gmock-actions.h (39706B)
1 // Copyright 2007, Google Inc. 2 // All rights reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // * Redistributions of source code must retain the above copyright 9 // notice, this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above 11 // copyright notice, this list of conditions and the following disclaimer 12 // in the documentation and/or other materials provided with the 13 // distribution. 14 // * Neither the name of Google Inc. nor the names of its 15 // contributors may be used to endorse or promote products derived from 16 // this software without specific prior written permission. 17 // 18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 30 31 // Google Mock - a framework for writing C++ mock classes. 32 // 33 // This file implements some commonly used actions. 34 35 // GOOGLETEST_CM0002 DO NOT DELETE 36 37 #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ 38 #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ 39 40 #ifndef _WIN32_WCE 41 # include <errno.h> 42 #endif 43 44 #include <algorithm> 45 #include <functional> 46 #include <memory> 47 #include <string> 48 #include <type_traits> 49 #include <utility> 50 51 #include "gmock/internal/gmock-internal-utils.h" 52 #include "gmock/internal/gmock-port.h" 53 54 #ifdef _MSC_VER 55 # pragma warning(push) 56 # pragma warning(disable:4100) 57 #endif 58 59 namespace testing { 60 61 // To implement an action Foo, define: 62 // 1. a class FooAction that implements the ActionInterface interface, and 63 // 2. a factory function that creates an Action object from a 64 // const FooAction*. 65 // 66 // The two-level delegation design follows that of Matcher, providing 67 // consistency for extension developers. It also eases ownership 68 // management as Action objects can now be copied like plain values. 69 70 namespace internal { 71 72 // BuiltInDefaultValueGetter<T, true>::Get() returns a 73 // default-constructed T value. BuiltInDefaultValueGetter<T, 74 // false>::Get() crashes with an error. 75 // 76 // This primary template is used when kDefaultConstructible is true. 77 template <typename T, bool kDefaultConstructible> 78 struct BuiltInDefaultValueGetter { 79 static T Get() { return T(); } 80 }; 81 template <typename T> 82 struct BuiltInDefaultValueGetter<T, false> { 83 static T Get() { 84 Assert(false, __FILE__, __LINE__, 85 "Default action undefined for the function return type."); 86 return internal::Invalid<T>(); 87 // The above statement will never be reached, but is required in 88 // order for this function to compile. 89 } 90 }; 91 92 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value 93 // for type T, which is NULL when T is a raw pointer type, 0 when T is 94 // a numeric type, false when T is bool, or "" when T is string or 95 // std::string. In addition, in C++11 and above, it turns a 96 // default-constructed T value if T is default constructible. For any 97 // other type T, the built-in default T value is undefined, and the 98 // function will abort the process. 99 template <typename T> 100 class BuiltInDefaultValue { 101 public: 102 // This function returns true if and only if type T has a built-in default 103 // value. 104 static bool Exists() { 105 return ::std::is_default_constructible<T>::value; 106 } 107 108 static T Get() { 109 return BuiltInDefaultValueGetter< 110 T, ::std::is_default_constructible<T>::value>::Get(); 111 } 112 }; 113 114 // This partial specialization says that we use the same built-in 115 // default value for T and const T. 116 template <typename T> 117 class BuiltInDefaultValue<const T> { 118 public: 119 static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } 120 static T Get() { return BuiltInDefaultValue<T>::Get(); } 121 }; 122 123 // This partial specialization defines the default values for pointer 124 // types. 125 template <typename T> 126 class BuiltInDefaultValue<T*> { 127 public: 128 static bool Exists() { return true; } 129 static T* Get() { return nullptr; } 130 }; 131 132 // The following specializations define the default values for 133 // specific types we care about. 134 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ 135 template <> \ 136 class BuiltInDefaultValue<type> { \ 137 public: \ 138 static bool Exists() { return true; } \ 139 static type Get() { return value; } \ 140 } 141 142 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT 143 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); 144 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); 145 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); 146 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); 147 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); 148 149 // There's no need for a default action for signed wchar_t, as that 150 // type is the same as wchar_t for gcc, and invalid for MSVC. 151 // 152 // There's also no need for a default action for unsigned wchar_t, as 153 // that type is the same as unsigned int for gcc, and invalid for 154 // MSVC. 155 #if GMOCK_WCHAR_T_IS_NATIVE_ 156 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT 157 #endif 