sdl

FORK: Simple Directmedia Layer
git clone https://git.neptards.moe/neptards/sdl.git
Log | Files | Refs

e_sqrt.c (14490B)


      1 /*
      2  * ====================================================
      3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      4  *
      5  * Developed at SunPro, a Sun Microsystems, Inc. business.
      6  * Permission to use, copy, modify, and distribute this
      7  * software is freely granted, provided that this notice
      8  * is preserved.
      9  * ====================================================
     10  */
     11 
     12 /* __ieee754_sqrt(x)
     13  * Return correctly rounded sqrt.
     14  *           ------------------------------------------
     15  *	     |  Use the hardware sqrt if you have one |
     16  *           ------------------------------------------
     17  * Method:
     18  *   Bit by bit method using integer arithmetic. (Slow, but portable)
     19  *   1. Normalization
     20  *	Scale x to y in [1,4) with even powers of 2:
     21  *	find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
     22  *		sqrt(x) = 2^k * sqrt(y)
     23  *   2. Bit by bit computation
     24  *	Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
     25  *	     i							 0
     26  *                                     i+1         2
     27  *	    s  = 2*q , and	y  =  2   * ( y - q  ).		(1)
     28  *	     i      i            i                 i
     29  *
     30  *	To compute q    from q , one checks whether
     31  *		    i+1       i
     32  *
     33  *			      -(i+1) 2
     34  *			(q + 2      ) <= y.			(2)
     35  *     			  i
     36  *							      -(i+1)
     37  *	If (2) is false, then q   = q ; otherwise q   = q  + 2      .
     38  *		 	       i+1   i             i+1   i
     39  *
     40  *	With some algebric manipulation, it is not difficult to see
     41  *	that (2) is equivalent to
     42  *                             -(i+1)
     43  *			s  +  2       <= y			(3)
     44  *			 i                i
     45  *
     46  *	The advantage of (3) is that s  and y  can be computed by
     47  *				      i      i
     48  *	the following recurrence formula:
     49  *	    if (3) is false
     50  *
     51  *	    s     =  s  ,	y    = y   ;			(4)
     52  *	     i+1      i		 i+1    i
     53  *
     54  *	    otherwise,
     55  *                         -i                     -(i+1)
     56  *	    s	  =  s  + 2  ,  y    = y  -  s  - 2  		(5)
     57  *           i+1      i          i+1    i     i
     58  *
     59  *	One may easily use induction to prove (4) and (5).
     60  *	Note. Since the left hand side of (3) contain only i+2 bits,
     61  *	      it does not necessary to do a full (53-bit) comparison
     62  *	      in (3).
     63  *   3. Final rounding
     64  *	After generating the 53 bits result, we compute one more bit.
     65  *	Together with the remainder, we can decide whether the
     66  *	result is exact, bigger than 1/2ulp, or less than 1/2ulp
     67  *	(it will never equal to 1/2ulp).
     68  *	The rounding mode can be detected by checking whether
     69  *	huge + tiny is equal to huge, and whether huge - tiny is
     70  *	equal to huge for some floating point number "huge" and "tiny".
     71  *
     72  * Special cases:
     73  *	sqrt(+-0) = +-0 	... exact
     74  *	sqrt(inf) = inf
     75  *	sqrt(-ve) = NaN		... with invalid signal
     76  *	sqrt(NaN) = NaN		... with invalid signal for signaling NaN
     77  *
     78  * Other methods : see the appended file at the end of the program below.
