sdl

FORK: Simple Directmedia Layer
git clone https://git.neptards.moe/neptards/sdl.git
Log | Files | Refs

e_pow.c (10858B)


      1 /*
      2  * ====================================================
      3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      4  *
      5  * Developed at SunPro, a Sun Microsystems, Inc. business.
      6  * Permission to use, copy, modify, and distribute this
      7  * software is freely granted, provided that this notice
      8  * is preserved.
      9  * ====================================================
     10  */
     11 
     12 /* __ieee754_pow(x,y) return x**y
     13  *
     14  *		      n
     15  * Method:  Let x =  2   * (1+f)
     16  *	1. Compute and return log2(x) in two pieces:
     17  *		log2(x) = w1 + w2,
     18  *	   where w1 has 53-24 = 29 bit trailing zeros.
     19  *	2. Perform y*log2(x) = n+y' by simulating muti-precision
     20  *	   arithmetic, where |y'|<=0.5.
     21  *	3. Return x**y = 2**n*exp(y'*log2)
     22  *
     23  * Special cases:
     24  *	1.  +-1 ** anything  is 1.0
     25  *	2.  +-1 ** +-INF     is 1.0
     26  *	3.  (anything) ** 0  is 1
     27  *	4.  (anything) ** 1  is itself
     28  *	5.  (anything) ** NAN is NAN
     29  *	6.  NAN ** (anything except 0) is NAN
     30  *	7.  +-(|x| > 1) **  +INF is +INF
     31  *	8.  +-(|x| > 1) **  -INF is +0
     32  *	9.  +-(|x| < 1) **  +INF is +0
     33  *	10  +-(|x| < 1) **  -INF is +INF
     34  *	11. +0 ** (+anything except 0, NAN)               is +0
     35  *	12. -0 ** (+anything except 0, NAN, odd integer)  is +0
     36  *	13. +0 ** (-anything except 0, NAN)               is +INF
     37  *	14. -0 ** (-anything except 0, NAN, odd integer)  is +INF
     38  *	15. -0 ** (odd integer) = -( +0 ** (odd integer) )
     39  *	16. +INF ** (+anything except 0,NAN) is +INF
     40  *	17. +INF ** (-anything except 0,NAN) is +0
     41  *	18. -INF ** (anything)  = -0 ** (-anything)
     42  *	19. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
     43  *	20. (-anything except 0 and inf) ** (non-integer) is NAN
     44  *
     45  * Accuracy:
     46  *	pow(x,y) returns x**y nearly rounded. In particular
     47  *			pow(integer,integer)
     48  *	always returns the correct integer provided it is
     49  *	representable.
     50  *
     51  * Constants :
     52  * The hexadecimal values are the intended ones for the following
     53  * constants. The decimal values may be used, provided that the
     54  * compiler will convert from decimal to binary accurately enough
     55  * to produce the hexadecimal values shown.
     56  */
     57 
     58 #include "math_libm.h"
     59 #include "math_private.h"
     60 
     61 #if defined(_MSC_VER)           /* Handle Microsoft VC++ compiler specifics. */
     62 /* C4756: overflow in constant arithmetic */
     63 #pragma warning ( disable : 4756 )
     64 #endif
     65 
     66 #ifdef __WATCOMC__ /* Watcom defines huge=__huge */
     67 #undef huge
     68 #endif
     69 
     70 static const double
     71 bp[] = {1.0, 1.5,},
     72 dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
     73 dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
     74 zero    =  0.0,
     75 one	=  1.0,
     76 two	=  2.0,
     77 two53	=  9007199254740992.0,	/* 0x43400000, 0x00000000 */
     78 huge	=  1.0e300,
     79 tiny    =  1.0e-300,
     80 	/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
     81 L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
     82 L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
     83 L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
     84 L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
     85 L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
     86 L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
     87 P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
     88 P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
     89 P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
     90 P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
     91 P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
     92 lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
     93 lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
     94 lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
     95 ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
     96 cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
     97 cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