158 159 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT 160 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT 161 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); 162 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); 163 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT 164 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT 165 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0); 166 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0); 167 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); 168 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); 169 170 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ 171 172 } // namespace internal 173 174 // When an unexpected function call is encountered, Google Mock will 175 // let it return a default value if the user has specified one for its 176 // return type, or if the return type has a built-in default value; 177 // otherwise Google Mock won't know what value to return and will have 178 // to abort the process. 179 // 180 // The DefaultValue<T> class allows a user to specify the 181 // default value for a type T that is both copyable and publicly 182 // destructible (i.e. anything that can be used as a function return 183 // type). The usage is: 184 // 185 // // Sets the default value for type T to be foo. 186 // DefaultValue<T>::Set(foo); 187 template <typename T> 188 class DefaultValue { 189 public: 190 // Sets the default value for type T; requires T to be 191 // copy-constructable and have a public destructor. 192 static void Set(T x) { 193 delete producer_; 194 producer_ = new FixedValueProducer(x); 195 } 196 197 // Provides a factory function to be called to generate the default value. 198 // This method can be used even if T is only move-constructible, but it is not 199 // limited to that case. 200 typedef T (*FactoryFunction)(); 201 static void SetFactory(FactoryFunction factory) { 202 delete producer_; 203 producer_ = new FactoryValueProducer(factory); 204 } 205 206 // Unsets the default value for type T. 207 static void Clear() { 208 delete producer_; 209 producer_ = nullptr; 210 } 211 212 // Returns true if and only if the user has set the default value for type T. 213 static bool IsSet() { return producer_ != nullptr; } 214 215 // Returns true if T has a default return value set by the user or there 216 // exists a built-in default value. 217 static bool Exists() { 218 return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); 219 } 220 221 // Returns the default value for type T if the user has set one; 222 // otherwise returns the built-in default value. Requires that Exists() 223 // is true, which ensures that the return value is well-defined. 224 static T Get() { 225 return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get() 226 : producer_->Produce(); 227 } 228 229 private: 230 class ValueProducer { 231 public: 232 virtual ~ValueProducer() {} 233 virtual T Produce() = 0; 234 }; 235 236 class FixedValueProducer : public ValueProducer { 237 public: 238 explicit FixedValueProducer(T value) : value_(value) {} 239 T Produce() override { return value_; } 240 241 private: 242 const T value_; 243 GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer); 244 }; 245 246 class FactoryValueProducer : public ValueProducer { 247 public: 248 explicit FactoryValueProducer(FactoryFunction factory) 249 : factory_(factory) {} 250 T Produce() override { return factory_(); } 251 252 private: 253 const FactoryFunction factory_; 254 GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer); 255 }; 256 257 static ValueProducer* producer_; 258 }; 259 260 // This partial specialization allows a user to set default values for 261 // reference types. 262 template <typename T> 263 class DefaultValue<T&> { 264 public: 265 // Sets the default value for type T&. 266 static void Set(T& x) { // NOLINT 267 address_ = &x; 268 } 269 270 // Unsets the default value for type T&. 271 static void Clear() { address_ = nullptr; } 272 273 // Returns true if and only if the user has set the default value for type T&. 274 static bool IsSet() { return address_ != nullptr; } 275 276 // Returns true if T has a default return value set by the user or there 277 // exists a built-in default value. 278 static bool Exists() { 279 return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); 280 } 281 282 // Returns the default value for type T& if the user has set one; 283 // otherwise returns the built-in default value if there is one; 284 // otherwise aborts the process. 285 static T& Get() { 286 return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get() 287 : *address_; 288 } 289 290 private: 291 static T* address_; 292 }; 293 294 // This specialization allows DefaultValue<void>::Get() to 295 // compile. 296 template <> 297 class DefaultValue<void> { 298 public: 299 static bool Exists() { return true; } 300 static void Get() {} 301 }; 302 303 // Points to the user-set default value for type T. 304 template <typename T> 305 typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr; 306 307 // Points to the user-set default value for type T&. 