     79  *---------------
     80  */
     81 
     82 #include "math_libm.h"
     83 #include "math_private.h"
     84 
     85 static const double one = 1.0, tiny = 1.0e-300;
     86 
     87 double attribute_hidden __ieee754_sqrt(double x)
     88 {
     89 	double z;
     90 	int32_t sign = (int)0x80000000;
     91 	int32_t ix0,s0,q,m,t,i;
     92 	u_int32_t r,t1,s1,ix1,q1;
     93 
     94 	EXTRACT_WORDS(ix0,ix1,x);
     95 
     96     /* take care of Inf and NaN */
     97 	if((ix0&0x7ff00000)==0x7ff00000) {
     98 	    return x*x+x;		/* sqrt(NaN)=NaN, sqrt(+inf)=+inf
     99 					   sqrt(-inf)=sNaN */
    100 	}
    101     /* take care of zero */
    102 	if(ix0<=0) {
    103 	    if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
    104 	    else if(ix0<0)
    105 		return (x-x)/(x-x);		/* sqrt(-ve) = sNaN */
    106 	}
    107     /* normalize x */
    108 	m = (ix0>>20);
    109 	if(m==0) {				/* subnormal x */
    110 	    while(ix0==0) {
    111 		m -= 21;
    112 		ix0 |= (ix1>>11); ix1 <<= 21;
    113 	    }
    114 	    for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
    115 	    m -= i-1;
    116 	    ix0 |= (ix1>>(32-i));
    117 	    ix1 <<= i;
    118 	}
    119 	m -= 1023;	/* unbias exponent */
    120 	ix0 = (ix0&0x000fffff)|0x00100000;
    121 	if(m&1){	/* odd m, double x to make it even */
    122 	    ix0 += ix0 + ((ix1&sign)>>31);
    123 	    ix1 += ix1;
    124 	}
    125 	m >>= 1;	/* m = [m/2] */
    126 
    127     /* generate sqrt(x) bit by bit */
    128 	ix0 += ix0 + ((ix1&sign)>>31);
    129 	ix1 += ix1;
    130 	q = q1 = s0 = s1 = 0;	/* [q,q1] = sqrt(x) */
    131 	r = 0x00200000;		/* r = moving bit from right to left */
    132 
    133 	while(r!=0) {
    134 	    t = s0+r;
    135 	    if(t<=ix0) {
    136 		s0   = t+r;
    137 		ix0 -= t;
    138 		q   += r;
    139 	    }
    140 	    ix0 += ix0 + ((ix1&sign)>>31);
    141 	    ix1 += ix1;
    142 	    r>>=1;
    143 	}
    144 
    145 	r = sign;
    146 	while(r!=0) {
    147 	    t1 = s1+r;
    148 	    t  = s0;
    149 	    if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
    150 		s1  = t1+r;
    151 		if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
    152 		ix0 -= t;
    153 		if (ix1 < t1) ix0 -= 1;
    154 		ix1 -= t1;
    155 		q1  += r;
    156 	    }
    157 	    ix0 += ix0 + ((ix1&sign)>>31);
    158 	    ix1 += ix1;
    159 	    r>>=1;
    160 	}
    161 
    162     /* use floating add to find out rounding direction */
    163 	if((ix0|ix1)!=0) {
    164 	    z = one-tiny; /* trigger inexact flag */
    165 	    if (z>=one) {
    166 	        z = one+tiny;
    167 	        if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
    168 		else if (z>one) {
    169 		    if (q1==(u_int32_t)0xfffffffe) q+=1;
    170 		    q1+=2;
    171 		} else
    172 	            q1 += (q1&1);
    173 	    }
    174 	}
    175 	ix0 = (q>>1)+0x3fe00000;
    176 	ix1 =  q1>>1;
    177 	if ((q&1)==1) ix1 |= sign;
    178 	ix0 += (m <<20);
    179 	INSERT_WORDS(z,ix0,ix1);
    180 	return z;
    181 }
    182 
    183 /*
    184  * wrapper sqrt(x)
    185  */
    186 #ifndef _IEEE_LIBM
    187 double sqrt(double x)
    188 {
    189 	double z = __ieee754_sqrt(x);
    190 	if (_LIB_VERSION == _IEEE_ || isnan(x))
    191 		return z;
    192 	if (x < 0.0)
    193 		return __kernel_standard(x, x, 26); /* sqrt(negative) */
    194 	return z;
    195 }
    196 #else
    197 strong_alias(__ieee754_sqrt, sqrt)
    198 #endif
    199 libm_hidden_def(sqrt)
    200 
    201 
    202 /*
    203 Other methods  (use floating-point arithmetic)
    204 -------------
    205 (This is a copy of a drafted paper by Prof W. Kahan
    206 and K.C. Ng, written in May, 1986)
    207 
    208 	Two algorithms are given here to implement sqrt(x)
    209 	(IEEE double precision arithmetic) in software.
    210 	Both supply sqrt(x) correctly rounded. The first algorithm (in
    211 	Section A) uses newton iterations and involves four divisions.
    212 	The second one uses reciproot iterations to avoid division, but
    213 	requires more multiplications. Both algorithms need the ability
    214 	to chop results of arithmetic operations instead of round them,
    215 	and the INEXACT flag to indicate when an arithmetic operation
    216 	is executed exactly with no roundoff error, all part of the
    217 	standard (IEEE 754-1985). The ability to perform shift, add,
    218 	subtract and logical AND operations upon 32-bit words is needed
    219 	too, though not part of the standard.
    220 
    221 A.  sqrt(x) by Newton Iteration
    222 
    223    (1)	Initial approximation
    224 
    225 	Let x0 and x1 be the leading and the trailing 32-bit words of
    226 	a floating point number x (in IEEE double format) respectively
    227 
    228 	    1    11		     52				  ...widths
    229 	   ------------------------------------------------------
    230 	x: |s|	  e     |	      f				|
    231 	   ------------------------------------------------------
    232 	      msb    lsb  msb				      lsb ...order
    233 
    234 
    235 	     ------------------------  	     ------------------------
    236 	x0:  |s|   e    |    f1     |	 x1: |          f2           |
    237 	     ------------------------  	     ------------------------
    238 
    239 	By performing shifts and subtracts on x0 and x1 (both regarded
    240 	as integers), we obtain an 8-bit approximation of sqrt(x) as
    241 	follows.
