You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/target/s390x/mmu_helper.c

611 lines
19 KiB
C

/*
* S390x MMU related functions
*
* Copyright (c) 2011 Alexander Graf
* Copyright (c) 2015 Thomas Huth, IBM Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "exec/address-spaces.h"
#include "cpu.h"
#include "s390x-internal.h"
#include "kvm/kvm_s390x.h"
#include "sysemu/kvm.h"
#include "sysemu/tcg.h"
#include "exec/exec-all.h"
#include "trace.h"
#include "hw/hw.h"
#include "hw/s390x/storage-keys.h"
#include "hw/boards.h"
/* Fetch/store bits in the translation exception code: */
#define FS_READ 0x800
#define FS_WRITE 0x400
static void trigger_access_exception(CPUS390XState *env, uint32_t type,
uint64_t tec)
{
S390CPU *cpu = env_archcpu(env);
if (kvm_enabled()) {
kvm_s390_access_exception(cpu, type, tec);
} else {
CPUState *cs = env_cpu(env);
if (type != PGM_ADDRESSING) {
stq_phys(cs->as, env->psa + offsetof(LowCore, trans_exc_code), tec);
}
trigger_pgm_exception(env, type);
}
}
/* check whether the address would be proteted by Low-Address Protection */
static bool is_low_address(uint64_t addr)
{
return addr <= 511 || (addr >= 4096 && addr <= 4607);
}
/* check whether Low-Address Protection is enabled for mmu_translate() */
static bool lowprot_enabled(const CPUS390XState *env, uint64_t asc)
{
if (!(env->cregs[0] & CR0_LOWPROT)) {
return false;
}
if (!(env->psw.mask & PSW_MASK_DAT)) {
return true;
}
/* Check the private-space control bit */
switch (asc) {
case PSW_ASC_PRIMARY:
return !(env->cregs[1] & ASCE_PRIVATE_SPACE);
case PSW_ASC_SECONDARY:
return !(env->cregs[7] & ASCE_PRIVATE_SPACE);
case PSW_ASC_HOME:
return !(env->cregs[13] & ASCE_PRIVATE_SPACE);
default:
/* We don't support access register mode */
error_report("unsupported addressing mode");
exit(1);
}
}
/**
* Translate real address to absolute (= physical)
* address by taking care of the prefix mapping.
*/
target_ulong mmu_real2abs(CPUS390XState *env, target_ulong raddr)
{
if (raddr < 0x2000) {
return raddr + env->psa; /* Map the lowcore. */
} else if (raddr >= env->psa && raddr < env->psa + 0x2000) {
return raddr - env->psa; /* Map the 0 page. */
}
return raddr;
}
bool mmu_absolute_addr_valid(target_ulong addr, bool is_write)
{
return address_space_access_valid(&address_space_memory,
addr & TARGET_PAGE_MASK,
TARGET_PAGE_SIZE, is_write,
MEMTXATTRS_UNSPECIFIED);
}
static inline bool read_table_entry(CPUS390XState *env, hwaddr gaddr,
uint64_t *entry)
{
CPUState *cs = env_cpu(env);
/*
* According to the PoP, these table addresses are "unpredictably real
* or absolute". Also, "it is unpredictable whether the address wraps
* or an addressing exception is recognized".
*
* We treat them as absolute addresses and don't wrap them.
