e_sqrt.c (14490B)
1 /* 2 * ==================================================== 3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 4 * 5 * Developed at SunPro, a Sun Microsystems, Inc. business. 6 * Permission to use, copy, modify, and distribute this 7 * software is freely granted, provided that this notice 8 * is preserved. 9 * ==================================================== 10 */ 11 12 /* __ieee754_sqrt(x) 13 * Return correctly rounded sqrt. 14 * ------------------------------------------ 15 * | Use the hardware sqrt if you have one | 16 * ------------------------------------------ 17 * Method: 18 * Bit by bit method using integer arithmetic. (Slow, but portable) 19 * 1. Normalization 20 * Scale x to y in [1,4) with even powers of 2: 21 * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then 22 * sqrt(x) = 2^k * sqrt(y) 23 * 2. Bit by bit computation 24 * Let q = sqrt(y) truncated to i bit after binary point (q = 1), 25 * i 0 26 * i+1 2 27 * s = 2*q , and y = 2 * ( y - q ). (1) 28 * i i i i 29 * 30 * To compute q from q , one checks whether 31 * i+1 i 32 * 33 * -(i+1) 2 34 * (q + 2 ) <= y. (2) 35 * i 36 * -(i+1) 37 * If (2) is false, then q = q ; otherwise q = q + 2 . 38 * i+1 i i+1 i 39 * 40 * With some algebric manipulation, it is not difficult to see 41 * that (2) is equivalent to 42 * -(i+1) 43 * s + 2 <= y (3) 44 * i i 45 * 46 * The advantage of (3) is that s and y can be computed by 47 * i i 48 * the following recurrence formula: 49 * if (3) is false 50 * 51 * s = s , y = y ; (4) 52 * i+1 i i+1 i 53 * 54 * otherwise, 55 * -i -(i+1) 56 * s = s + 2 , y = y - s - 2 (5) 57 * i+1 i i+1 i i 58 * 59 * One may easily use induction to prove (4) and (5). 60 * Note. Since the left hand side of (3) contain only i+2 bits, 61 * it does not necessary to do a full (53-bit) comparison 62 * in (3). 63 * 3. Final rounding 64 * After generating the 53 bits result, we compute one more bit. 65 * Together with the remainder, we can decide whether the 66 * result is exact, bigger than 1/2ulp, or less than 1/2ulp 67 * (it will never equal to 1/2ulp). 68 * The rounding mode can be detected by checking whether 69 * huge + tiny is equal to huge, and whether huge - tiny is 70 * equal to huge for some floating point number "huge" and "tiny". 71 * 72 * Special cases: 73 * sqrt(+-0) = +-0 ... exact 74 * sqrt(inf) = inf 75 * sqrt(-ve) = NaN ... with invalid signal 76 * sqrt(NaN) = NaN ... with invalid signal for signaling NaN 77 * 78 * Other methods : see the appended file at the end of the program below. 79 *--------------- 80 */ 81 82 #include "math_libm.h" 83 #include "math_private.h" 84 85 static const double one = 1.0, tiny = 1.0e-300; 86 87 double attribute_hidden __ieee754_sqrt(double x) 88 { 89 double z; 90 int32_t sign = (int)0x80000000; 91 int32_t ix0,s0,q,m,t,i; 92 u_int32_t r,t1,s1,ix1,q1; 93 94 EXTRACT_WORDS(ix0,ix1,x); 95 96 /* take care of Inf and NaN */ 97 if((ix0&0x7ff00000)==0x7ff00000) { 98 return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf 99 sqrt(-inf)=sNaN */ 100 } 101 /* take care of zero */ 102 if(ix0<=0) { 103 if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */ 104 else if(ix0<0) 105 return (x-x)/(x-x); /* sqrt(-ve) = sNaN */ 106 } 107 /* normalize x */ 108 m = (ix0>>20); 109 if(m==0) { /* subnormal x */ 110 while(ix0==0) { 111 m -= 21; 112 ix0 |= (ix1>>11); ix1 <<= 21; 113 } 114 for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1; 115 m -= i-1; 116 ix0 |= (ix1>>(32-i)); 117 ix1 <<= i; 118 } 119 m -= 1023; /* unbias exponent */ 120 ix0 = (ix0&0x000fffff)|0x00100000; 121 if(m&1){ /* odd m, double x to make it even */ 122 ix0 += ix0 + ((ix1&sign)>>31); 123 ix1 += ix1; 124 } 125 m >>= 1; /* m = [m/2] */ 126 127 /* generate sqrt(x) bit by bit */ 128 ix0 += ix0 + ((ix1&sign)>>31); 129 ix1 += ix1; 130 q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */ 131 r = 0x00200000; /* r = moving bit from right to left */ 132 133 while(r!