     98 cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
     99 ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
    100 ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
    101 ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
    102 
    103 double attribute_hidden __ieee754_pow(double x, double y)
    104 {
    105 	double z,ax,z_h,z_l,p_h,p_l;
    106 	double y1,t1,t2,r,s,t,u,v,w;
    107 	int32_t i,j,k,yisint,n;
    108 	int32_t hx,hy,ix,iy;
    109 	u_int32_t lx,ly;
    110 
    111 	EXTRACT_WORDS(hx,lx,x);
    112     /* x==1: 1**y = 1 (even if y is NaN) */
    113 	if (hx==0x3ff00000 && lx==0) {
    114 		return x;
    115 	}
    116 	ix = hx&0x7fffffff;
    117 
    118 	EXTRACT_WORDS(hy,ly,y);
    119 	iy = hy&0x7fffffff;
    120 
    121     /* y==zero: x**0 = 1 */
    122 	if((iy|ly)==0) return one;
    123 
    124     /* +-NaN return x+y */
    125 	if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
    126 	   iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
    127 		return x+y;
    128 
    129     /* determine if y is an odd int when x < 0
    130      * yisint = 0	... y is not an integer
    131      * yisint = 1	... y is an odd int
    132      * yisint = 2	... y is an even int
    133      */
    134 	yisint  = 0;
    135 	if(hx<0) {
    136 	    if(iy>=0x43400000) yisint = 2; /* even integer y */
    137 	    else if(iy>=0x3ff00000) {
    138 		k = (iy>>20)-0x3ff;	   /* exponent */
    139 		if(k>20) {
    140 		    j = ly>>(52-k);
    141 		    if((j<<(52-k))==ly) yisint = 2-(j&1);
    142 		} else if(ly==0) {
    143 		    j = iy>>(20-k);
    144 		    if((j<<(20-k))==iy) yisint = 2-(j&1);
    145 		}
    146 	    }
    147 	}
    148 
    149     /* special value of y */
    150 	if(ly==0) {
    151 	    if (iy==0x7ff00000) {       /* y is +-inf */
    152 	        if (((ix-0x3ff00000)|lx)==0)
    153 		    return one;	        /* +-1**+-inf is 1 (yes, weird rule) */
    154 	        if (ix >= 0x3ff00000)   /* (|x|>1)**+-inf = inf,0 */
    155 		    return (hy>=0) ? y : zero;
    156 	        /* (|x|<1)**-,+inf = inf,0 */
    157 		return (hy<0) ? -y : zero;
    158 	    }
    159 	    if(iy==0x3ff00000) {	/* y is  +-1 */
    160 		if(hy<0) return one/x; else return x;
    161 	    }
    162 	    if(hy==0x40000000) return x*x; /* y is  2 */
    163 	    if(hy==0x3fe00000) {	/* y is  0.5 */
    164 		if(hx>=0)	/* x >= +0 */
    165 		    return __ieee754_sqrt(x);
    166 	    }
    167 	}
    168 
    169 	ax   = fabs(x);
    170     /* special value of x */
    171 	if(lx==0) {
    172 	    if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
    173 		z = ax;			/*x is +-0,+-inf,+-1*/
    174 		if(hy<0) z = one/z;	/* z = (1/|x|) */
    175 		if(hx<0) {
    176 		    if(((ix-0x3ff00000)|yisint)==0) {
    177 			z = (z-z)/(z-z); /* (-1)**non-int is NaN */
    178 		    } else if(yisint==1)
    179 			z = -z;		/* (x<0)**odd = -(|x|**odd) */
    180 		}
    181 		return z;
    182 	    }
    183 	}
    184 
    185     /* (x<0)**(non-int) is NaN */
    186 	if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
    187 
    188     /* |y| is huge */
    189 	if(iy>0x41e00000) { /* if |y| > 2**31 */
    190 	    if(iy>0x43f00000){	/* if |y| > 2**64, must o/uflow */
    191 		if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
    192 		if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
    193 	    }
    194 	/* over/underflow if x is not close to one */
    195 	    if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
    196 	    if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
    197 	/* now |1-x| is tiny <= 2**-20, suffice to compute
    198 	   log(x) by x-x^2/2+x^3/3-x^4/4 */
    199 	    t = x-1;		/* t has 20 trailing zeros */
    200 	    w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
    201 	    u = ivln2_h*t;	/* ivln2_h has 21 sig. bits */
    202 	    v = t*ivln2_l-w*ivln2;
    203 	    t1 = u+v;
    204 	    SET_LOW_WORD(t1,0);
    205 	    t2 = v-(t1-u);
    206 	} else {
    207 	    double s2,s_h,s_l,t_h,t_l;
    208 	    n = 0;
    209 	/* take care subnormal number */
    210 	    if(ix<0x00100000)
    211 		{ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
    212 	    n  += ((ix)>>20)-0x3ff;
    213 	    j  = ix&0x000fffff;
    214 	/* determine interval */
    215 	    ix = j|0x3ff00000;		/* normalize ix */
    216 	    if(j<=0x3988E) k=0;		/* |x|<sqrt(3/2) */
