <typename F>
    430   operator Action<F>() const {
    431     return Action<F>(new MonomorphicImpl<F>(impl_));
    432   }
    433 
    434  private:
    435   template <typename F>
    436   class MonomorphicImpl : public ActionInterface<F> {
    437    public:
    438     typedef typename internal::Function<F>::Result Result;
    439     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
    440 
    441     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
    442 
    443     Result Perform(const ArgumentTuple& args) override {
    444       return impl_.template Perform<Result>(args);
    445     }
    446 
    447    private:
    448     Impl impl_;
    449 
    450     GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
    451   };
    452 
    453   Impl impl_;
    454 
    455   GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
    456 };
    457 
    458 // Creates an Action from its implementation and returns it.  The
    459 // created Action object owns the implementation.
    460 template <typename F>
    461 Action<F> MakeAction(ActionInterface<F>* impl) {
    462   return Action<F>(impl);
    463 }
    464 
    465 // Creates a polymorphic action from its implementation.  This is
    466 // easier to use than the PolymorphicAction<Impl> constructor as it
    467 // doesn't require you to explicitly write the template argument, e.g.
    468 //
    469 //   MakePolymorphicAction(foo);
    470 // vs
    471 //   PolymorphicAction<TypeOfFoo>(foo);
    472 template <typename Impl>
    473 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
    474   return PolymorphicAction<Impl>(impl);
    475 }
    476 
    477 namespace internal {
    478 
    479 // Helper struct to specialize ReturnAction to execute a move instead of a copy
    480 // on return. Useful for move-only types, but could be used on any type.
    481 template <typename T>
    482 struct ByMoveWrapper {
    483   explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
    484   T payload;
    485 };
    486 
    487 // Implements the polymorphic Return(x) action, which can be used in
    488 // any function that returns the type of x, regardless of the argument
    489 // types.
    490 //
    491 // Note: The value passed into Return must be converted into
    492 // Function<F>::Result when this action is cast to Action<F> rather than
    493 // when that action is performed. This is important in scenarios like
    494 //
    495 // MOCK_METHOD1(Method, T(U));
    496 // ...
    497 // {
    498 //   Foo foo;
    499 //   X x(&foo);
    500 //   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
    501 // }
    502 //
    503 // In the example above the variable x holds reference to foo which leaves
    504 // scope and gets destroyed.  If copying X just copies a reference to foo,
    505 // that copy will be left with a hanging reference.  If conversion to T
    506 // makes a copy of foo, the above code is safe. To support that scenario, we
    507 // need to make sure that the type conversion happens inside the EXPECT_CALL
    508 // statement, and conversion of the result of Return to Action<T(U)> is a
    509 // good place for that.
    510 //
    511 // The real life example of the above scenario happens when an invocation
    512 // of gtl::Container() is passed into Return.
    513 //
    514 template <typename R>
    515 class ReturnAction {
    516  public:
    517   // Constructs a ReturnAction object from the value to be returned.
    518   // 'value' is passed by value instead of by const reference in order
    519   // to allow Return("string literal") to compile.
    520   explicit ReturnAction(R value) : value_(new R(std::move(value))) {}
    521 
    522   // This template type conversion operator allows Return(x) to be
    523   // used in ANY function that returns x's type.
    524   template <typename F>
    525   operator Action<F>() const {  // NOLINT
    526     // Assert statement belongs here because this is the best place to verify
    527     // conditions on F. It produces the clearest error messages
    528     // in most compilers.
    529     // Impl really belongs in this scope as a local class but can't
    530     // because MSVC produces duplicate symbols in different translation units
    531     // in this case. Until MS fixes that bug we put Impl into the class scope
    532     // and put the typedef both here (for use in assert statement) and
    533     // in the Impl class. But both definitions must be the same.
    534     typedef typename Function<F>::Result Result;
    535     GTEST_COMPILE_ASSERT_(
    536         !std::is_reference<Result>::value,
    537         use_ReturnRef_instead_of_Return_to_return_a_reference);
    538     static_assert(!std::is_void<Result>::value,
    539                   "Can't use Return() on an action expected to return `void`.");
    540     return Action<F>(new Impl<R, F>(value_));
    541   }
    542 
    543  private:
    544   // Implements the Return(x) action for a particular function type F.