*/
if (unlikely(address_space_read(cs->as, gaddr, MEMTXATTRS_UNSPECIFIED,
entry, sizeof(*entry)) !=
MEMTX_OK)) {
return false;
}
*entry = be64_to_cpu(*entry);
return true;
}
static int mmu_translate_asce(CPUS390XState *env, target_ulong vaddr,
uint64_t asc, uint64_t asce, target_ulong *raddr,
int *flags)
{
const bool edat1 = (env->cregs[0] & CR0_EDAT) &&
s390_has_feat(S390_FEAT_EDAT);
const bool edat2 = edat1 && s390_has_feat(S390_FEAT_EDAT_2);
const bool iep = (env->cregs[0] & CR0_IEP) &&
s390_has_feat(S390_FEAT_INSTRUCTION_EXEC_PROT);
const int asce_tl = asce & ASCE_TABLE_LENGTH;
const int asce_p = asce & ASCE_PRIVATE_SPACE;
hwaddr gaddr = asce & ASCE_ORIGIN;
uint64_t entry;
if (asce & ASCE_REAL_SPACE) {
/* direct mapping */
*raddr = vaddr;
return 0;
}
switch (asce & ASCE_TYPE_MASK) {
case ASCE_TYPE_REGION1:
if (VADDR_REGION1_TL(vaddr) > asce_tl) {
return PGM_REG_FIRST_TRANS;
}
gaddr += VADDR_REGION1_TX(vaddr) * 8;
break;
case ASCE_TYPE_REGION2:
if (VADDR_REGION1_TX(vaddr)) {
return PGM_ASCE_TYPE;
}
if (VADDR_REGION2_TL(vaddr) > asce_tl) {
return PGM_REG_SEC_TRANS;
}
gaddr += VADDR_REGION2_TX(vaddr) * 8;
break;
case ASCE_TYPE_REGION3:
if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr)) {
return PGM_ASCE_TYPE;
}
if (VADDR_REGION3_TL(vaddr) > asce_tl) {
return PGM_REG_THIRD_TRANS;
}
gaddr += VADDR_REGION3_TX(vaddr) * 8;
break;
case ASCE_TYPE_SEGMENT:
if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr) ||
VADDR_REGION3_TX(vaddr)) {
return PGM_ASCE_TYPE;
}
if (VADDR_SEGMENT_TL(vaddr) > asce_tl) {
return PGM_SEGMENT_TRANS;
}
gaddr += VADDR_SEGMENT_TX(vaddr) * 8;
break;
}
switch (asce & ASCE_TYPE_MASK) {
case ASCE_TYPE_REGION1:
if (!read_table_entry(env, gaddr, &entry)) {
return PGM_ADDRESSING;
}
if (entry & REGION_ENTRY_I) {
return PGM_REG_FIRST_TRANS;
}
if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION1) {
return PGM_TRANS_SPEC;
}
if (VADDR_REGION2_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
VADDR_REGION2_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
return PGM_REG_SEC_TRANS;
}
if (edat1 && (entry & REGION_ENTRY_P)) {
*flags &= ~PAGE_WRITE;
}
gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION2_TX(vaddr) * 8;
/* fall through */
case ASCE_TYPE_REGION2:
if (!read_table_entry(env, gaddr, &entry)) {
return PGM_ADDRESSING;
}
if (entry & REGION_ENTRY_I) {
return PGM_REG_SEC_TRANS;
}
if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION2) {
return PGM_TRANS_SPEC;
}
if (VADDR_REGION3_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
VADDR_REGION3_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
return PGM_REG_THIRD_TRANS;
}
if (edat1 && (entry & REGION_ENTRY_P)) {
*flags &= ~PAGE_WRITE;
}
gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION3_TX(vaddr) * 8;
/* fall through */
case ASCE_TYPE_REGION3:
if (!read_table_entry(env, gaddr, &entry)) {
return PGM_ADDRESSING;
}
if (entry & REGION_ENTRY_I) {
return PGM_REG_THIRD_TRANS;
}
if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION3) {
return PGM_TRANS_SPEC;
}
if (edat2 && (entry & REGION3_ENTRY_CR) && asce_p) {
return PGM_TRANS_SPEC;
}
if (edat1 && (entry & REGION_ENTRY_P)) {
*flags &= ~PAGE_WRITE;
}
if (edat2 && (entry & REGION3_ENTRY_FC)) {
if (iep && (entry & REGION3_ENTRY_IEP)) {
*flags &= ~PAGE_EXEC;
}
*raddr = (entry & REGION3_ENTRY_RFAA) |
(vaddr & ~REGION3_ENTRY_RFAA);
return 0;
}
if (VADDR_SEGMENT_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
VADDR_SEGMENT_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
return PGM_SEGMENT_TRANS;
}
gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_SEGMENT_TX(vaddr) * 8;
/* fall through */
case ASCE_TYPE_SEGMENT:
if (!read_table_entry(env, gaddr, &entry)) {
return PGM_ADDRESSING;
}
if (entry & SEGMENT_ENTRY_I) {
return PGM_SEGMENT_TRANS;
}
if ((entry & SEGMENT_ENTRY_TT) != SEGMENT_ENTRY_TT_SEGMENT) {
return PGM_TRANS_SPEC;
}
if ((entry & SEGMENT_ENTRY_CS) && asce_p) {
return PGM_TRANS_SPEC;
}
if (entry & SEGMENT_ENTRY_P) {
*flags &= ~PAGE_WRITE;
}
if (edat1 && (entry & SEGMENT_ENTRY_FC)) {
if (iep && (entry & SEGMENT_ENTRY_IEP)) {
*flags &= ~PAGE_EXEC;
}
*raddr = (entry & SEGMENT_ENTRY_SFAA) |
(vaddr & ~SEGMENT_ENTRY_SFAA);
return 0;
}
gaddr = (entry & SEGMENT_ENTRY_ORIGIN) + VADDR_PAGE_TX(vaddr) * 8;
break;
}
if (!read_table_entry(env, gaddr, &entry)) {
return PGM_ADDRESSING;
}
if (entry & PAGE_ENTRY_I) {
return PGM_PAGE_TRANS;
}
if (entry & PAGE_ENTRY_0) {
return PGM_TRANS_SPEC;
}
if (entry & PAGE_ENTRY_P) {
*flags &= ~PAGE_WRITE;
}
if (iep && (entry & PAGE_ENTRY_IEP)) {
*flags &= ~PAGE_EXEC;
}
*raddr = entry & TARGET_PAGE_MASK;
return 0;
}
static void mmu_handle_skey(target_ulong addr, int rw, int *flags)
{
static S390SKeysClass *skeyclass;
static S390SKeysState *ss;
uint8_t key, old_key;
int rc;
/*
* We expect to be called with an absolute address that has already been
* validated, such that we can reliably use it to lookup the storage key.
