You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/tests/qtest/npcm7xx_timer-test.c

561 lines
17 KiB
C

/*
* QTest testcase for the Nuvoton NPCM7xx Timer
*
* Copyright 2020 Google LLC
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "qemu/osdep.h"
#include "qemu/timer.h"
#include "libqtest-single.h"
#define TIM_REF_HZ (25000000)
/* Bits in TCSRx */
#define CEN BIT(30)
#define IE BIT(29)
#define MODE_ONESHOT (0 << 27)
#define MODE_PERIODIC (1 << 27)
#define CRST BIT(26)
#define CACT BIT(25)
#define PRESCALE(x) (x)
/* Registers shared between all timers in a module. */
#define TISR 0x18
#define WTCR 0x1c
# define WTCLK(x) ((x) << 10)
/* Power-on default; used to re-initialize timers before each test. */
#define TCSR_DEFAULT PRESCALE(5)
/* Register offsets for a timer within a timer block. */
typedef struct Timer {
unsigned int tcsr_offset;
unsigned int ticr_offset;
unsigned int tdr_offset;
} Timer;
/* A timer block containing 5 timers. */
typedef struct TimerBlock {
int irq_base;
uint64_t base_addr;
} TimerBlock;
/* Testdata for testing a particular timer within a timer block. */
typedef struct TestData {
const TimerBlock *tim;
const Timer *timer;
} TestData;
const TimerBlock timer_block[] = {
{
.irq_base = 32,
.base_addr = 0xf0008000,
},
{
.irq_base = 37,
.base_addr = 0xf0009000,
},
{
.irq_base = 42,
.base_addr = 0xf000a000,
},
};
const Timer timer[] = {
{
.tcsr_offset = 0x00,
.ticr_offset = 0x08,
.tdr_offset = 0x10,
}, {
.tcsr_offset = 0x04,
.ticr_offset = 0x0c,
.tdr_offset = 0x14,
}, {
.tcsr_offset = 0x20,
.ticr_offset = 0x28,
.tdr_offset = 0x30,
}, {
.tcsr_offset = 0x24,
.ticr_offset = 0x2c,
.tdr_offset = 0x34,
}, {
.tcsr_offset = 0x40,
.ticr_offset = 0x48,
.tdr_offset = 0x50,
},
};
/* Returns the index of the timer block. */
static int tim_index(const TimerBlock *tim)
{
ptrdiff_t diff = tim - timer_block;
g_assert(diff >= 0 && diff < ARRAY_SIZE(timer_block));
return diff;
}
/* Returns the index of a timer within a timer block. */
static int timer_index(const Timer *t)
{
ptrdiff_t diff = t - timer;
g_assert(diff >= 0 && diff < ARRAY_SIZE(timer));
return diff;
}
/* Returns the irq line for a given timer. */
static int tim_timer_irq(const TestData *td)
{
return td->tim->irq_base + timer_index(td->timer);
}
/* Register read/write accessors. */
static void tim_write(const TestData *td,
unsigned int offset, uint32_t value)
{
writel(td->tim->base_addr + offset, value);
}
static uint32_t tim_read(const TestData *td, unsigned int offset)
{
return readl(td->tim->base_addr + offset);
}
static void tim_write_tcsr(const TestData *td, uint32_t value)
{
tim_write(td, td->timer->tcsr_offset, value);
}
static uint32_t tim_read_tcsr(const TestData *td)
{
return tim_read(td, td->timer->tcsr_offset);
}
static void tim_write_ticr(const TestData *td, uint32_t value)
{
tim_write(td, td->timer->ticr_offset, value);
}
static uint32_t tim_read_ticr(const TestData *td)
{
return tim_read(td, td->timer->ticr_offset);
}
static uint32_t tim_read_tdr(const TestData *td)
{
return tim_read(td, td->timer->tdr_offset);
}
/* Returns the number of nanoseconds to count the given number of cycles. */
static int64_t tim_calculate_step(uint32_t count, uint32_t prescale)
{
return (1000000000LL / TIM_REF_HZ) * count * (prescale + 1);
}
/* Returns a bitmask corresponding to the timer under test. */
static uint32_t tim_timer_bit(const TestData *td)
{
return BIT(timer_index(td->timer));
}
/* Resets all timers to power-on defaults. */
static void tim_reset(const TestData *td)
{
int i, j;
/* Reset all the timers, in case a previous test left a timer running. */
for (i = 0; i < ARRAY_SIZE(timer_block); i++) {