    545   template <typename R_, typename F>
    546   class Impl : public ActionInterface<F> {
    547    public:
    548     typedef typename Function<F>::Result Result;
    549     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
    550 
    551     // The implicit cast is necessary when Result has more than one
    552     // single-argument constructor (e.g. Result is std::vector<int>) and R
    553     // has a type conversion operator template.  In that case, value_(value)
    554     // won't compile as the compiler doesn't known which constructor of
    555     // Result to call.  ImplicitCast_ forces the compiler to convert R to
    556     // Result without considering explicit constructors, thus resolving the
    557     // ambiguity. value_ is then initialized using its copy constructor.
    558     explicit Impl(const std::shared_ptr<R>& value)
    559         : value_before_cast_(*value),
    560           value_(ImplicitCast_<Result>(value_before_cast_)) {}
    561 
    562     Result Perform(const ArgumentTuple&) override { return value_; }
    563 
    564    private:
    565     GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value,
    566                           Result_cannot_be_a_reference_type);
    567     // We save the value before casting just in case it is being cast to a
    568     // wrapper type.
    569     R value_before_cast_;
    570     Result value_;
    571 
    572     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
    573   };
    574 
    575   // Partially specialize for ByMoveWrapper. This version of ReturnAction will
    576   // move its contents instead.
    577   template <typename R_, typename F>
    578   class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
    579    public:
    580     typedef typename Function<F>::Result Result;
    581     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
    582 
    583     explicit Impl(const std::shared_ptr<R>& wrapper)
    584         : performed_(false), wrapper_(wrapper) {}
    585 
    586     Result Perform(const ArgumentTuple&) override {
    587       GTEST_CHECK_(!performed_)
    588           << "A ByMove() action should only be performed once.";
    589       performed_ = true;
    590       return std::move(wrapper_->payload);
    591     }
    592 
    593    private:
    594     bool performed_;
    595     const std::shared_ptr<R> wrapper_;
    596 
    597     GTEST_DISALLOW_ASSIGN_(Impl);
    598   };
    599 
    600   const std::shared_ptr<R> value_;
    601 
    602   GTEST_DISALLOW_ASSIGN_(ReturnAction);
    603 };
    604 
    605 // Implements the ReturnNull() action.
    606 class ReturnNullAction {
    607  public:
    608   // Allows ReturnNull() to be used in any pointer-returning function. In C++11
    609   // this is enforced by returning nullptr, and in non-C++11 by asserting a
    610   // pointer type on compile time.
    611   template <typename Result, typename ArgumentTuple>
    612   static Result Perform(const ArgumentTuple&) {
    613     return nullptr;
    614   }
    615 };
    616 
    617 // Implements the Return() action.
    618 class ReturnVoidAction {
    619  public:
    620   // Allows Return() to be used in any void-returning function.
    621   template <typename Result, typename ArgumentTuple>
    622   static void Perform(const ArgumentTuple&) {
    623     static_assert(std::is_void<Result>::value, "Result should be void.");
    624   }
    625 };
    626 
    627 // Implements the polymorphic ReturnRef(x) action, which can be used
    628 // in any function that returns a reference to the type of x,
    629 // regardless of the argument types.
    630 template <typename T>
    631 class ReturnRefAction {
    632  public:
    633   // Constructs a ReturnRefAction object from the reference to be returned.
    634   explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
    635 
    636   // This template type conversion operator allows ReturnRef(x) to be
    637   // used in ANY function that returns a reference to x's type.
    638   template <typename F>
    639   operator Action<F>() const {
    640     typedef typename Function<F>::Result Result;
    641     // Asserts that the function return type is a reference.  This
    642     // catches the user error of using ReturnRef(x) when Return(x)
    643     // should be used, and generates some helpful error message.
    644     GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value,
    645                           use_Return_instead_of_ReturnRef_to_return_a_value);
    646     return Action<F>(new Impl<F>(ref_));
    647   }
    648 
    649  private:
    650   // Implements the ReturnRef(x) action for a particular function type F.
    651   template <typename F>
    652   class Impl : public ActionInterface<F> {
    653    public:
    654     typedef typename Function<F>::Result Result;
    655     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
    656 
    657     explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
    658 
    659     Result Perform(const ArgumentTuple&) override { return ref_; }
    660 
    661    private:
    662     T& ref_;
    663 
    664     GTEST_DISALLOW_ASSIGN_(Impl);
    665   };
    666 
    667   T& ref_;
    668 
    669   GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
    670 };
    671 
    672 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
    673 // used in any function that returns a reference to the type of x,
    674 // regardless of the argument types.