308 template <typename T> 309 T* DefaultValue<T&>::address_ = nullptr; 310 311 // Implement this interface to define an action for function type F. 312 template <typename F> 313 class ActionInterface { 314 public: 315 typedef typename internal::Function<F>::Result Result; 316 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 317 318 ActionInterface() {} 319 virtual ~ActionInterface() {} 320 321 // Performs the action. This method is not const, as in general an 322 // action can have side effects and be stateful. For example, a 323 // get-the-next-element-from-the-collection action will need to 324 // remember the current element. 325 virtual Result Perform(const ArgumentTuple& args) = 0; 326 327 private: 328 GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface); 329 }; 330 331 // An Action<F> is a copyable and IMMUTABLE (except by assignment) 332 // object that represents an action to be taken when a mock function 333 // of type F is called. The implementation of Action<T> is just a 334 // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! 335 // You can view an object implementing ActionInterface<F> as a 336 // concrete action (including its current state), and an Action<F> 337 // object as a handle to it. 338 template <typename F> 339 class Action { 340 // Adapter class to allow constructing Action from a legacy ActionInterface. 341 // New code should create Actions from functors instead. 342 struct ActionAdapter { 343 // Adapter must be copyable to satisfy std::function requirements. 344 ::std::shared_ptr<ActionInterface<F>> impl_; 345 346 template <typename... Args> 347 typename internal::Function<F>::Result operator()(Args&&... args) { 348 return impl_->Perform( 349 ::std::forward_as_tuple(::std::forward<Args>(args)...)); 350 } 351 }; 352 353 public: 354 typedef typename internal::Function<F>::Result Result; 355 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 356 357 // Constructs a null Action. Needed for storing Action objects in 358 // STL containers. 359 Action() {} 360 361 // Construct an Action from a specified callable. 362 // This cannot take std::function directly, because then Action would not be 363 // directly constructible from lambda (it would require two conversions). 364 template <typename G, 365 typename = typename ::std::enable_if< 366 ::std::is_constructible<::std::function<F>, G>::value>::type> 367 Action(G&& fun) : fun_(::std::forward<G>(fun)) {} // NOLINT 368 369 // Constructs an Action from its implementation. 370 explicit Action(ActionInterface<F>* impl) 371 : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} 372 373 // This constructor allows us to turn an Action<Func> object into an 374 // Action<F>, as long as F's arguments can be implicitly converted 375 // to Func's and Func's return type can be implicitly converted to F's. 376 template <typename Func> 377 explicit Action(const Action<Func>& action) : fun_(action.fun_) {} 378 379 // Returns true if and only if this is the DoDefault() action. 380 bool IsDoDefault() const { return fun_ == nullptr; } 381 382 // Performs the action. Note that this method is const even though 383 // the corresponding method in ActionInterface is not. The reason 384 // is that a const Action<F> means that it cannot be re-bound to 385 // another concrete action, not that the concrete action it binds to 386 // cannot change state. (Think of the difference between a const 387 // pointer and a pointer to const.) 388 Result Perform(ArgumentTuple args) const { 389 if (IsDoDefault()) { 390 internal::IllegalDoDefault(__FILE__, __LINE__); 391 } 392 return internal::Apply(fun_, ::std::move(args)); 393 } 394 395 private: 396 template <typename G> 397 friend class Action; 398 399 // fun_ is an empty function if and only if this is the DoDefault() action. 400 ::std::function<F> fun_; 401 }; 402 403 // The PolymorphicAction class template makes it easy to implement a 404 // polymorphic action (i.e. an action that can be used in mock 405 // functions of than one type, e.g. Return()). 406 // 407 // To define a polymorphic action, a user first provides a COPYABLE 408 // implementation class that has a Perform() method template: 409 // 410 // class FooAction { 411 // public: 412 // template <typename Result, typename ArgumentTuple> 413 // Result Perform(const ArgumentTuple& args) const { 414 // // Processes the arguments and returns a result, using 415 // // std::get<N>(args) to get the N-th (0-based) argument in the tuple. 416 // } 417 // ... 418 // }; 419 // 420 // Then the user creates the polymorphic action using 421 // MakePolymorphicAction(object) where object has type FooAction. See 422 // the definition of Return(void) and SetArgumentPointee<N>(value) for 423 // complete examples. 