sdl

FORK: Simple Directmedia Layer
git clone https://git.neptards.moe/neptards/sdl.git
Log | Files | Refs

k_rem_pio2.c (8694B)


      1 /*
      2  * ====================================================
      3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      4  *
      5  * Developed at SunPro, a Sun Microsystems, Inc. business.
      6  * Permission to use, copy, modify, and distribute this
      7  * software is freely granted, provided that this notice
      8  * is preserved.
      9  * ====================================================
     10  */
     11 
     12 /*
     13  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
     14  * double x[],y[]; int e0,nx,prec; int ipio2[];
     15  *
     16  * __kernel_rem_pio2 return the last three digits of N with
     17  *		y = x - N*pi/2
     18  * so that |y| < pi/2.
     19  *
     20  * The method is to compute the integer (mod 8) and fraction parts of
     21  * (2/pi)*x without doing the full multiplication. In general we
     22  * skip the part of the product that are known to be a huge integer (
     23  * more accurately, = 0 mod 8 ). Thus the number of operations are
     24  * independent of the exponent of the input.
     25  *
     26  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
     27  *
     28  * Input parameters:
     29  * 	x[]	The input value (must be positive) is broken into nx
     30  *		pieces of 24-bit integers in double precision format.
     31  *		x[i] will be the i-th 24 bit of x. The scaled exponent
     32  *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
     33  *		match x's up to 24 bits.
     34  *
     35  *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
     36  *			e0 = ilogb(z)-23
     37  *			z  = scalbn(z,-e0)
     38  *		for i = 0,1,2
     39  *			x[i] = floor(z)
     40  *			z    = (z-x[i])*2**24
     41  *
     42  *
     43  *	y[]	ouput result in an array of double precision numbers.
     44  *		The dimension of y[] is:
     45  *			24-bit  precision	1
     46  *			53-bit  precision	2
     47  *			64-bit  precision	2
     48  *			113-bit precision	3
     49  *		The actual value is the sum of them. Thus for 113-bit
     50  *		precison, one may have to do something like:
     51  *
     52  *		long double t,w,r_head, r_tail;
     53  *		t = (long double)y[2] + (long double)y[1];
     54  *		w = (long double)y[0];
     55  *		r_head = t+w;
     56  *		r_tail = w - (r_head - t);
     57  *
     58  *	e0	The exponent of x[0]
     59  *
     60  *	nx	dimension of x[]
     61  *
     62  *  	prec	an integer indicating the precision:
     63  *			0	24  bits (single)
     64  *			1	53  bits (double)
     65  *			2	64  bits (extended)
     66  *			3	113 bits (quad)
     67  *
     68  *	ipio2[]
     69  *		integer array, contains the (24*i)-th to (24*i+23)-th
     70  *		bit of 2/pi after binary point. The corresponding
     71  *		floating value is
     72  *
     73  *			ipio2[i] * 2^(-24(i+1)).
     74  *
     75  * External function:
     76  *	double scalbn(), floor();
     77  *
     78  *
     79  * Here is the description of some local variables:
     80  *
     81  * 	jk	jk+1 is the initial number of terms of ipio2[] needed
     82  *		in the computation. The recommended value is 2,3,4,
     83  *		6 for single, double, extended,and quad.
     84  *
     85  * 	jz	local integer variable indicating the number of
     86  *		terms of ipio2[] used.
     87  *
     88  *	jx	nx - 1
     89  *
     90  *	jv	index for pointing to the suitable ipio2[] for the
     91  *		computation. In general, we want
     92  *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
     93  *		is an integer. Thus
     94  *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
     95  *		Hence jv = max(0,(e0-3)/24).
     96  *
     97  *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
     98  *
     99  * 	q[]	double array with integral value, representing the
    100  *		24-bits chunk of the product of x and 2/pi.
    101  *
    102  *	q0	the corresponding exponent of q[0]. Note that the
    103  *		exponent for q[i] would be q0-24*i.