    675 template <typename T>
    676 class ReturnRefOfCopyAction {
    677  public:
    678   // Constructs a ReturnRefOfCopyAction object from the reference to
    679   // be returned.
    680   explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
    681 
    682   // This template type conversion operator allows ReturnRefOfCopy(x) to be
    683   // used in ANY function that returns a reference to x's type.
    684   template <typename F>
    685   operator Action<F>() const {
    686     typedef typename Function<F>::Result Result;
    687     // Asserts that the function return type is a reference.  This
    688     // catches the user error of using ReturnRefOfCopy(x) when Return(x)
    689     // should be used, and generates some helpful error message.
    690     GTEST_COMPILE_ASSERT_(
    691         std::is_reference<Result>::value,
    692         use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
    693     return Action<F>(new Impl<F>(value_));
    694   }
    695 
    696  private:
    697   // Implements the ReturnRefOfCopy(x) action for a particular function type F.
    698   template <typename F>
    699   class Impl : public ActionInterface<F> {
    700    public:
    701     typedef typename Function<F>::Result Result;
    702     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
    703 
    704     explicit Impl(const T& value) : value_(value) {}  // NOLINT
    705 
    706     Result Perform(const ArgumentTuple&) override { return value_; }
    707 
    708    private:
    709     T value_;
    710 
    711     GTEST_DISALLOW_ASSIGN_(Impl);
    712   };
    713 
    714   const T value_;
    715 
    716   GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
    717 };
    718 
    719 // Implements the polymorphic DoDefault() action.
    720 class DoDefaultAction {
    721  public:
    722   // This template type conversion operator allows DoDefault() to be
    723   // used in any function.
    724   template <typename F>
    725   operator Action<F>() const { return Action<F>(); }  // NOLINT
    726 };
    727 
    728 // Implements the Assign action to set a given pointer referent to a
    729 // particular value.
    730 template <typename T1, typename T2>
    731 class AssignAction {
    732  public:
    733   AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
    734 
    735   template <typename Result, typename ArgumentTuple>
    736   void Perform(const ArgumentTuple& /* args */) const {
    737     *ptr_ = value_;
    738   }
    739 
    740  private:
    741   T1* const ptr_;
    742   const T2 value_;
    743 
    744   GTEST_DISALLOW_ASSIGN_(AssignAction);
    745 };
    746 
    747 #if !GTEST_OS_WINDOWS_MOBILE
    748 
    749 // Implements the SetErrnoAndReturn action to simulate return from
    750 // various system calls and libc functions.
    751 template <typename T>
    752 class SetErrnoAndReturnAction {
    753  public:
    754   SetErrnoAndReturnAction(int errno_value, T result)
    755       : errno_(errno_value),
    756         result_(result) {}
    757   template <typename Result, typename ArgumentTuple>
    758   Result Perform(const ArgumentTuple& /* args */) const {
    759     errno = errno_;
    760     return result_;
    761   }
    762 
    763  private:
    764   const int errno_;
    765   const T result_;
    766 
    767   GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
    768 };
    769 
    770 #endif  // !GTEST_OS_WINDOWS_MOBILE
    771 
    772 // Implements the SetArgumentPointee<N>(x) action for any function
    773 // whose N-th argument (0-based) is a pointer to x's type.
    774 template <size_t N, typename A, typename = void>
    775 struct SetArgumentPointeeAction {
    776   A value;
    777 
    778   template <typename... Args>
    779   void operator()(const Args&... args) const {
    780     *::std::get<N>(std::tie(args...)) = value;
    781   }
    782 };
    783 
    784 // Implements the Invoke(object_ptr, &Class::Method) action.
    785 template <class Class, typename MethodPtr>
    786 struct InvokeMethodAction {
    787   Class* const obj_ptr;
    788   const MethodPtr method_ptr;
    789 
    790   template <typename... Args>
    791   auto operator()(Args&&... args) const
    792       -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
    793     return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
    794   }
    795 };
    796 
    797 // Implements the InvokeWithoutArgs(f) action.  The template argument
    798 // FunctionImpl is the implementation type of f, which can be either a
    799 // function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
    800 // Action<F> as long as f's type is compatible with F.