424 template <typename Impl> 425 class PolymorphicAction { 426 public: 427 explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} 428 429 template <typename F> 430 operator Action<F>() const { 431 return Action<F>(new MonomorphicImpl<F>(impl_)); 432 } 433 434 private: 435 template <typename F> 436 class MonomorphicImpl : public ActionInterface<F> { 437 public: 438 typedef typename internal::Function<F>::Result Result; 439 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 440 441 explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} 442 443 Result Perform(const ArgumentTuple& args) override { 444 return impl_.template Perform<Result>(args); 445 } 446 447 private: 448 Impl impl_; 449 450 GTEST_DISALLOW_ASSIGN_(MonomorphicImpl); 451 }; 452 453 Impl impl_; 454 455 GTEST_DISALLOW_ASSIGN_(PolymorphicAction); 456 }; 457 458 // Creates an Action from its implementation and returns it. The 459 // created Action object owns the implementation. 460 template <typename F> 461 Action<F> MakeAction(ActionInterface<F>* impl) { 462 return Action<F>(impl); 463 } 464 465 // Creates a polymorphic action from its implementation. This is 466 // easier to use than the PolymorphicAction<Impl> constructor as it 467 // doesn't require you to explicitly write the template argument, e.g. 468 // 469 // MakePolymorphicAction(foo); 470 // vs 471 // PolymorphicAction<TypeOfFoo>(foo); 472 template <typename Impl> 473 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { 474 return PolymorphicAction<Impl>(impl); 475 } 476 477 namespace internal { 478 479 // Helper struct to specialize ReturnAction to execute a move instead of a copy 480 // on return. Useful for move-only types, but could be used on any type. 481 template <typename T> 482 struct ByMoveWrapper { 483 explicit ByMoveWrapper(T value) : payload(std::move(value)) {} 484 T payload; 485 }; 486 487 // Implements the polymorphic Return(x) action, which can be used in 488 // any function that returns the type of x, regardless of the argument 489 // types. 490 // 491 // Note: The value passed into Return must be converted into 492 // Function<F>::Result when this action is cast to Action<F> rather than 493 // when that action is performed. This is important in scenarios like 494 // 495 // MOCK_METHOD1(Method, T(U)); 496 // ... 497 // { 498 // Foo foo; 499 // X x(&foo); 500 // EXPECT_CALL(mock, Method(_)).WillOnce(Return(x)); 501 // } 502 // 503 // In the example above the variable x holds reference to foo which leaves 504 // scope and gets destroyed. If copying X just copies a reference to foo, 505 // that copy will be left with a hanging reference. If conversion to T 506 // makes a copy of foo, the above code is safe. To support that scenario, we 507 // need to make sure that the type conversion happens inside the EXPECT_CALL 508 // statement, and conversion of the result of Return to Action<T(U)> is a 509 // good place for that. 510 // 511 // The real life example of the above scenario happens when an invocation 512 // of gtl::Container() is passed into Return. 513 // 514 template <typename R> 515 class ReturnAction { 516 public: 517 // Constructs a ReturnAction object from the value to be returned. 518 // 'value' is passed by value instead of by const reference in order 519 // to allow Return("string literal") to compile. 520 explicit ReturnAction(R value) : value_(new R(std::move(value))) {} 521 522 // This template type conversion operator allows Return(x) to be 523 // used in ANY function that returns x's type. 524 template <typename F> 525 operator Action<F>() const { // NOLINT 526 // Assert statement belongs here because this is the best place to verify 527 // conditions on F. It produces the clearest error messages 528 // in most compilers. 529 // Impl really belongs in this scope as a local class but can't 530 // because MSVC produces duplicate symbols in different translation units 531 // in this case. Until MS fixes that bug we put Impl into the class scope 532 // and put the typedef both here (for use in assert statement) and 533 // in the Impl class. But both definitions must be the same. 534 typedef typename Function<F>::Result Result; 535 GTEST_COMPILE_ASSERT_( 536 !std::is_reference<Result>::value, 537 use_ReturnRef_instead_of_Return_to_return_a_reference); 538 static_assert(!std::is_void<Result>::value, 539 "Can't use Return() on an action expected to return `void`."); 540 return Action<F>(new Impl<R, F>(value_)); 541 } 542 543 private: 544 // Implements the Return(x) action for a particular function type F. 545 template <typename R_, typename F> 546 class Impl : public ActionInterface<F> { 547 public: 548 typedef typename Function<F>::Result Result; 549 typedef typename Function<F>::ArgumentTuple ArgumentTuple; 550 551 // The implicit cast is necessary when Result has more than one 552 // single-argument constructor (e.g. Result is std::vector<int>) and R 553 // has a type conversion operator template. In that case, value_(value) 554 // won't compile as the compiler doesn't known which constructor of 555 // Result to call. ImplicitCast_ forces the compiler to convert R to 556 // Result without considering explicit constructors, thus resolving the 557 // ambiguity. value_ is then initialized using its copy constructor. 