sdl

FORK: Simple Directmedia Layer
git clone https://git.neptards.moe/neptards/sdl.git
Log | Files | Refs

k_cos.c (2900B)


      1 /*
      2  * ====================================================
      3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      4  *
      5  * Developed at SunPro, a Sun Microsystems, Inc. business.
      6  * Permission to use, copy, modify, and distribute this
      7  * software is freely granted, provided that this notice
      8  * is preserved.
      9  * ====================================================
     10  */
     11 
     12 /*
     13  * __kernel_cos( x,  y )
     14  * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
     15  * Input x is assumed to be bounded by ~pi/4 in magnitude.
     16  * Input y is the tail of x.
     17  *
     18  * Algorithm
     19  *	1. Since cos(-x) = cos(x), we need only to consider positive x.
     20  *	2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
     21  *	3. cos(x) is approximated by a polynomial of degree 14 on
     22  *	   [0,pi/4]
     23  *		  	                 4            14
     24  *	   	cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
     25  *	   where the remez error is
     26  *
     27  * 	|              2     4     6     8     10    12     14 |     -58
     28  * 	|cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
     29  * 	|    					               |
     30  *
     31  * 	               4     6     8     10    12     14
     32  *	4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
     33  *	       cos(x) = 1 - x*x/2 + r
     34  *	   since cos(x+y) ~ cos(x) - sin(x)*y
     35  *			  ~ cos(x) - x*y,
     36  *	   a correction term is necessary in cos(x) and hence
     37  *		cos(x+y) = 1 - (x*x/2 - (r - x*y))
     38  *	   For better accuracy when x > 0.3, let qx = |x|/4 with
     39  *	   the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
     40  *	   Then
     41  *		cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
     42  *	   Note that 1-qx and (x*x/2-qx) is EXACT here, and the
     43  *	   magnitude of the latter is at least a quarter of x*x/2,
     44  *	   thus, reducing the rounding error in the subtraction.
     45  */
     46 
     47 #include "math_libm.h"
     48 #include "math_private.h"
     49 
     50 static const double
     51 one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
     52 C1  =  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
     53 C2  = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
     54 C3  =  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
     55 C4  = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
     56 C5  =  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
     57 C6  = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
     58 
     59 double attribute_hidden __kernel_cos(double x, double y)
     60 {
     61 	double a,hz,z,r,qx;
     62 	int32_t ix;
     63 	GET_HIGH_WORD(ix,x);
     64 	ix &= 0x7fffffff;			/* ix = |x|'s high word*/
     65 	if(ix<0x3e400000) {			/* if x < 2**27 */
     66 	    if(((int)x)==0) return one;		/* generate inexact */
     67 	}
     68 	z  = x*x;
     69 	r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
     70 	if(ix < 0x3FD33333) 			/* if |x| < 0.3 */
     71 	    return one - (0.5*z - (z*r - x*y));
     72 	else {
     73 	    if(ix > 0x3fe90000) {		/* x > 0.78125 */
     74 		qx = 0.28125;
     75 	    } else {
     76 	        INSERT_WORDS(qx,ix-0x00200000,0);	/* x/4 */
     77 	    }
     78 	    hz = 0.5*z-qx;
     79 	    a  = one-qx;
     80 	    return a - (hz - (z*r-x*y));
     81 	}
     82 }