    801 template <typename FunctionImpl>
    802 struct InvokeWithoutArgsAction {
    803   FunctionImpl function_impl;
    804 
    805   // Allows InvokeWithoutArgs(f) to be used as any action whose type is
    806   // compatible with f.
    807   template <typename... Args>
    808   auto operator()(const Args&...) -> decltype(function_impl()) {
    809     return function_impl();
    810   }
    811 };
    812 
    813 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
    814 template <class Class, typename MethodPtr>
    815 struct InvokeMethodWithoutArgsAction {
    816   Class* const obj_ptr;
    817   const MethodPtr method_ptr;
    818 
    819   using ReturnType = typename std::result_of<MethodPtr(Class*)>::type;
    820 
    821   template <typename... Args>
    822   ReturnType operator()(const Args&...) const {
    823     return (obj_ptr->*method_ptr)();
    824   }
    825 };
    826 
    827 // Implements the IgnoreResult(action) action.
    828 template <typename A>
    829 class IgnoreResultAction {
    830  public:
    831   explicit IgnoreResultAction(const A& action) : action_(action) {}
    832 
    833   template <typename F>
    834   operator Action<F>() const {
    835     // Assert statement belongs here because this is the best place to verify
    836     // conditions on F. It produces the clearest error messages
    837     // in most compilers.
    838     // Impl really belongs in this scope as a local class but can't
    839     // because MSVC produces duplicate symbols in different translation units
    840     // in this case. Until MS fixes that bug we put Impl into the class scope
    841     // and put the typedef both here (for use in assert statement) and
    842     // in the Impl class. But both definitions must be the same.
    843     typedef typename internal::Function<F>::Result Result;
    844 
    845     // Asserts at compile time that F returns void.
    846     static_assert(std::is_void<Result>::value, "Result type should be void.");
    847 
    848     return Action<F>(new Impl<F>(action_));
    849   }
    850 
    851  private:
    852   template <typename F>
    853   class Impl : public ActionInterface<F> {
    854    public:
    855     typedef typename internal::Function<F>::Result Result;
    856     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
    857 
    858     explicit Impl(const A& action) : action_(action) {}
    859 
    860     void Perform(const ArgumentTuple& args) override {
    861       // Performs the action and ignores its result.
    862       action_.Perform(args);
    863     }
    864 
    865    private:
    866     // Type OriginalFunction is the same as F except that its return
    867     // type is IgnoredValue.
    868     typedef typename internal::Function<F>::MakeResultIgnoredValue
    869         OriginalFunction;
    870 
    871     const Action<OriginalFunction> action_;
    872 
    873     GTEST_DISALLOW_ASSIGN_(Impl);
    874   };
    875 
    876   const A action_;
    877 
    878   GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
    879 };
    880 
    881 template <typename InnerAction, size_t... I>
    882 struct WithArgsAction {
    883   InnerAction action;
    884 
    885   // The inner action could be anything convertible to Action<X>.
    886   // We use the conversion operator to detect the signature of the inner Action.
    887   template <typename R, typename... Args>
    888   operator Action<R(Args...)>() const {  // NOLINT
    889     Action<R(typename std::tuple_element<I, std::tuple<Args...>>::type...)>
    890         converted(action);
    891 
    892     return [converted](Args... args) -> R {
    893       return converted.Perform(std::forward_as_tuple(
    894         std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
    895     };
    896   }
    897 };
    898 
    899 template <typename... Actions>
    900 struct DoAllAction {
    901  private:
    902   template <typename... Args, size_t... I>
    903   std::vector<Action<void(Args...)>> Convert(IndexSequence<I...>) const {
    904     return {std::get<I>(actions)...};
    905   }
    906 
    907  public:
    908   std::tuple<Actions...> actions;
    909 
    910   template <typename R, typename... Args>
    911   operator Action<R(Args...)>() const {  // NOLINT
    912     struct Op {
    913       std::vector<Action<void(Args...)>> converted;
    914       Action<R(Args...)> last;
    915       R operator()(Args... args) const {
    916         auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...);
    917         for (auto& a : converted) {
    918           a.Perform(tuple_args);
    919         }
    920         return last.Perform(tuple_args);
    921       }
    922     };
    923     return Op{Convert<Args...>(MakeIndexSequence<sizeof...(Actions) - 1>()),
    924               std::get<sizeof...(Actions) - 1>(actions)};
    925   }
    926 };
    927 
    928 }  // namespace internal
    929 
    930 // An Unused object can be implicitly constructed from ANY value.