    104  *
    105  *	PIo2[]	double precision array, obtained by cutting pi/2
    106  *		into 24 bits chunks.
    107  *
    108  *	f[]	ipio2[] in floating point
    109  *
    110  *	iq[]	integer array by breaking up q[] in 24-bits chunk.
    111  *
    112  *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
    113  *
    114  *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
    115  *		it also indicates the *sign* of the result.
    116  *
    117  */
    118 
    119 
    120 /*
    121  * Constants:
    122  * The hexadecimal values are the intended ones for the following
    123  * constants. The decimal values may be used, provided that the
    124  * compiler will convert from decimal to binary accurately enough
    125  * to produce the hexadecimal values shown.
    126  */
    127 
    128 #include "math_libm.h"
    129 #include "math_private.h"
    130 
    131 #include "SDL_assert.h"
    132 
    133 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
    134 
    135 static const double PIo2[] = {
    136   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
    137   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
    138   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
    139   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
    140   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
    141   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
    142   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
    143   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
    144 };
    145 
    146 static const double
    147 zero   = 0.0,
    148 one    = 1.0,
    149 two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
    150 twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
    151 
    152 int32_t attribute_hidden __kernel_rem_pio2(const double *x, double *y, int e0, int nx, const unsigned int prec, const int32_t *ipio2)
    153 {
    154 	int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
    155 	double z,fw,f[20],fq[20],q[20];
    156 
    157 	if (nx < 1) {
    158 		return 0;
    159 	}
    160 
    161     /* initialize jk*/
    162 	SDL_assert(prec < SDL_arraysize(init_jk));
    163 	jk = init_jk[prec];
    164 	SDL_assert(jk > 0);
    165 	jp = jk;
    166 
    167     /* determine jx,jv,q0, note that 3>q0 */
    168 	jx =  nx-1;
    169 	jv = (e0-3)/24; if(jv<0) jv=0;
    170 	q0 =  e0-24*(jv+1);
    171 
    172     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
    173 	j = jv-jx; m = jx+jk;
    174 	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
    175 	if ((m+1) < SDL_arraysize(f)) {
    176 	    SDL_memset(&f[m+1], 0, sizeof (f) - ((m+1) * sizeof (f[0])));
    177 	}
    178 
    179     /* compute q[0],q[1],...q[jk] */
    180 	for (i=0;i<=jk;i++) {
    181 	    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
    182 	    q[i] = fw;
    183 	}
    184 
    185 	jz = jk;
    186 recompute:
    187     /* distill q[] into iq[] reversingly */
    188 	for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
    189 	    fw    =  (double)((int32_t)(twon24* z));
    190 	    iq[i] =  (int32_t)(z-two24*fw);
    191 	    z     =  q[j-1]+fw;
    192 	}
    193 	if (jz < SDL_arraysize(iq)) {
    194 	    SDL_memset(&iq[jz], 0, sizeof (iq) - (jz * sizeof (iq[0])));
    195 	}
    196 
    197     /* compute n */
    198 	z  = scalbn(z,q0);		/* actual value of z */
    199 	z -= 8.0*floor(z*0.125);		/* trim off integer >= 8 */
    200 	n  = (int32_t) z;
    201 	z -= (double)n;
    202 	ih = 0;
    203 	if(q0>0) {	/* need iq[jz-1] to determine n */