558 explicit Impl(const std::shared_ptr<R>& value) 559 : value_before_cast_(*value), 560 value_(ImplicitCast_<Result>(value_before_cast_)) {} 561 562 Result Perform(const ArgumentTuple&) override { return value_; } 563 564 private: 565 GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value, 566 Result_cannot_be_a_reference_type); 567 // We save the value before casting just in case it is being cast to a 568 // wrapper type. 569 R value_before_cast_; 570 Result value_; 571 572 GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); 573 }; 574 575 // Partially specialize for ByMoveWrapper. This version of ReturnAction will 576 // move its contents instead. 577 template <typename R_, typename F> 578 class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> { 579 public: 580 typedef typename Function<F>::Result Result; 581 typedef typename Function<F>::ArgumentTuple ArgumentTuple; 582 583 explicit Impl(const std::shared_ptr<R>& wrapper) 584 : performed_(false), wrapper_(wrapper) {} 585 586 Result Perform(const ArgumentTuple&) override { 587 GTEST_CHECK_(!performed_) 588 << "A ByMove() action should only be performed once."; 589 performed_ = true; 590 return std::move(wrapper_->payload); 591 } 592 593 private: 594 bool performed_; 595 const std::shared_ptr<R> wrapper_; 596 597 GTEST_DISALLOW_ASSIGN_(Impl); 598 }; 599 600 const std::shared_ptr<R> value_; 601 602 GTEST_DISALLOW_ASSIGN_(ReturnAction); 603 }; 604 605 // Implements the ReturnNull() action. 606 class ReturnNullAction { 607 public: 608 // Allows ReturnNull() to be used in any pointer-returning function. In C++11 609 // this is enforced by returning nullptr, and in non-C++11 by asserting a 610 // pointer type on compile time. 611 template <typename Result, typename ArgumentTuple> 612 static Result Perform(const ArgumentTuple&) { 613 return nullptr; 614 } 615 }; 616 617 // Implements the Return() action. 618 class ReturnVoidAction { 619 public: 620 // Allows Return() to be used in any void-returning function. 621 template <typename Result, typename ArgumentTuple> 622 static void Perform(const ArgumentTuple&) { 623 static_assert(std::is_void<Result>::value, "Result should be void."); 624 } 625 }; 626 627 // Implements the polymorphic ReturnRef(x) action, which can be used 628 // in any function that returns a reference to the type of x, 629 // regardless of the argument types. 630 template <typename T> 631 class ReturnRefAction { 632 public: 633 // Constructs a ReturnRefAction object from the reference to be returned. 634 explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT 635 636 // This template type conversion operator allows ReturnRef(x) to be 637 // used in ANY function that returns a reference to x's type. 638 template <typename F> 639 operator Action<F>() const { 640 typedef typename Function<F>::Result Result; 641 // Asserts that the function return type is a reference. This 642 // catches the user error of using ReturnRef(x) when Return(x) 643 // should be used, and generates some helpful error message. 644 GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value, 645 use_Return_instead_of_ReturnRef_to_return_a_value); 646 return Action<F>(new Impl<F>(ref_)); 647 } 648 649 private: 650 // Implements the ReturnRef(x) action for a particular function type F. 651 template <typename F> 652 class Impl : public ActionInterface<F> { 653 public: 654 typedef typename Function<F>::Result Result; 655 typedef typename Function<F>::ArgumentTuple ArgumentTuple; 656 657 explicit Impl(T& ref) : ref_(ref) {} // NOLINT 658 659 Result Perform(const ArgumentTuple&) override { return ref_; } 660 661 private: 662 T& ref_; 663 664 GTEST_DISALLOW_ASSIGN_(Impl); 665 }; 666 667 T& ref_; 668 669 GTEST_DISALLOW_ASSIGN_(ReturnRefAction); 670 }; 671 672 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be 673 // used in any function that returns a reference to the type of x, 674 // regardless of the argument types. 675 template <typename T> 676 class ReturnRefOfCopyAction { 677 public: 678 // Constructs a ReturnRefOfCopyAction object from the reference to 679 // be returned. 680 explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT 681 682 // This template type conversion operator allows ReturnRefOfCopy(x) to be 683 // used in ANY function that returns a reference to x's type. 684 template <typename F> 685 operator Action<F>() const { 686 typedef typename Function<F>::Result Result; 687 // Asserts that the function return type is a reference. This 688 // catches the user error of using ReturnRefOfCopy(x) when Return(x) 689 // should be used, and generates some helpful error message. 690 GTEST_COMPILE_ASSERT_( 691 std::is_reference<Result>::value, 692 use_Return_instead_of_ReturnRefOfCopy_to_return_a_value); 693 return Action<F>(new Impl<F>(value_)); 694 } 695 696 private: 697 // Implements the ReturnRefOfCopy(x) action for a particular function type F. 698 template <typename F> 699 class Impl : public ActionInterface<F> { 700 public: 701 typedef typename Function<F>::Result Result; 702 typedef typename Function<F>::ArgumentTuple ArgumentTuple; 703 704 explicit Impl(const T& value) : value_(value) {} // NOLINT 705 706 Result Perform(const ArgumentTuple&) override { return value_; } 707 708 private: 709 T value_; 710 711 GTEST_DISALLOW_ASSIGN_(Impl); 712 }; 713 714 const T value_; 715 716 GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction); 717 }; 718 719 // Implements the polymorphic DoDefault() action. 