    931 // This is handy when defining actions that ignore some or all of the
    932 // mock function arguments.  For example, given
    933 //
    934 //   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
    935 //   MOCK_METHOD3(Bar, double(int index, double x, double y));
    936 //
    937 // instead of
    938 //
    939 //   double DistanceToOriginWithLabel(const string& label, double x, double y) {
    940 //     return sqrt(x*x + y*y);
    941 //   }
    942 //   double DistanceToOriginWithIndex(int index, double x, double y) {
    943 //     return sqrt(x*x + y*y);
    944 //   }
    945 //   ...
    946 //   EXPECT_CALL(mock, Foo("abc", _, _))
    947 //       .WillOnce(Invoke(DistanceToOriginWithLabel));
    948 //   EXPECT_CALL(mock, Bar(5, _, _))
    949 //       .WillOnce(Invoke(DistanceToOriginWithIndex));
    950 //
    951 // you could write
    952 //
    953 //   // We can declare any uninteresting argument as Unused.
    954 //   double DistanceToOrigin(Unused, double x, double y) {
    955 //     return sqrt(x*x + y*y);
    956 //   }
    957 //   ...
    958 //   EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
    959 //   EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
    960 typedef internal::IgnoredValue Unused;
    961 
    962 // Creates an action that does actions a1, a2, ..., sequentially in
    963 // each invocation.
    964 template <typename... Action>
    965 internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
    966     Action&&... action) {
    967   return {std::forward_as_tuple(std::forward<Action>(action)...)};
    968 }
    969 
    970 // WithArg<k>(an_action) creates an action that passes the k-th
    971 // (0-based) argument of the mock function to an_action and performs
    972 // it.  It adapts an action accepting one argument to one that accepts
    973 // multiple arguments.  For convenience, we also provide
    974 // WithArgs<k>(an_action) (defined below) as a synonym.
    975 template <size_t k, typename InnerAction>
    976 internal::WithArgsAction<typename std::decay<InnerAction>::type, k>
    977 WithArg(InnerAction&& action) {
    978   return {std::forward<InnerAction>(action)};
    979 }
    980 
    981 // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
    982 // the selected arguments of the mock function to an_action and
    983 // performs it.  It serves as an adaptor between actions with
    984 // different argument lists.
    985 template <size_t k, size_t... ks, typename InnerAction>
    986 internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
    987 WithArgs(InnerAction&& action) {
    988   return {std::forward<InnerAction>(action)};
    989 }
    990 
    991 // WithoutArgs(inner_action) can be used in a mock function with a
    992 // non-empty argument list to perform inner_action, which takes no
    993 // argument.  In other words, it adapts an action accepting no
    994 // argument to one that accepts (and ignores) arguments.
    995 template <typename InnerAction>
    996 internal::WithArgsAction<typename std::decay<InnerAction>::type>
    997 WithoutArgs(InnerAction&& action) {
    998   return {std::forward<InnerAction>(action)};
    999 }
   1000 
   1001 // Creates an action that returns 'value'.  'value' is passed by value
   1002 // instead of const reference - otherwise Return("string literal")
   1003 // will trigger a compiler error about using array as initializer.
   1004 template <typename R>
   1005 internal::ReturnAction<R> Return(R value) {
   1006   return internal::ReturnAction<R>(std::move(value));
   1007 }
   1008 
   1009 // Creates an action that returns NULL.
   1010 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
   1011   return MakePolymorphicAction(internal::ReturnNullAction());
   1012 }
   1013 
   1014 // Creates an action that returns from a void function.
   1015 inline PolymorphicAction<internal::ReturnVoidAction> Return() {
   1016   return MakePolymorphicAction(internal::ReturnVoidAction());
   1017 }
   1018 
   1019 // Creates an action that returns the reference to a variable.
   1020 template <typename R>
   1021 inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
   1022   return internal::ReturnRefAction<R>(x);
   1023 }
   1024 
   1025 // Creates an action that returns the reference to a copy of the
   1026 // argument.  The copy is created when the action is constructed and
   1027 // lives as long as the action.