=0) { 134 t = s0+r; 135 if(t<=ix0) { 136 s0 = t+r; 137 ix0 -= t; 138 q += r; 139 } 140 ix0 += ix0 + ((ix1&sign)>>31); 141 ix1 += ix1; 142 r>>=1; 143 } 144 145 r = sign; 146 while(r!=0) { 147 t1 = s1+r; 148 t = s0; 149 if((t<ix0)||((t==ix0)&&(t1<=ix1))) { 150 s1 = t1+r; 151 if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1; 152 ix0 -= t; 153 if (ix1 < t1) ix0 -= 1; 154 ix1 -= t1; 155 q1 += r; 156 } 157 ix0 += ix0 + ((ix1&sign)>>31); 158 ix1 += ix1; 159 r>>=1; 160 } 161 162 /* use floating add to find out rounding direction */ 163 if((ix0|ix1)!=0) { 164 z = one-tiny; /* trigger inexact flag */ 165 if (z>=one) { 166 z = one+tiny; 167 if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;} 168 else if (z>one) { 169 if (q1==(u_int32_t)0xfffffffe) q+=1; 170 q1+=2; 171 } else 172 q1 += (q1&1); 173 } 174 } 175 ix0 = (q>>1)+0x3fe00000; 176 ix1 = q1>>1; 177 if ((q&1)==1) ix1 |= sign; 178 ix0 += (m <<20); 179 INSERT_WORDS(z,ix0,ix1); 180 return z; 181 } 182 183 /* 184 * wrapper sqrt(x) 185 */ 186 #ifndef _IEEE_LIBM 187 double sqrt(double x) 188 { 189 double z = __ieee754_sqrt(x); 190 if (_LIB_VERSION == _IEEE_ || isnan(x)) 191 return z; 192 if (x < 0.0) 193 return __kernel_standard(x, x, 26); /* sqrt(negative) */ 194 return z; 195 } 196 #else 197 strong_alias(__ieee754_sqrt, sqrt) 198 #endif 199 libm_hidden_def(sqrt) 200 201 202 /* 203 Other methods (use floating-point arithmetic) 204 ------------- 205 (This is a copy of a drafted paper by Prof W. Kahan 206 and K.C. Ng, written in May, 1986) 207 208 Two algorithms are given here to implement sqrt(x) 209 (IEEE double precision arithmetic) in software. 210 Both supply sqrt(x) correctly rounded. The first algorithm (in 211 Section A) uses newton iterations and involves four divisions. 212 The second one uses reciproot iterations to avoid division, but 213 requires more multiplications. Both algorithms need the ability 214 to chop results of arithmetic operations instead of round them, 215 and the INEXACT flag to indicate when an arithmetic operation 216 is executed exactly with no roundoff error, all part of the 217 standard (IEEE 754-1985). The ability to perform shift, add, 218 subtract and logical AND operations upon 32-bit words is needed 219 too, though not part of the standard. 220 221 A. sqrt(x) by Newton Iteration 222 223 (1) Initial approximation 224 225 Let x0 and x1 be the leading and the trailing 32-bit words of 226 a floating point number x (in IEEE double format) respectively 227 228 1 11 52 ...widths 229 ------------------------------------------------------ 230 x: |s| e | f | 231 ------------------------------------------------------ 232 msb lsb msb lsb ...order 233 234 235 ------------------------ ------------------------ 236 x0: |s| e | f1 | x1: | f2 | 237 ------------------------ ------------------------ 238 239 By performing shifts and subtracts on x0 and x1 (both regarded 240 as integers), we obtain an 8-bit approximation of sqrt(x) as 241 follows. 