    204 	    i  = (iq[jz-1]>>(24-q0)); n += i;
    205 	    iq[jz-1] -= i<<(24-q0);
    206 	    ih = iq[jz-1]>>(23-q0);
    207 	}
    208 	else if(q0==0) ih = iq[jz-1]>>23;
    209 	else if(z>=0.5) ih=2;
    210 
    211 	if(ih>0) {	/* q > 0.5 */
    212 	    n += 1; carry = 0;
    213 	    for(i=0;i<jz ;i++) {	/* compute 1-q */
    214 		j = iq[i];
    215 		if(carry==0) {
    216 		    if(j!=0) {
    217 			carry = 1; iq[i] = 0x1000000- j;
    218 		    }
    219 		} else  iq[i] = 0xffffff - j;
    220 	    }
    221 	    if(q0>0) {		/* rare case: chance is 1 in 12 */
    222 	        switch(q0) {
    223 	        case 1:
    224 	    	   iq[jz-1] &= 0x7fffff; break;
    225 	    	case 2:
    226 	    	   iq[jz-1] &= 0x3fffff; break;
    227 	        }
    228 	    }
    229 	    if(ih==2) {
    230 		z = one - z;
    231 		if(carry!=0) z -= scalbn(one,q0);
    232 	    }
    233 	}
    234 
    235     /* check if recomputation is needed */
    236 	if(z==zero) {
    237 	    j = 0;
    238 	    for (i=jz-1;i>=jk;i--) j |= iq[i];
    239 	    if(j==0) { /* need recomputation */
    240 		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
    241 
    242 		for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
    243 		    f[jx+i] = (double) ipio2[jv+i];
    244 		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
    245 		    q[i] = fw;
    246 		}
    247 		jz += k;
    248 		goto recompute;
    249 	    }
    250 	}
    251 
    252     /* chop off zero terms */
    253 	if(z==0.0) {
    254 	    jz -= 1; q0 -= 24;
    255 		SDL_assert(jz >= 0);
    256 	    while(iq[jz]==0) { jz--; SDL_assert(jz >= 0); q0-=24;}
    257 	} else { /* break z into 24-bit if necessary */
    258 	    z = scalbn(z,-q0);
    259 	    if(z>=two24) {
    260 		fw = (double)((int32_t)(twon24*z));
    261 		iq[jz] = (int32_t)(z-two24*fw);
    262 		jz += 1; q0 += 24;
    263 		iq[jz] = (int32_t) fw;
    264 	    } else iq[jz] = (int32_t) z ;
    265 	}
    266 
    267     /* convert integer "bit" chunk to floating-point value */
    268 	fw = scalbn(one,q0);
    269 	for(i=jz;i>=0;i--) {
    270 	    q[i] = fw*(double)iq[i]; fw*=twon24;
    271 	}
    272 
    273     /* compute PIo2[0,...,jp]*q[jz,...,0] */
    274 	for(i=jz;i>=0;i--) {
    275 	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
    276 	    fq[jz-i] = fw;
    277 	}
    278 	if ((jz+1) < SDL_arraysize(f)) {
    279 	    SDL_memset(&fq[jz+1], 0, sizeof (fq) - ((jz+1) * sizeof (fq[0])));
    280 	}
    281 
    282     /* compress fq[] into y[] */
    283 	switch(prec) {
    284 	    case 0:
    285 		fw = 0.0;
    286 		for (i=jz;i>=0;i--) fw += fq[i];
    287 		y[0] = (ih==0)? fw: -fw;
    288 		break;
    289 	    case 1:
    290 	    case 2:
    291 		fw = 0.0;
    292 		for (i=jz;i>=0;i--) fw += fq[i];
    293 		y[0] = (ih==0)? fw: -fw;
    294 		fw = fq[0]-fw;
    295 		for (i=1;i<=jz;i++) fw += fq[i];
    296 		y[1] = (ih==0)? fw: -fw;
    297 		break;
    298 	    case 3:	/* painful */
    299 		for (i=jz;i>0;i--) {
    300 		    fw      = fq[i-1]+fq[i];
    301 		    fq[i]  += fq[i-1]-fw;
    302 		    fq[i-1] = fw;
    303 		}
    304 		for (i=jz;i>1;i--) {
    305 		    fw      = fq[i-1]+fq[i];
    306 		    fq[i]  += fq[i-1]-fw;
    307 		    fq[i-1] = fw;
    308 		}
    309 		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
    310 		if(ih==0) {
    311 		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
    312 		} else {
    313 		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
    314 		}
    315 	}
    316 	return n&7;
    317 }