*/
if (unlikely(!ss)) {
ss = s390_get_skeys_device();
skeyclass = S390_SKEYS_GET_CLASS(ss);
}
/*
* Don't enable storage keys if they are still disabled, i.e., no actual
* storage key instruction was issued yet.
*/
if (!skeyclass->skeys_are_enabled(ss)) {
return;
}
/*
* Whenever we create a new TLB entry, we set the storage key reference
* bit. In case we allow write accesses, we set the storage key change
* bit. Whenever the guest changes the storage key, we have to flush the
* TLBs of all CPUs (the whole TLB or all affected entries), so that the
* next reference/change will result in an MMU fault and make us properly
* update the storage key here.
*
* Note 1: "record of references ... is not necessarily accurate",
* "change bit may be set in case no storing has occurred".
* -> We can set reference/change bits even on exceptions.
* Note 2: certain accesses seem to ignore storage keys. For example,
* DAT translation does not set reference bits for table accesses.
*
* TODO: key-controlled protection. Only CPU accesses make use of the
* PSW key. CSS accesses are different - we have to pass in the key.
*
* TODO: we have races between getting and setting the key.
*/
rc = skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
if (rc) {
trace_get_skeys_nonzero(rc);
return;
}
old_key = key;
switch (rw) {
case MMU_DATA_LOAD:
case MMU_INST_FETCH:
/*
* The TLB entry has to remain write-protected on read-faults if
* the storage key does not indicate a change already. Otherwise
* we might miss setting the change bit on write accesses.
*/
if (!(key & SK_C)) {
*flags &= ~PAGE_WRITE;
}
break;
case MMU_DATA_STORE:
key |= SK_C;
break;
default:
g_assert_not_reached();
}
/* Any store/fetch sets the reference bit */
key |= SK_R;
if (key != old_key) {
rc = skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
if (rc) {
trace_set_skeys_nonzero(rc);
}
}
}
/**
* Translate a virtual (logical) address into a physical (absolute) address.
* @param vaddr the virtual address
* @param rw 0 = read, 1 = write, 2 = code fetch, < 0 = load real address
* @param asc address space control (one of the PSW_ASC_* modes)
* @param raddr the translated address is stored to this pointer
* @param flags the PAGE_READ/WRITE/EXEC flags are stored to this pointer
* @param tec the translation exception code if stored to this pointer if
* there is an exception to raise
* @return 0 = success, != 0, the exception to raise
*/
int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc,
target_ulong *raddr, int *flags, uint64_t *tec)
{
uint64_t asce;
int r;
*tec = (vaddr & TARGET_PAGE_MASK) | (asc >> 46) |
(rw == MMU_DATA_STORE ? FS_WRITE : FS_READ);
*flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
if (is_low_address(vaddr & TARGET_PAGE_MASK) && lowprot_enabled(env, asc)) {
/*
* If any part of this page is currently protected, make sure the
* TLB entry will not be reused.
*
* As the protected range is always the first 512 bytes of the
* two first pages, we are able to catch all writes to these areas
* just by looking at the start address (triggering the tlb miss).