242 243 k := (x0>>1) + 0x1ff80000; 244 y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits 245 Here k is a 32-bit integer and T1[] is an integer array containing 246 correction terms. Now magically the floating value of y (y's 247 leading 32-bit word is y0, the value of its trailing word is 0) 248 approximates sqrt(x) to almost 8-bit. 249 250 Value of T1: 251 static int T1[32]= { 252 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592, 253 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215, 254 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581, 255 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,}; 256 257 (2) Iterative refinement 258 259 Apply Heron's rule three times to y, we have y approximates 260 sqrt(x) to within 1 ulp (Unit in the Last Place): 261 262 y := (y+x/y)/2 ... almost 17 sig. bits 263 y := (y+x/y)/2 ... almost 35 sig. bits 264 y := y-(y-x/y)/2 ... within 1 ulp 265 266 267 Remark 1. 268 Another way to improve y to within 1 ulp is: 269 270 y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x) 271 y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x) 272 273 2 274 (x-y )*y 275 y := y + 2* ---------- ...within 1 ulp 276 2 277 3y + x 278 279 280 This formula has one division fewer than the one above; however, 281 it requires more multiplications and additions. Also x must be 282 scaled in advance to avoid spurious overflow in evaluating the 283 expression 3y*y+x. Hence it is not recommended uless division 284 is slow. If division is very slow, then one should use the 285 reciproot algorithm given in section B. 286 287 (3) Final adjustment 288 289 By twiddling y's last bit it is possible to force y to be 290 correctly rounded according to the prevailing rounding mode 291 as follows. Let r and i be copies of the rounding mode and 292 inexact flag before entering the square root program. Also we 293 use the expression y+-ulp for the next representable floating 294 numbers (up and down) of y. Note that y+-ulp = either fixed 295 point y+-1, or multiply y by nextafter(1,+-inf) in chopped 296 mode. 297 298 I := FALSE; ... reset INEXACT flag I 299 R := RZ; ... set rounding mode to round-toward-zero 300 z := x/y; ... chopped quotient, possibly inexact 301 If(not I) then { ... if the quotient is exact 302 if(z=y) { 303 I := i; ... restore inexact flag 304 R := r; ... restore rounded mode 305 return sqrt(x):=y. 306 } else { 307 z := z - ulp; ... special rounding 308 } 309 } 310 i := TRUE; ... sqrt(x) is inexact 311 If (r=RN) then z=z+ulp ... rounded-to-nearest 312 If (r=RP) then { ... round-toward-+inf 313 y = y+ulp; z=z+ulp; 314 } 315 y := y+z; ... chopped sum 316 y0:=y0-0x00100000; ... y := y/2 is correctly rounded. 317 I := i; ... restore inexact flag 318 R := r; ... restore rounded mode 319 return sqrt(x):=y. 320 321 (4) Special cases 322 323 Square root of +inf, +-0, or NaN is itself; 324 Square root of a negative number is NaN with invalid signal. 325 326 327 B. sqrt(x) by Reciproot Iteration 328 329 (1) Initial approximation 330 331 Let x0 and x1 be the leading and the trailing 32-bit words of 332 a floating point number x (in IEEE double format) respectively 333 (see section A). By performing shifs and subtracts on x0 and y0, 334 we obtain a 7.8-bit approximation of 1/sqrt(x) as follows. 335 336 k := 0x5fe80000 - (x0>>1); 337 y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits 338 339 Here k is a 32-bit integer and T2[] is an integer array 340 containing correction terms. Now magically the floating 341 value of y (y's leading 32-bit word is y0, the value of 342 its trailing word y1 is set to zero) approximates 1/sqrt(x) 343 to almost 7.8-bit. 344 345 Value of T2: 346 static int T2[64]= { 347 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866, 348 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f, 349 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d, 350 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0, 351 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989, 352 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd, 353 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e, 