sdl

FORK: Simple Directmedia Layer
git clone https://git.neptards.moe/neptards/sdl.git
Log | Files | Refs

s_tan.c (1784B)


      1 /*
      2  * ====================================================
      3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      4  *
      5  * Developed at SunPro, a Sun Microsystems, Inc. business.
      6  * Permission to use, copy, modify, and distribute this
      7  * software is freely granted, provided that this notice
      8  * is preserved.
      9  * ====================================================
     10  */
     11 
     12 /* tan(x)
     13  * Return tangent function of x.
     14  *
     15  * kernel function:
     16  *	__kernel_tan		... tangent function on [-pi/4,pi/4]
     17  *	__ieee754_rem_pio2	... argument reduction routine
     18  *
     19  * Method.
     20  *      Let S,C and T denote the sin, cos and tan respectively on
     21  *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
     22  *	in [-pi/4 , +pi/4], and let n = k mod 4.
     23  *	We have
     24  *
     25  *          n        sin(x)      cos(x)        tan(x)
     26  *     ----------------------------------------------------------
     27  *	    0	       S	   C		 T
     28  *	    1	       C	  -S		-1/T
     29  *	    2	      -S	  -C		 T
     30  *	    3	      -C	   S		-1/T
     31  *     ----------------------------------------------------------
     32  *
     33  * Special cases:
     34  *      Let trig be any of sin, cos, or tan.
     35  *      trig(+-INF)  is NaN, with signals;
     36  *      trig(NaN)    is that NaN;
     37  *
     38  * Accuracy:
     39  *	TRIG(x) returns trig(x) nearly rounded
     40  */
     41 
     42 #include "math_libm.h"
     43 #include "math_private.h"
     44 
     45 double tan(double x)
     46 {
     47 	double y[2],z=0.0;
     48 	int32_t n, ix;
     49 
     50     /* High word of x. */
     51 	GET_HIGH_WORD(ix,x);
     52 
     53     /* |x| ~< pi/4 */
     54 	ix &= 0x7fffffff;
     55 	if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
     56 
     57     /* tan(Inf or NaN) is NaN */
     58 	else if (ix>=0x7ff00000) return x-x;		/* NaN */
     59 
     60     /* argument reduction needed */
     61 	else {
     62 	    n = __ieee754_rem_pio2(x,y);
     63 	    return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /*   1 -- n even
     64 							-1 -- n odd */
     65 	}
     66 }
     67 libm_hidden_def(tan)