   1028 template <typename R>
   1029 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
   1030   return internal::ReturnRefOfCopyAction<R>(x);
   1031 }
   1032 
   1033 // Modifies the parent action (a Return() action) to perform a move of the
   1034 // argument instead of a copy.
   1035 // Return(ByMove()) actions can only be executed once and will assert this
   1036 // invariant.
   1037 template <typename R>
   1038 internal::ByMoveWrapper<R> ByMove(R x) {
   1039   return internal::ByMoveWrapper<R>(std::move(x));
   1040 }
   1041 
   1042 // Creates an action that does the default action for the give mock function.
   1043 inline internal::DoDefaultAction DoDefault() {
   1044   return internal::DoDefaultAction();
   1045 }
   1046 
   1047 // Creates an action that sets the variable pointed by the N-th
   1048 // (0-based) function argument to 'value'.
   1049 template <size_t N, typename T>
   1050 internal::SetArgumentPointeeAction<N, T> SetArgPointee(T x) {
   1051   return {std::move(x)};
   1052 }
   1053 
   1054 // The following version is DEPRECATED.
   1055 template <size_t N, typename T>
   1056 internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T x) {
   1057   return {std::move(x)};
   1058 }
   1059 
   1060 // Creates an action that sets a pointer referent to a given value.
   1061 template <typename T1, typename T2>
   1062 PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
   1063   return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
   1064 }
   1065 
   1066 #if !GTEST_OS_WINDOWS_MOBILE
   1067 
   1068 // Creates an action that sets errno and returns the appropriate error.
   1069 template <typename T>
   1070 PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
   1071 SetErrnoAndReturn(int errval, T result) {
   1072   return MakePolymorphicAction(
   1073       internal::SetErrnoAndReturnAction<T>(errval, result));
   1074 }
   1075 
   1076 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1077 
   1078 // Various overloads for Invoke().
   1079 
   1080 // Legacy function.
   1081 // Actions can now be implicitly constructed from callables. No need to create
   1082 // wrapper objects.
   1083 // This function exists for backwards compatibility.
   1084 template <typename FunctionImpl>
   1085 typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
   1086   return std::forward<FunctionImpl>(function_impl);
   1087 }
   1088 
   1089 // Creates an action that invokes the given method on the given object
   1090 // with the mock function's arguments.
   1091 template <class Class, typename MethodPtr>
   1092 internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
   1093                                                       MethodPtr method_ptr) {
   1094   return {obj_ptr, method_ptr};
   1095 }
   1096 
   1097 // Creates an action that invokes 'function_impl' with no argument.
   1098 template <typename FunctionImpl>
   1099 internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
   1100 InvokeWithoutArgs(FunctionImpl function_impl) {
   1101   return {std::move(function_impl)};
   1102 }
   1103 
   1104 // Creates an action that invokes the given method on the given object
   1105 // with no argument.
   1106 template <class Class, typename MethodPtr>
   1107 internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
   1108     Class* obj_ptr, MethodPtr method_ptr) {
   1109   return {obj_ptr, method_ptr};
   1110 }
   1111 
   1112 // Creates an action that performs an_action and throws away its
   1113 // result.  In other words, it changes the return type of an_action to
   1114 // void.  an_action MUST NOT return void, or the code won't compile.
   1115 template <typename A>
   1116 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
   1117   return internal::IgnoreResultAction<A>(an_action);
   1118 }
   1119 
   1120 // Creates a reference wrapper for the given L-value.  If necessary,
   1121 // you can explicitly specify the type of the reference.  For example,
   1122 // suppose 'derived' is an object of type Derived, ByRef(derived)
   1123 // would wrap a Derived&.  If you want to wrap a const Base& instead,
   1124 // where Base is a base class of Derived, just write:
   1125 //
   1126 //   ByRef<const Base>(derived)
   1127 //
   1128 // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
   1129 // However, it may still be used for consistency with ByMove().
   1130 template <typename T>
   1131 inline ::std::reference_wrapper<T> ByRef(T& l_value) {  // NOLINT
   1132   return ::std::reference_wrapper<T>(l_value);
   1133 }
   1134 
   1135 }  // namespace testing
   1136 
   1137 #ifdef _MSC_VER
   1138 # pragma warning(pop)
   1139 #endif
   1140 
   1141 
   1142 #endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_