720 class DoDefaultAction { 721 public: 722 // This template type conversion operator allows DoDefault() to be 723 // used in any function. 724 template <typename F> 725 operator Action<F>() const { return Action<F>(); } // NOLINT 726 }; 727 728 // Implements the Assign action to set a given pointer referent to a 729 // particular value. 730 template <typename T1, typename T2> 731 class AssignAction { 732 public: 733 AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} 734 735 template <typename Result, typename ArgumentTuple> 736 void Perform(const ArgumentTuple& /* args */) const { 737 *ptr_ = value_; 738 } 739 740 private: 741 T1* const ptr_; 742 const T2 value_; 743 744 GTEST_DISALLOW_ASSIGN_(AssignAction); 745 }; 746 747 #if !GTEST_OS_WINDOWS_MOBILE 748 749 // Implements the SetErrnoAndReturn action to simulate return from 750 // various system calls and libc functions. 751 template <typename T> 752 class SetErrnoAndReturnAction { 753 public: 754 SetErrnoAndReturnAction(int errno_value, T result) 755 : errno_(errno_value), 756 result_(result) {} 757 template <typename Result, typename ArgumentTuple> 758 Result Perform(const ArgumentTuple& /* args */) const { 759 errno = errno_; 760 return result_; 761 } 762 763 private: 764 const int errno_; 765 const T result_; 766 767 GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction); 768 }; 769 770 #endif // !GTEST_OS_WINDOWS_MOBILE 771 772 // Implements the SetArgumentPointee<N>(x) action for any function 773 // whose N-th argument (0-based) is a pointer to x's type. 774 template <size_t N, typename A, typename = void> 775 struct SetArgumentPointeeAction { 776 A value; 777 778 template <typename... Args> 779 void operator()(const Args&... args) const { 780 *::std::get<N>(std::tie(args...)) = value; 781 } 782 }; 783 784 // Implements the Invoke(object_ptr, &Class::Method) action. 785 template <class Class, typename MethodPtr> 786 struct InvokeMethodAction { 787 Class* const obj_ptr; 788 const MethodPtr method_ptr; 789 790 template <typename... Args> 791 auto operator()(Args&&... args) const 792 -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) { 793 return (obj_ptr->*method_ptr)(std::forward<Args>(args)...); 794 } 795 }; 796 797 // Implements the InvokeWithoutArgs(f) action. The template argument 798 // FunctionImpl is the implementation type of f, which can be either a 799 // function pointer or a functor. InvokeWithoutArgs(f) can be used as an 800 // Action<F> as long as f's type is compatible with F. 801 template <typename FunctionImpl> 802 struct InvokeWithoutArgsAction { 803 FunctionImpl function_impl; 804 805 // Allows InvokeWithoutArgs(f) to be used as any action whose type is 806 // compatible with f. 807 template <typename... Args> 808 auto operator()(const Args&...) -> decltype(function_impl()) { 809 return function_impl(); 810 } 811 }; 812 813 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. 814 template <class Class, typename MethodPtr> 815 struct InvokeMethodWithoutArgsAction { 816 Class* const obj_ptr; 817 const MethodPtr method_ptr; 818 819 using ReturnType = typename std::result_of<MethodPtr(Class*)>::type; 820 821 template <typename... Args> 822 ReturnType operator()(const Args&...) const { 823 return (obj_ptr->*method_ptr)(); 824 } 825 }; 826 827 // Implements the IgnoreResult(action) action. 828 template <typename A> 829 class IgnoreResultAction { 830 public: 831 explicit IgnoreResultAction(const A& action) : action_(action) {} 832 833 template <typename F> 834 operator Action<F>() const { 835 // Assert statement belongs here because this is the best place to verify 836 // conditions on F. It produces the clearest error messages 837 // in most compilers. 838 // Impl really belongs in this scope as a local class but can't 839 // because MSVC produces duplicate symbols in different translation units 840 // in this case. Until MS fixes that bug we put Impl into the class scope 841 // and put the typedef both here (for use in assert statement) and 842 // in the Impl class. But both definitions must be the same. 843 typedef typename internal::Function<F>::Result Result; 844 845 // Asserts at compile time that F returns void. 846 static_assert(std::is_void<Result>::value, "Result type should be void."); 847 848 return Action<F>(new Impl<F>(action_)); 849 } 850 851 private: 852 template <typename F> 853 class Impl : public ActionInterface<F> { 854 public: 855 typedef typename internal::Function<F>::Result Result; 856 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 857 858 explicit Impl(const A& action) : action_(action) {} 859 860 void Perform(const ArgumentTuple& args) override { 861 // Performs the action and ignores its result. 862 action_.Perform(args); 863 } 864 865 private: 866 // Type OriginalFunction is the same as F except that its return 867 // type is IgnoredValue. 