for (j = 0; j < ARRAY_SIZE(timer); j++) {
writel(timer_block[i].base_addr + timer[j].tcsr_offset,
CRST | TCSR_DEFAULT);
}
writel(timer_block[i].base_addr + TISR, -1);
}
}
/* Verifies the reset state of a timer. */
static void test_reset(gconstpointer test_data)
{
const TestData *td = test_data;
tim_reset(td);
g_assert_cmphex(tim_read_tcsr(td), ==, TCSR_DEFAULT);
g_assert_cmphex(tim_read_ticr(td), ==, 0);
g_assert_cmphex(tim_read_tdr(td), ==, 0);
g_assert_cmphex(tim_read(td, TISR), ==, 0);
g_assert_cmphex(tim_read(td, WTCR), ==, WTCLK(1));
}
/* Verifies that CRST wins if both CEN and CRST are set. */
static void test_reset_overrides_enable(gconstpointer test_data)
{
const TestData *td = test_data;
tim_reset(td);
/* CRST should force CEN to 0 */
tim_write_tcsr(td, CEN | CRST | TCSR_DEFAULT);
g_assert_cmphex(tim_read_tcsr(td), ==, TCSR_DEFAULT);
g_assert_cmphex(tim_read_tdr(td), ==, 0);
g_assert_cmphex(tim_read(td, TISR), ==, 0);
}
/* Verifies the behavior when CEN is set and then cleared. */
static void test_oneshot_enable_then_disable(gconstpointer test_data)
{
const TestData *td = test_data;
tim_reset(td);
/* Enable the timer with zero initial count, then disable it again. */
tim_write_tcsr(td, CEN | TCSR_DEFAULT);
tim_write_tcsr(td, TCSR_DEFAULT);
g_assert_cmphex(tim_read_tcsr(td), ==, TCSR_DEFAULT);
g_assert_cmphex(tim_read_tdr(td), ==, 0);
/* Timer interrupt flag should be set, but interrupts are not enabled. */
g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
}
/* Verifies that a one-shot timer fires when expected with prescaler 5. */
static void test_oneshot_ps5(gconstpointer test_data)
{
const TestData *td = test_data;
unsigned int count = 256;
unsigned int ps = 5;
tim_reset(td);
tim_write_ticr(td, count);
tim_write_tcsr(td, CEN | PRESCALE(ps));
g_assert_cmphex(tim_read_tcsr(td), ==, CEN | CACT | PRESCALE(ps));
g_assert_cmpuint(tim_read_tdr(td), ==, count);
clock_step(tim_calculate_step(count, ps) - 1);
g_assert_cmphex(tim_read_tcsr(td), ==, CEN | CACT | PRESCALE(ps));
g_assert_cmpuint(tim_read_tdr(td), <, count);
g_assert_cmphex(tim_read(td, TISR), ==, 0);
clock_step(1);
g_assert_cmphex(tim_read_tcsr(td), ==, PRESCALE(ps));
g_assert_cmpuint(tim_read_tdr(td), ==, count);
g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
/* Clear the interrupt flag. */
tim_write(td, TISR, tim_timer_bit(td));
g_assert_cmphex(tim_read(td, TISR), ==, 0);
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
/* Verify that this isn't a periodic timer. */
clock_step(2 * tim_calculate_step(count, ps));
g_assert_cmphex(tim_read(td, TISR), ==, 0);
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
}
/* Verifies that a one-shot timer fires when expected with prescaler 0. */
static void test_oneshot_ps0(gconstpointer test_data)
{
const TestData *td = test_data;
unsigned int count = 1;
unsigned int ps = 0;
tim_reset(td);
tim_write_ticr(td, count);
tim_write_tcsr(td, CEN | PRESCALE(ps));
g_assert_cmphex(tim_read_tcsr(td), ==, CEN | CACT | PRESCALE(ps));
g_assert_cmpuint(tim_read_tdr(td), ==, count);
clock_step(tim_calculate_step(count, ps) - 1);
g_assert_cmphex(tim_read_tcsr(td), ==, CEN | CACT | PRESCALE(ps));
g_assert_cmpuint(tim_read_tdr(td), <, count);
g_assert_cmphex(tim_read(td, TISR), ==, 0);
clock_step(1);
g_assert_cmphex(tim_read_tcsr(td), ==, PRESCALE(ps));
g_assert_cmpuint(tim_read_tdr(td), ==, count);
g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
}
/* Verifies that a one-shot timer fires when expected with highest prescaler. */
static void test_oneshot_ps255(gconstpointer test_data)
{
const TestData *td = test_data;
unsigned int count = (1U << 24) - 1;