    217 	    else if(j<0xBB67A) k=1;	/* |x|<sqrt(3)   */
    218 	    else {k=0;n+=1;ix -= 0x00100000;}
    219 	    SET_HIGH_WORD(ax,ix);
    220 
    221 	/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
    222 	    u = ax-bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
    223 	    v = one/(ax+bp[k]);
    224 	    s = u*v;
    225 	    s_h = s;
    226 	    SET_LOW_WORD(s_h,0);
    227 	/* t_h=ax+bp[k] High */
    228 	    t_h = zero;
    229 	    SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
    230 	    t_l = ax - (t_h-bp[k]);
    231 	    s_l = v*((u-s_h*t_h)-s_h*t_l);
    232 	/* compute log(ax) */
    233 	    s2 = s*s;
    234 	    r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
    235 	    r += s_l*(s_h+s);
    236 	    s2  = s_h*s_h;
    237 	    t_h = 3.0+s2+r;
    238 	    SET_LOW_WORD(t_h,0);
    239 	    t_l = r-((t_h-3.0)-s2);
    240 	/* u+v = s*(1+...) */
    241 	    u = s_h*t_h;
    242 	    v = s_l*t_h+t_l*s;
    243 	/* 2/(3log2)*(s+...) */
    244 	    p_h = u+v;
    245 	    SET_LOW_WORD(p_h,0);
    246 	    p_l = v-(p_h-u);
    247 	    z_h = cp_h*p_h;		/* cp_h+cp_l = 2/(3*log2) */
    248 	    z_l = cp_l*p_h+p_l*cp+dp_l[k];
    249 	/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
    250 	    t = (double)n;
    251 	    t1 = (((z_h+z_l)+dp_h[k])+t);
    252 	    SET_LOW_WORD(t1,0);
    253 	    t2 = z_l-(((t1-t)-dp_h[k])-z_h);
    254 	}
    255 
    256 	s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
    257 	if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
    258 	    s = -one;/* (-ve)**(odd int) */
    259 
    260     /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
    261 	y1  = y;
    262 	SET_LOW_WORD(y1,0);
    263 	p_l = (y-y1)*t1+y*t2;
    264 	p_h = y1*t1;
    265 	z = p_l+p_h;
    266 	EXTRACT_WORDS(j,i,z);
    267 	if (j>=0x40900000) {				/* z >= 1024 */
    268 	    if(((j-0x40900000)|i)!=0)			/* if z > 1024 */
    269 		return s*huge*huge;			/* overflow */
    270 	    else {
    271 		if(p_l+ovt>z-p_h) return s*huge*huge;	/* overflow */
    272 	    }
    273 	} else if((j&0x7fffffff)>=0x4090cc00 ) {	/* z <= -1075 */
    274 	    if(((j-0xc090cc00)|i)!=0) 		/* z < -1075 */
    275 		return s*tiny*tiny;		/* underflow */
    276 	    else {
    277 		if(p_l<=z-p_h) return s*tiny*tiny;	/* underflow */
    278 	    }
    279 	}
    280     /*
    281      * compute 2**(p_h+p_l)
    282      */
    283 	i = j&0x7fffffff;
    284 	k = (i>>20)-0x3ff;
    285 	n = 0;
    286 	if(i>0x3fe00000) {		/* if |z| > 0.5, set n = [z+0.5] */
    287 	    n = j+(0x00100000>>(k+1));
    288 	    k = ((n&0x7fffffff)>>20)-0x3ff;	/* new k for n */
    289 	    t = zero;
    290 	    SET_HIGH_WORD(t,n&~(0x000fffff>>k));
    291 	    n = ((n&0x000fffff)|0x00100000)>>(20-k);
    292 	    if(j<0) n = -n;
    293 	    p_h -= t;
    294 	}
    295 	t = p_l+p_h;
    296 	SET_LOW_WORD(t,0);
    297 	u = t*lg2_h;
    298 	v = (p_l-(t-p_h))*lg2+t*lg2_l;
    299 	z = u+v;
    300 	w = v-(z-u);
    301 	t  = z*z;
    302 	t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
    303 	r  = (z*t1)/(t1-two)-(w+z*w);
    304 	z  = one-(r-z);
    305 	GET_HIGH_WORD(j,z);
    306 	j += (n<<20);
    307 	if((j>>20)<=0) z = scalbn(z,n);	/* subnormal output */
    308 	else SET_HIGH_WORD(z,j);
    309 	return s*z;
    310 }
    311 
    312 /*
    313  * wrapper pow(x,y) return x**y
    314  */
    315 #ifndef _IEEE_LIBM
    316 double pow(double x, double y)
    317 {
    318 	double z = __ieee754_pow(x, y);
    319 	if (_LIB_VERSION == _IEEE_|| isnan(y))
    320 		return z;
    321 	if (isnan(x)) {
    322 		if (y == 0.0)
    323 			return __kernel_standard(x, y, 42); /* pow(NaN,0.0) */
    324 		return z;
    325 	}
    326 	if (x == 0.0) {
    327 		if (y == 0.0)
    328 	    		return __kernel_standard(x, y, 20); /* pow(0.0,0.0) */
    329 		if (isfinite(y) && y < 0.0)
    330 			return __kernel_standard(x,y,23); /* pow(0.0,negative) */
    331 		return z;
    332 	}
    333 	if (!isfinite(z)) {
    334 		if (isfinite(x) && isfinite(y)) {
    335 			if (isnan(z))
    336 				return __kernel_standard(x, y, 24); /* pow neg**non-int */
    337 			return __kernel_standard(x, y, 21); /* pow overflow */
    338 		}
    339 	}
    340 	if (z == 0.0 && isfinite(x) && isfinite(y))
    341 		return __kernel_standard(x, y, 22); /* pow underflow */
    342 	return z;
    343 }
    344 #else
    345 strong_alias(__ieee754_pow, pow)
    346 #endif
    347 libm_hidden_def(pow)