868 typedef typename internal::Function<F>::MakeResultIgnoredValue 869 OriginalFunction; 870 871 const Action<OriginalFunction> action_; 872 873 GTEST_DISALLOW_ASSIGN_(Impl); 874 }; 875 876 const A action_; 877 878 GTEST_DISALLOW_ASSIGN_(IgnoreResultAction); 879 }; 880 881 template <typename InnerAction, size_t... I> 882 struct WithArgsAction { 883 InnerAction action; 884 885 // The inner action could be anything convertible to Action<X>. 886 // We use the conversion operator to detect the signature of the inner Action. 887 template <typename R, typename... Args> 888 operator Action<R(Args...)>() const { // NOLINT 889 Action<R(typename std::tuple_element<I, std::tuple<Args...>>::type...)> 890 converted(action); 891 892 return [converted](Args... args) -> R { 893 return converted.Perform(std::forward_as_tuple( 894 std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); 895 }; 896 } 897 }; 898 899 template <typename... Actions> 900 struct DoAllAction { 901 private: 902 template <typename... Args, size_t... I> 903 std::vector<Action<void(Args...)>> Convert(IndexSequence<I...>) const { 904 return {std::get<I>(actions)...}; 905 } 906 907 public: 908 std::tuple<Actions...> actions; 909 910 template <typename R, typename... Args> 911 operator Action<R(Args...)>() const { // NOLINT 912 struct Op { 913 std::vector<Action<void(Args...)>> converted; 914 Action<R(Args...)> last; 915 R operator()(Args... args) const { 916 auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...); 917 for (auto& a : converted) { 918 a.Perform(tuple_args); 919 } 920 return last.Perform(tuple_args); 921 } 922 }; 923 return Op{Convert<Args...>(MakeIndexSequence<sizeof...(Actions) - 1>()), 924 std::get<sizeof...(Actions) - 1>(actions)}; 925 } 926 }; 927 928 } // namespace internal 929 930 // An Unused object can be implicitly constructed from ANY value. 931 // This is handy when defining actions that ignore some or all of the 932 // mock function arguments. For example, given 933 // 934 // MOCK_METHOD3(Foo, double(const string& label, double x, double y)); 935 // MOCK_METHOD3(Bar, double(int index, double x, double y)); 936 // 937 // instead of 938 // 939 // double DistanceToOriginWithLabel(const string& label, double x, double y) { 940 // return sqrt(x*x + y*y); 941 // } 942 // double DistanceToOriginWithIndex(int index, double x, double y) { 943 // return sqrt(x*x + y*y); 944 // } 945 // ... 946 // EXPECT_CALL(mock, Foo("abc", _, _)) 947 // .WillOnce(Invoke(DistanceToOriginWithLabel)); 948 // EXPECT_CALL(mock, Bar(5, _, _)) 949 // .WillOnce(Invoke(DistanceToOriginWithIndex)); 950 // 951 // you could write 952 // 953 // // We can declare any uninteresting argument as Unused. 954 // double DistanceToOrigin(Unused, double x, double y) { 955 // return sqrt(x*x + y*y); 956 // } 957 // ... 958 // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); 959 // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); 960 typedef internal::IgnoredValue Unused; 961 962 // Creates an action that does actions a1, a2, ..., sequentially in 963 // each invocation. 964 template <typename... Action> 965 internal::DoAllAction<typename std::decay<Action>::type...> DoAll( 966 Action&&... action) { 967 return {std::forward_as_tuple(std::forward<Action>(action)...)}; 968 } 969 970 // WithArg<k>(an_action) creates an action that passes the k-th 971 // (0-based) argument of the mock function to an_action and performs 972 // it. It adapts an action accepting one argument to one that accepts 973 // multiple arguments. For convenience, we also provide 974 // WithArgs<k>(an_action) (defined below) as a synonym. 975 template <size_t k, typename InnerAction> 976 internal::WithArgsAction<typename std::decay<InnerAction>::type, k> 977 WithArg(InnerAction&& action) { 978 return {std::forward<InnerAction>(action)}; 979 } 980 981 // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes 982 // the selected arguments of the mock function to an_action and 983 // performs it. It serves as an adaptor between actions with 984 // different argument lists. 985 template <size_t k, size_t... ks, typename InnerAction> 986 internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> 987 WithArgs(InnerAction&& action) { 988 return {std::forward<InnerAction>(action)}; 989 } 990 991 // WithoutArgs(inner_action) can be used in a mock function with a 992 // non-empty argument list to perform inner_action, which takes no 993 // argument. In other words, it adapts an action accepting no 994 // argument to one that accepts (and ignores) arguments. 995 template <typename InnerAction> 996 internal::WithArgsAction<typename std::decay<InnerAction>::type> 997 WithoutArgs(InnerAction&& action) { 998 return {std::forward<InnerAction>(action)}; 999 } 1000 1001 // Creates an action that returns 'value'. 'value' is passed by value 1002 // instead of const reference - otherwise Return("string literal") 1003 // will trigger a compiler error about using array as initializer. 