unsigned int ps = 255;
tim_reset(td);
tim_write_ticr(td, count);
tim_write_tcsr(td, CEN | PRESCALE(ps));
g_assert_cmphex(tim_read_tcsr(td), ==, CEN | CACT | PRESCALE(ps));
g_assert_cmpuint(tim_read_tdr(td), ==, count);
clock_step(tim_calculate_step(count, ps) - 1);
g_assert_cmphex(tim_read_tcsr(td), ==, CEN | CACT | PRESCALE(ps));
g_assert_cmpuint(tim_read_tdr(td), <, count);
g_assert_cmphex(tim_read(td, TISR), ==, 0);
clock_step(1);
g_assert_cmphex(tim_read_tcsr(td), ==, PRESCALE(ps));
g_assert_cmpuint(tim_read_tdr(td), ==, count);
g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
}
/* Verifies that a oneshot timer fires an interrupt when expected. */
static void test_oneshot_interrupt(gconstpointer test_data)
{
const TestData *td = test_data;
unsigned int count = 256;
unsigned int ps = 7;
tim_reset(td);
tim_write_ticr(td, count);
tim_write_tcsr(td, IE | CEN | MODE_ONESHOT | PRESCALE(ps));
clock_step_next();
g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
g_assert_true(qtest_get_irq(global_qtest, tim_timer_irq(td)));
}
/*
* Verifies that the timer can be paused and later resumed, and it still fires
* at the right moment.
*/
static void test_pause_resume(gconstpointer test_data)
{
const TestData *td = test_data;
unsigned int count = 256;
unsigned int ps = 1;
tim_reset(td);
tim_write_ticr(td, count);
tim_write_tcsr(td, IE | CEN | MODE_ONESHOT | PRESCALE(ps));
/* Pause the timer halfway to expiration. */
clock_step(tim_calculate_step(count / 2, ps));
tim_write_tcsr(td, IE | MODE_ONESHOT | PRESCALE(ps));
g_assert_cmpuint(tim_read_tdr(td), ==, count / 2);
/* Counter should not advance during the following step. */
clock_step(2 * tim_calculate_step(count, ps));
g_assert_cmpuint(tim_read_tdr(td), ==, count / 2);
g_assert_cmphex(tim_read(td, TISR), ==, 0);
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
/* Resume the timer and run _almost_ to expiration. */
tim_write_tcsr(td, IE | CEN | MODE_ONESHOT | PRESCALE(ps));
clock_step(tim_calculate_step(count / 2, ps) - 1);
g_assert_cmpuint(tim_read_tdr(td), <, count);
g_assert_cmphex(tim_read(td, TISR), ==, 0);
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
/* Now, run the rest of the way and verify that the interrupt fires. */
clock_step(1);
g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
g_assert_true(qtest_get_irq(global_qtest, tim_timer_irq(td)));
}
/* Verifies that the prescaler can be changed while the timer is runnin. */
static void test_prescaler_change(gconstpointer test_data)
{
const TestData *td = test_data;
unsigned int count = 256;
unsigned int ps = 5;
tim_reset(td);
tim_write_ticr(td, count);
tim_write_tcsr(td, CEN | MODE_ONESHOT | PRESCALE(ps));
/* Run a quarter of the way, and change the prescaler. */
clock_step(tim_calculate_step(count / 4, ps));
g_assert_cmpuint(tim_read_tdr(td), ==, 3 * count / 4);
ps = 2;
tim_write_tcsr(td, CEN | MODE_ONESHOT | PRESCALE(ps));
/* The counter must not change. */
g_assert_cmpuint(tim_read_tdr(td), ==, 3 * count / 4);
/* Run another quarter of the way, and change the prescaler again. */
clock_step(tim_calculate_step(count / 4, ps));
g_assert_cmpuint(tim_read_tdr(td), ==, count / 2);
ps = 8;
tim_write_tcsr(td, CEN | MODE_ONESHOT | PRESCALE(ps));
/* The counter must not change. */
g_assert_cmpuint(tim_read_tdr(td), ==, count / 2);
/* Run another quarter of the way, and change the prescaler again. */
clock_step(tim_calculate_step(count / 4, ps));
g_assert_cmpuint(tim_read_tdr(td), ==, count / 4);
ps = 0;
tim_write_tcsr(td, CEN | MODE_ONESHOT | PRESCALE(ps));
/* The counter must not change. */
g_assert_cmpuint(tim_read_tdr(td), ==, count / 4);
