sdl

FORK: Simple Directmedia Layer
git clone https://git.neptards.moe/neptards/sdl.git
Log | Files | Refs

e_exp.c (5935B)


      1 /*
      2  * ====================================================
      3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      4  *
      5  * Developed at SunPro, a Sun Microsystems, Inc. business.
      6  * Permission to use, copy, modify, and distribute this
      7  * software is freely granted, provided that this notice
      8  * is preserved.
      9  * ====================================================
     10  */
     11 
     12 /* __ieee754_exp(x)
     13  * Returns the exponential of x.
     14  *
     15  * Method
     16  *   1. Argument reduction:
     17  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
     18  *	Given x, find r and integer k such that
     19  *
     20  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
     21  *
     22  *      Here r will be represented as r = hi-lo for better
     23  *	accuracy.
     24  *
     25  *   2. Approximation of exp(r) by a special rational function on
     26  *	the interval [0,0.34658]:
     27  *	Write
     28  *	    R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
     29  *      We use a special Reme algorithm on [0,0.34658] to generate
     30  * 	a polynomial of degree 5 to approximate R. The maximum error
     31  *	of this polynomial approximation is bounded by 2**-59. In
     32  *	other words,
     33  *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
     34  *  	(where z=r*r, and the values of P1 to P5 are listed below)
     35  *	and
     36  *	    |                  5          |     -59
     37  *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
     38  *	    |                             |
     39  *	The computation of exp(r) thus becomes
     40  *                             2*r
     41  *		exp(r) = 1 + -------
     42  *		              R - r
     43  *                                 r*R1(r)
     44  *		       = 1 + r + ----------- (for better accuracy)
     45  *		                  2 - R1(r)
     46  *	where
     47  *			         2       4             10
     48  *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
     49  *
     50  *   3. Scale back to obtain exp(x):
     51  *	From step 1, we have
     52  *	   exp(x) = 2^k * exp(r)
     53  *
     54  * Special cases:
     55  *	exp(INF) is INF, exp(NaN) is NaN;
     56  *	exp(-INF) is 0, and
     57  *	for finite argument, only exp(0)=1 is exact.
     58  *
     59  * Accuracy:
     60  *	according to an error analysis, the error is always less than
     61  *	1 ulp (unit in the last place).
     62  *
     63  * Misc. info.
     64  *	For IEEE double
     65  *	    if x >  7.09782712893383973096e+02 then exp(x) overflow
     66  *	    if x < -7.45133219101941108420e+02 then exp(x) underflow
     67  *
     68  * Constants:
     69  * The hexadecimal values are the intended ones for the following
     70  * constants. The decimal values may be used, provided that the
     71  * compiler will convert from decimal to binary accurately enough
     72  * to produce the hexadecimal values shown.
     73  */
     74 
     75 #include "math_libm.h"
     76 #include "math_private.h"
     77 
     78 #ifdef __WATCOMC__ /* Watcom defines huge=__huge */
     79 #undef huge
     80 #endif
     81 
     82 static const double
     83 one	= 1.0,
     84 halF[2]	= {0.5,-0.5,},
     85 huge	= 1.0e+300,
     86 twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
     87 o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
     88 u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
     89 ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
     90 	     -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
     91 ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
     92 	     -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
     93 invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
     94 P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
     95 P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
     96 P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
     97 P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
     98 P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
     99 
    100 double __ieee754_exp(double x)	/* default IEEE double exp */
    101 {
    102 	double y;
    103 	double hi = 0.0;
    104 	double lo = 0.0;
    105 	double c;
    106 	double t;
    107 	int32_t k=0;
    108 	int32_t xsb;
    109 	u_int32_t hx;
    110 
    111 	GET_HIGH_WORD(hx,x);
    112 	xsb = (hx>>31)&1;		/* sign bit of x */
    113 	hx &= 0x7fffffff;		/* high word of |x| */
    114 
    115     /* filter out non-finite argument */
    116 	if(hx >= 0x40862E42) {			/* if |x|>=709.78... */
    117             if(hx>=0x7ff00000) {
    118 	        u_int32_t lx;
    119 		GET_LOW_WORD(lx,x);
    120 		if(((hx&0xfffff)|lx)!=0)
    121 		     return x+x; 		/* NaN */
    122 		else return (xsb==0)? x:0.0;	/* exp(+-inf)={inf,0} */
    123 	    }
    124 		#if 1
    125 		if(x > o_threshold) return huge*huge; /* overflow */
    126 		#else  /* !!! FIXME: check this: "huge * huge" is a compiler warning, maybe they wanted +Inf? */
    127 		if(x > o_threshold) return INFINITY; /* overflow */
    128 		#endif
    129 
    130 	    if(x < u_threshold) return twom1000*twom1000; /* underflow */
    131 	}
    132 
    133     /* argument reduction */
    134 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
    135 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
    136 		hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
    137 	    } else {
    138 		k  = (int32_t) (invln2*x+halF[xsb]);
    139 		t  = k;
    140 		hi = x - t*ln2HI[0];	/* t*ln2HI is exact here */
    141 		lo = t*ln2LO[0];
    142 	    }
    143 	    x  = hi - lo;
    144 	}
    145 	else if(hx < 0x3e300000)  {	/* when |x|<2**-28 */
    146 	    if(huge+x>one) return one+x;/* trigger inexact */
    147 	}
    148 	else k = 0;
    149 
    150     /* x is now in primary range */
    151 	t  = x*x;
    152 	c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
    153 	if(k==0) 	return one-((x*c)/(c-2.0)-x);
    154 	else 		y = one-((lo-(x*c)/(2.0-c))-hi);
    155 	if(k >= -1021) {
    156 	    u_int32_t hy;
    157 	    GET_HIGH_WORD(hy,y);
    158 	    SET_HIGH_WORD(y,hy+(k<<20));	/* add k to y's exponent */
    159 	    return y;
    160 	} else {
    161 	    u_int32_t hy;
    162 	    GET_HIGH_WORD(hy,y);
    163 	    SET_HIGH_WORD(y,hy+((k+1000)<<20));	/* add k to y's exponent */
    164 	    return y*twom1000;
    165 	}
    166 }
    167 
    168 /*
    169  * wrapper exp(x)
    170  */
    171 #ifndef _IEEE_LIBM
    172 double exp(double x)
    173 {
    174 	static const double o_threshold =  7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */
    175 	static const double u_threshold = -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */
    176 
    177 	double z = __ieee754_exp(x);
    178 	if (_LIB_VERSION == _IEEE_)
    179 		return z;
    180 	if (isfinite(x)) {
    181 		if (x > o_threshold)
    182 			return __kernel_standard(x, x, 6); /* exp overflow */
    183 		if (x < u_threshold)
    184 			return __kernel_standard(x, x, 7); /* exp underflow */
    185 	}
    186 	return z;
    187 }
    188 #else
    189 strong_alias(__ieee754_exp, exp)
    190 #endif
    191 libm_hidden_def(exp)