    242 
    243 		k  := (x0>>1) + 0x1ff80000;
    244 		y0 := k - T1[31&(k>>15)].	... y ~ sqrt(x) to 8 bits
    245 	Here k is a 32-bit integer and T1[] is an integer array containing
    246 	correction terms. Now magically the floating value of y (y's
    247 	leading 32-bit word is y0, the value of its trailing word is 0)
    248 	approximates sqrt(x) to almost 8-bit.
    249 
    250 	Value of T1:
    251 	static int T1[32]= {
    252 	0,	1024,	3062,	5746,	9193,	13348,	18162,	23592,
    253 	29598,	36145,	43202,	50740,	58733,	67158,	75992,	85215,
    254 	83599,	71378,	60428,	50647,	41945,	34246,	27478,	21581,
    255 	16499,	12183,	8588,	5674,	3403,	1742,	661,	130,};
    256 
    257     (2)	Iterative refinement
    258 
    259 	Apply Heron's rule three times to y, we have y approximates
    260 	sqrt(x) to within 1 ulp (Unit in the Last Place):
    261 
    262 		y := (y+x/y)/2		... almost 17 sig. bits
    263 		y := (y+x/y)/2		... almost 35 sig. bits
    264 		y := y-(y-x/y)/2	... within 1 ulp
    265 
    266 
    267 	Remark 1.
    268 	    Another way to improve y to within 1 ulp is:
    269 
    270 		y := (y+x/y)		... almost 17 sig. bits to 2*sqrt(x)
    271 		y := y - 0x00100006	... almost 18 sig. bits to sqrt(x)
    272 
    273 				2
    274 			    (x-y )*y
    275 		y := y + 2* ----------	...within 1 ulp
    276 			       2
    277 			     3y  + x
    278 
    279 
    280 	This formula has one division fewer than the one above; however,
    281 	it requires more multiplications and additions. Also x must be
    282 	scaled in advance to avoid spurious overflow in evaluating the
    283 	expression 3y*y+x. Hence it is not recommended uless division
    284 	is slow. If division is very slow, then one should use the
    285 	reciproot algorithm given in section B.
    286 
    287     (3) Final adjustment
    288 
    289 	By twiddling y's last bit it is possible to force y to be
    290 	correctly rounded according to the prevailing rounding mode
    291 	as follows. Let r and i be copies of the rounding mode and
    292 	inexact flag before entering the square root program. Also we
    293 	use the expression y+-ulp for the next representable floating
    294 	numbers (up and down) of y. Note that y+-ulp = either fixed
    295 	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
    296 	mode.
    297 
    298 		I := FALSE;	... reset INEXACT flag I
    299 		R := RZ;	... set rounding mode to round-toward-zero
    300 		z := x/y;	... chopped quotient, possibly inexact
    301 		If(not I) then {	... if the quotient is exact
    302 		    if(z=y) {
    303 		        I := i;	 ... restore inexact flag
    304 		        R := r;  ... restore rounded mode
    305 		        return sqrt(x):=y.
    306 		    } else {
    307 			z := z - ulp;	... special rounding
    308 		    }
    309 		}
    310 		i := TRUE;		... sqrt(x) is inexact
    311 		If (r=RN) then z=z+ulp	... rounded-to-nearest
    312 		If (r=RP) then {	... round-toward-+inf
    313 		    y = y+ulp; z=z+ulp;
    314 		}
    315 		y := y+z;		... chopped sum
    316 		y0:=y0-0x00100000;	... y := y/2 is correctly rounded.
    317 	        I := i;	 		... restore inexact flag
    318 	        R := r;  		... restore rounded mode
    319 	        return sqrt(x):=y.
    320 
    321     (4)	Special cases
    322 
    323 	Square root of +inf, +-0, or NaN is itself;
    324 	Square root of a negative number is NaN with invalid signal.
    325 
    326 
    327 B.  sqrt(x) by Reciproot Iteration
    328 
    329    (1)	Initial approximation
    330 
    331 	Let x0 and x1 be the leading and the trailing 32-bit words of
    332 	a floating point number x (in IEEE double format) respectively
    333 	(see section A). By performing shifs and subtracts on x0 and y0,
    334 	we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
    335 
    336 	    k := 0x5fe80000 - (x0>>1);
    337 	    y0:= k - T2[63&(k>>14)].	... y ~ 1/sqrt(x) to 7.8 bits
    338 
    339 	Here k is a 32-bit integer and T2[] is an integer array
    340 	containing correction terms. Now magically the floating
    341 	value of y (y's leading 32-bit word is y0, the value of
    342 	its trailing word y1 is set to zero) approximates 1/sqrt(x)
    343 	to almost 7.8-bit.