354 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,}; 355 356 (2) Iterative refinement 357 358 Apply Reciproot iteration three times to y and multiply the 359 result by x to get an approximation z that matches sqrt(x) 360 to about 1 ulp. To be exact, we will have 361 -1ulp < sqrt(x)-z<1.0625ulp. 362 363 ... set rounding mode to Round-to-nearest 364 y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x) 365 y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x) 366 ... special arrangement for better accuracy 367 z := x*y ... 29 bits to sqrt(x), with z*y<1 368 z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x) 369 370 Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that 371 (a) the term z*y in the final iteration is always less than 1; 372 (b) the error in the final result is biased upward so that 373 -1 ulp < sqrt(x) - z < 1.0625 ulp 374 instead of |sqrt(x)-z|<1.03125ulp. 375 376 (3) Final adjustment 377 378 By twiddling y's last bit it is possible to force y to be 379 correctly rounded according to the prevailing rounding mode 380 as follows. Let r and i be copies of the rounding mode and 381 inexact flag before entering the square root program. Also we 382 use the expression y+-ulp for the next representable floating 383 numbers (up and down) of y. Note that y+-ulp = either fixed 384 point y+-1, or multiply y by nextafter(1,+-inf) in chopped 385 mode. 386 387 R := RZ; ... set rounding mode to round-toward-zero 388 switch(r) { 389 case RN: ... round-to-nearest 390 if(x<= z*(z-ulp)...chopped) z = z - ulp; else 391 if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp; 392 break; 393 case RZ:case RM: ... round-to-zero or round-to--inf 394 R:=RP; ... reset rounding mod to round-to-+inf 395 if(x<z*z ... rounded up) z = z - ulp; else 396 if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp; 397 break; 398 case RP: ... round-to-+inf 399 if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else 400 if(x>z*z ...chopped) z = z+ulp; 401 break; 402 } 403 404 Remark 3. The above comparisons can be done in fixed point. For 405 example, to compare x and w=z*z chopped, it suffices to compare 406 x1 and w1 (the trailing parts of x and w), regarding them as 407 two's complement integers. 408 409 ...Is z an exact square root? 410 To determine whether z is an exact square root of x, let z1 be the 411 trailing part of z, and also let x0 and x1 be the leading and 412 trailing parts of x. 413 414 If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0 415 I := 1; ... Raise Inexact flag: z is not exact 416 else { 417 j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2 418 k := z1 >> 26; ... get z's 25-th and 26-th 419 fraction bits 420 I := i or (k&j) or ((k&(j+j+1))!=(x1&3)); 421 } 422 R:= r ... restore rounded mode 423 return sqrt(x):=z. 424 425 If multiplication is cheaper then the foregoing red tape, the 426 Inexact flag can be evaluated by 427 428 I := i; 429 I := (z*z!=x) or I. 430 431 Note that z*z can overwrite I; this value must be sensed if it is 432 True. 433 434 Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be 435 zero. 436 437 -------------------- 438 z1: | f2 | 439 -------------------- 440 bit 31 bit 0 441 442 Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd 443 or even of logb(x) have the following relations: 444 445 ------------------------------------------------- 446 bit 27,26 of z1 bit 1,0 of x1 logb(x) 447 ------------------------------------------------- 448 00 00 odd and even 449 01 01 even 450 10 10 odd 451 10 00 even 452 11 01 even 453 ------------------------------------------------- 454 455 (4) Special cases (see (4) of Section A). 456 457 */