1004 template <typename R> 1005 internal::ReturnAction<R> Return(R value) { 1006 return internal::ReturnAction<R>(std::move(value)); 1007 } 1008 1009 // Creates an action that returns NULL. 1010 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { 1011 return MakePolymorphicAction(internal::ReturnNullAction()); 1012 } 1013 1014 // Creates an action that returns from a void function. 1015 inline PolymorphicAction<internal::ReturnVoidAction> Return() { 1016 return MakePolymorphicAction(internal::ReturnVoidAction()); 1017 } 1018 1019 // Creates an action that returns the reference to a variable. 1020 template <typename R> 1021 inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT 1022 return internal::ReturnRefAction<R>(x); 1023 } 1024 1025 // Creates an action that returns the reference to a copy of the 1026 // argument. The copy is created when the action is constructed and 1027 // lives as long as the action. 1028 template <typename R> 1029 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { 1030 return internal::ReturnRefOfCopyAction<R>(x); 1031 } 1032 1033 // Modifies the parent action (a Return() action) to perform a move of the 1034 // argument instead of a copy. 1035 // Return(ByMove()) actions can only be executed once and will assert this 1036 // invariant. 1037 template <typename R> 1038 internal::ByMoveWrapper<R> ByMove(R x) { 1039 return internal::ByMoveWrapper<R>(std::move(x)); 1040 } 1041 1042 // Creates an action that does the default action for the give mock function. 1043 inline internal::DoDefaultAction DoDefault() { 1044 return internal::DoDefaultAction(); 1045 } 1046 1047 // Creates an action that sets the variable pointed by the N-th 1048 // (0-based) function argument to 'value'. 1049 template <size_t N, typename T> 1050 internal::SetArgumentPointeeAction<N, T> SetArgPointee(T x) { 1051 return {std::move(x)}; 1052 } 1053 1054 // The following version is DEPRECATED. 1055 template <size_t N, typename T> 1056 internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T x) { 1057 return {std::move(x)}; 1058 } 1059 1060 // Creates an action that sets a pointer referent to a given value. 1061 template <typename T1, typename T2> 1062 PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) { 1063 return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); 1064 } 1065 1066 #if !GTEST_OS_WINDOWS_MOBILE 1067 1068 // Creates an action that sets errno and returns the appropriate error. 1069 template <typename T> 1070 PolymorphicAction<internal::SetErrnoAndReturnAction<T> > 1071 SetErrnoAndReturn(int errval, T result) { 1072 return MakePolymorphicAction( 1073 internal::SetErrnoAndReturnAction<T>(errval, result)); 1074 } 1075 1076 #endif // !GTEST_OS_WINDOWS_MOBILE 1077 1078 // Various overloads for Invoke(). 1079 1080 // Legacy function. 1081 // Actions can now be implicitly constructed from callables. No need to create 1082 // wrapper objects. 1083 // This function exists for backwards compatibility. 1084 template <typename FunctionImpl> 1085 typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) { 1086 return std::forward<FunctionImpl>(function_impl); 1087 } 1088 1089 // Creates an action that invokes the given method on the given object 1090 // with the mock function's arguments. 1091 template <class Class, typename MethodPtr> 1092 internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr, 1093 MethodPtr method_ptr) { 1094 return {obj_ptr, method_ptr}; 1095 } 1096 1097 // Creates an action that invokes 'function_impl' with no argument. 1098 template <typename FunctionImpl> 1099 internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type> 1100 InvokeWithoutArgs(FunctionImpl function_impl) { 1101 return {std::move(function_impl)}; 1102 } 1103 1104 // Creates an action that invokes the given method on the given object 1105 // with no argument. 1106 template <class Class, typename MethodPtr> 1107 internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs( 1108 Class* obj_ptr, MethodPtr method_ptr) { 1109 return {obj_ptr, method_ptr}; 1110 } 1111 1112 // Creates an action that performs an_action and throws away its 1113 // result. In other words, it changes the return type of an_action to 1114 // void. an_action MUST NOT return void, or the code won't compile. 1115 template <typename A> 1116 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { 1117 return internal::IgnoreResultAction<A>(an_action); 1118 } 1119 1120 // Creates a reference wrapper for the given L-value. If necessary, 1121 // you can explicitly specify the type of the reference. For example, 1122 // suppose 'derived' is an object of type Derived, ByRef(derived) 1123 // would wrap a Derived&. If you want to wrap a const Base& instead, 1124 // where Base is a base class of Derived, just write: 1125 // 1126 // ByRef<const Base>(derived) 1127 // 1128 // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper. 1129 // However, it may still be used for consistency with ByMove(). 1130 template <typename T> 1131 inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT 1132 return ::std::reference_wrapper<T>(l_value); 1133 } 1134 1135 } // namespace testing 1136 1137 #ifdef _MSC_VER 1138 # pragma warning(pop) 1139 #endif 1140 1141 1142 #endif // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_