    344 
    345 	Value of T2:
    346 	static int T2[64]= {
    347 	0x1500,	0x2ef8,	0x4d67,	0x6b02,	0x87be,	0xa395,	0xbe7a,	0xd866,
    348 	0xf14a,	0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
    349 	0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
    350 	0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
    351 	0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
    352 	0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
    353 	0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
    354 	0x1527f,0x1334a,0x11051,0xe951,	0xbe01,	0x8e0d,	0x5924,	0x1edd,};
    355 
    356     (2)	Iterative refinement
    357 
    358 	Apply Reciproot iteration three times to y and multiply the
    359 	result by x to get an approximation z that matches sqrt(x)
    360 	to about 1 ulp. To be exact, we will have
    361 		-1ulp < sqrt(x)-z<1.0625ulp.
    362 
    363 	... set rounding mode to Round-to-nearest
    364 	   y := y*(1.5-0.5*x*y*y)	... almost 15 sig. bits to 1/sqrt(x)
    365 	   y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
    366 	... special arrangement for better accuracy
    367 	   z := x*y			... 29 bits to sqrt(x), with z*y<1
    368 	   z := z + 0.5*z*(1-z*y)	... about 1 ulp to sqrt(x)
    369 
    370 	Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
    371 	(a) the term z*y in the final iteration is always less than 1;
    372 	(b) the error in the final result is biased upward so that
    373 		-1 ulp < sqrt(x) - z < 1.0625 ulp
    374 	    instead of |sqrt(x)-z|<1.03125ulp.
    375 
    376     (3)	Final adjustment
    377 
    378 	By twiddling y's last bit it is possible to force y to be
    379 	correctly rounded according to the prevailing rounding mode
    380 	as follows. Let r and i be copies of the rounding mode and
    381 	inexact flag before entering the square root program. Also we
    382 	use the expression y+-ulp for the next representable floating
    383 	numbers (up and down) of y. Note that y+-ulp = either fixed
    384 	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
    385 	mode.
    386 
    387 	R := RZ;		... set rounding mode to round-toward-zero
    388 	switch(r) {
    389 	    case RN:		... round-to-nearest
    390 	       if(x<= z*(z-ulp)...chopped) z = z - ulp; else
    391 	       if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
    392 	       break;
    393 	    case RZ:case RM:	... round-to-zero or round-to--inf
    394 	       R:=RP;		... reset rounding mod to round-to-+inf
    395 	       if(x<z*z ... rounded up) z = z - ulp; else
    396 	       if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
    397 	       break;
    398 	    case RP:		... round-to-+inf
    399 	       if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
    400 	       if(x>z*z ...chopped) z = z+ulp;
    401 	       break;
    402 	}
    403 
    404 	Remark 3. The above comparisons can be done in fixed point. For
    405 	example, to compare x and w=z*z chopped, it suffices to compare
    406 	x1 and w1 (the trailing parts of x and w), regarding them as
    407 	two's complement integers.
    408 
    409 	...Is z an exact square root?
    410 	To determine whether z is an exact square root of x, let z1 be the
    411 	trailing part of z, and also let x0 and x1 be the leading and
    412 	trailing parts of x.
    413 
    414 	If ((z1&0x03ffffff)!=0)	... not exact if trailing 26 bits of z!=0
    415 	    I := 1;		... Raise Inexact flag: z is not exact
    416 	else {
    417 	    j := 1 - [(x0>>20)&1]	... j = logb(x) mod 2
    418 	    k := z1 >> 26;		... get z's 25-th and 26-th
    419 					    fraction bits
    420 	    I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
    421 	}
    422 	R:= r		... restore rounded mode
    423 	return sqrt(x):=z.
    424 
    425 	If multiplication is cheaper then the foregoing red tape, the
    426 	Inexact flag can be evaluated by
    427 
    428 	    I := i;
    429 	    I := (z*z!=x) or I.
    430 
    431 	Note that z*z can overwrite I; this value must be sensed if it is
    432 	True.
    433 
    434 	Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
    435 	zero.
    436 
    437 		    --------------------
    438 		z1: |        f2        |
    439 		    --------------------
    440 		bit 31		   bit 0
    441 
    442 	Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
    443 	or even of logb(x) have the following relations:
    444 
    445 	-------------------------------------------------
    446 	bit 27,26 of z1		bit 1,0 of x1	logb(x)
    447 	-------------------------------------------------
    448 	00			00		odd and even
    449 	01			01		even
    450 	10			10		odd
    451 	10			00		even
    452 	11			01		even
    453 	-------------------------------------------------
    454 
    455     (4)	Special cases (see (4) of Section A).
    456 
    457  */