/* Run almost to expiration, and verify the timer didn't fire yet. */
clock_step(tim_calculate_step(count / 4, ps) - 1);
g_assert_cmpuint(tim_read_tdr(td), <, count);
g_assert_cmphex(tim_read(td, TISR), ==, 0);
/* Now, run the rest of the way and verify that the timer fires. */
clock_step(1);
g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
}
/* Verifies that a periodic timer automatically restarts after expiration. */
static void test_periodic_no_interrupt(gconstpointer test_data)
{
const TestData *td = test_data;
unsigned int count = 2;
unsigned int ps = 3;
int i;
tim_reset(td);
tim_write_ticr(td, count);
tim_write_tcsr(td, CEN | MODE_PERIODIC | PRESCALE(ps));
for (i = 0; i < 4; i++) {
clock_step_next();
g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
tim_write(td, TISR, tim_timer_bit(td));
g_assert_cmphex(tim_read(td, TISR), ==, 0);
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
}
}
/* Verifies that a periodict timer fires an interrupt every time it expires. */
static void test_periodic_interrupt(gconstpointer test_data)
{
const TestData *td = test_data;
unsigned int count = 65535;
unsigned int ps = 2;
int i;
tim_reset(td);
tim_write_ticr(td, count);
tim_write_tcsr(td, CEN | IE | MODE_PERIODIC | PRESCALE(ps));
for (i = 0; i < 4; i++) {
clock_step_next();
g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
g_assert_true(qtest_get_irq(global_qtest, tim_timer_irq(td)));
tim_write(td, TISR, tim_timer_bit(td));
g_assert_cmphex(tim_read(td, TISR), ==, 0);
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
}
}
/*
* Verifies that the timer behaves correctly when disabled right before and
* exactly when it's supposed to expire.
*/
static void test_disable_on_expiration(gconstpointer test_data)
{
const TestData *td = test_data;
unsigned int count = 8;
unsigned int ps = 255;
tim_reset(td);
tim_write_ticr(td, count);
tim_write_tcsr(td, CEN | MODE_ONESHOT | PRESCALE(ps));
clock_step(tim_calculate_step(count, ps) - 1);
tim_write_tcsr(td, MODE_ONESHOT | PRESCALE(ps));
tim_write_tcsr(td, CEN | MODE_ONESHOT | PRESCALE(ps));
clock_step(1);
tim_write_tcsr(td, MODE_ONESHOT | PRESCALE(ps));
g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
}
/*
* Constructs a name that includes the timer block, timer and testcase name,
* and adds the test to the test suite.
*/
static void tim_add_test(const char *name, const TestData *td, GTestDataFunc fn)
{
g_autofree char *full_name = g_strdup_printf(
"npcm7xx_timer/tim[%d]/timer[%d]/%s", tim_index(td->tim),
timer_index(td->timer), name);
qtest_add_data_func(full_name, td, fn);
}
/* Convenience macro for adding a test with a predictable function name. */
#define add_test(name, td) tim_add_test(#name, td, test_##name)
int main(int argc, char **argv)
{
TestData testdata[ARRAY_SIZE(timer_block) * ARRAY_SIZE(timer)];
int ret;
int i, j;
g_test_init(&argc, &argv, NULL);
g_test_set_nonfatal_assertions();
for (i = 0; i < ARRAY_SIZE(timer_block); i++) {
for (j = 0; j < ARRAY_SIZE(timer); j++) {
TestData *td = &testdata[i * ARRAY_SIZE(timer) + j];
td->tim = &timer_block[i];
td->timer = &timer[j];
add_test(reset, td);
add_test(reset_overrides_enable, td);
add_test(oneshot_enable_then_disable, td);
add_test(oneshot_ps5, td);
add_test(oneshot_ps0, td);
add_test(oneshot_ps255, td);
add_test(oneshot_interrupt, td);
add_test(pause_resume, td);
add_test(prescaler_change, td);
add_test(periodic_no_interrupt, td);
add_test(periodic_interrupt, td);
add_test(disable_on_expiration, td);
}
}
qtest_start("-machine npcm750-evb");
qtest_irq_intercept_in(global_qtest, "/machine/soc/a9mpcore/gic");
ret = g_test_run();
qtest_end();
return ret;
}