sdl

FORK: Simple Directmedia Layer
git clone https://git.neptards.moe/neptards/sdl.git
Log | Files | Refs

s_atan.c (4072B)


      1 /*
      2  * ====================================================
      3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      4  *
      5  * Developed at SunPro, a Sun Microsystems, Inc. business.
      6  * Permission to use, copy, modify, and distribute this
      7  * software is freely granted, provided that this notice
      8  * is preserved.
      9  * ====================================================
     10  */
     11 
     12 /* atan(x)
     13  * Method
     14  *   1. Reduce x to positive by atan(x) = -atan(-x).
     15  *   2. According to the integer k=4t+0.25 chopped, t=x, the argument
     16  *      is further reduced to one of the following intervals and the
     17  *      arctangent of t is evaluated by the corresponding formula:
     18  *
     19  *      [0,7/16]      atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
     20  *      [7/16,11/16]  atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
     21  *      [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
     22  *      [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
     23  *      [39/16,INF]   atan(x) = atan(INF) + atan( -1/t )
     24  *
     25  * Constants:
     26  * The hexadecimal values are the intended ones for the following
     27  * constants. The decimal values may be used, provided that the
     28  * compiler will convert from decimal to binary accurately enough
     29  * to produce the hexadecimal values shown.
     30  */
     31 
     32 #include "math_libm.h"
     33 #include "math_private.h"
     34 
     35 static const double atanhi[] = {
     36   4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
     37   7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
     38   9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
     39   1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
     40 };
     41 
     42 static const double atanlo[] = {
     43   2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
     44   3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
     45   1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
     46   6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
     47 };
     48 
     49 static const double aT[] = {
     50   3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
     51  -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
     52   1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
     53  -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
     54   9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
     55  -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
     56   6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
     57  -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
     58   4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
     59  -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
     60   1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
     61 };
     62 
     63 #ifdef __WATCOMC__ /* Watcom defines huge=__huge */
     64 #undef huge
     65 #endif
     66 
     67 static const double
     68 one   = 1.0,
     69 huge   = 1.0e300;
     70 
     71 double atan(double x)
     72 {
     73 	double w,s1,s2,z;
     74 	int32_t ix,hx,id;
     75 
     76 	GET_HIGH_WORD(hx,x);
     77 	ix = hx&0x7fffffff;
     78 	if(ix>=0x44100000) {	/* if |x| >= 2^66 */
     79 	    u_int32_t low;
     80 	    GET_LOW_WORD(low,x);
     81 	    if(ix>0x7ff00000||
     82 		(ix==0x7ff00000&&(low!=0)))
     83 		return x+x;		/* NaN */
     84 	    if(hx>0) return  atanhi[3]+atanlo[3];
     85 	    else     return -atanhi[3]-atanlo[3];
     86 	} if (ix < 0x3fdc0000) {	/* |x| < 0.4375 */
     87 	    if (ix < 0x3e200000) {	/* |x| < 2^-29 */
     88 		if(huge+x>one) return x;	/* raise inexact */
     89 	    }
     90 	    id = -1;
     91 	} else {
     92 	x = fabs(x);
     93 	if (ix < 0x3ff30000) {		/* |x| < 1.1875 */
     94 	    if (ix < 0x3fe60000) {	/* 7/16 <=|x|<11/16 */
     95 		id = 0; x = (2.0*x-one)/(2.0+x);
     96 	    } else {			/* 11/16<=|x|< 19/16 */
     97 		id = 1; x  = (x-one)/(x+one);
     98 	    }
     99 	} else {
    100 	    if (ix < 0x40038000) {	/* |x| < 2.4375 */
    101 		id = 2; x  = (x-1.5)/(one+1.5*x);
    102 	    } else {			/* 2.4375 <= |x| < 2^66 */
    103 		id = 3; x  = -1.0/x;
    104 	    }
    105 	}}
    106     /* end of argument reduction */
    107 	z = x*x;
    108 	w = z*z;
    109     /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
    110 	s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
    111 	s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
    112 	if (id<0) return x - x*(s1+s2);
    113 	else {
    114 	    z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
    115 	    return (hx<0)? -z:z;
    116 	}
    117 }
    118 libm_hidden_def(atan)