*/
*flags |= PAGE_WRITE_INV;
if (is_low_address(vaddr) && rw == MMU_DATA_STORE) {
/* LAP sets bit 56 */
*tec |= 0x80;
return PGM_PROTECTION;
}
}
vaddr &= TARGET_PAGE_MASK;
if (!(env->psw.mask & PSW_MASK_DAT)) {
*raddr = vaddr;
goto nodat;
}
switch (asc) {
case PSW_ASC_PRIMARY:
asce = env->cregs[1];
break;
case PSW_ASC_HOME:
asce = env->cregs[13];
break;
case PSW_ASC_SECONDARY:
asce = env->cregs[7];
break;
case PSW_ASC_ACCREG:
default:
hw_error("guest switched to unknown asc mode\n");
break;
}
/* perform the DAT translation */
r = mmu_translate_asce(env, vaddr, asc, asce, raddr, flags);
if (unlikely(r)) {
return r;
}
/* check for DAT protection */
if (unlikely(rw == MMU_DATA_STORE && !(*flags & PAGE_WRITE))) {
/* DAT sets bit 61 only */
*tec |= 0x4;
return PGM_PROTECTION;
}
/* check for Instruction-Execution-Protection */
if (unlikely(rw == MMU_INST_FETCH && !(*flags & PAGE_EXEC))) {
/* IEP sets bit 56 and 61 */
*tec |= 0x84;
return PGM_PROTECTION;
}
nodat:
if (rw >= 0) {
/* Convert real address -> absolute address */
*raddr = mmu_real2abs(env, *raddr);
if (!mmu_absolute_addr_valid(*raddr, rw == MMU_DATA_STORE)) {
*tec = 0; /* unused */
return PGM_ADDRESSING;
}
mmu_handle_skey(*raddr, rw, flags);
}
return 0;
}
/**
* translate_pages: Translate a set of consecutive logical page addresses
* to absolute addresses. This function is used for TCG and old KVM without
* the MEMOP interface.
*/
static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages,
target_ulong *pages, bool is_write, uint64_t *tec)
{
uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC;
CPUS390XState *env = &cpu->env;
int ret, i, pflags;
for (i = 0; i < nr_pages; i++) {
ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, tec);
if (ret) {
return ret;
}
addr += TARGET_PAGE_SIZE;
}
return 0;
}
int s390_cpu_pv_mem_rw(S390CPU *cpu, unsigned int offset, void *hostbuf,
int len, bool is_write)
{
int ret;
if (kvm_enabled()) {
ret = kvm_s390_mem_op_pv(cpu, offset, hostbuf, len, is_write);
} else {
/* Protected Virtualization is a KVM/Hardware only feature */
g_assert_not_reached();
}
return ret;
}
/**
* s390_cpu_virt_mem_rw:
* @laddr: the logical start address
* @ar: the access register number
* @hostbuf: buffer in host memory. NULL = do only checks w/o copying
* @len: length that should be transferred
* @is_write: true = write, false = read
* Returns: 0 on success, non-zero if an exception occurred
*
* Copy from/to guest memory using logical addresses. Note that we inject a
* program interrupt in case there is an error while accessing the memory.
*
* This function will always return (also for TCG), make sure to call
* s390_cpu_virt_mem_handle_exc() to properly exit the CPU loop.
*/
int s390_cpu_virt_mem_rw(S390CPU *cpu, vaddr laddr, uint8_t ar, void *hostbuf,
int len, bool is_write)
{
int currlen, nr_pages, i;
target_ulong *pages;
uint64_t tec;
int ret;
if (kvm_enabled()) {
ret = kvm_s390_mem_op(cpu, laddr, ar, hostbuf, len, is_write);
if (ret >= 0) {
return ret;
}
}
nr_pages = (((laddr & ~TARGET_PAGE_MASK) + len - 1) >> TARGET_PAGE_BITS)
+ 1;
pages = g_malloc(nr_pages * sizeof(*pages));
ret = translate_pages(cpu, laddr, nr_pages, pages, is_write, &tec);
if (ret) {
trigger_access_exception(&cpu->env, ret, tec);
} else if (hostbuf != NULL) {
/* Copy data by stepping through the area page by page */
for (i = 0; i < nr_pages; i++) {
currlen = MIN(len, TARGET_PAGE_SIZE - (laddr % TARGET_PAGE_SIZE));
cpu_physical_memory_rw(pages[i] | (laddr & ~TARGET_PAGE_MASK),
hostbuf, currlen, is_write);
laddr += currlen;
hostbuf += currlen;
len -= currlen;
}
}
g_free(pages);
return ret;
}
void s390_cpu_virt_mem_handle_exc(S390CPU *cpu, uintptr_t ra)
{
/* KVM will handle the interrupt automatically, TCG has to exit the TB */
#ifdef CONFIG_TCG
if (tcg_enabled()) {
cpu_loop_exit_restore(CPU(cpu), ra);
}
#endif
}
/**
* Translate a real address into a physical (absolute) address.
* @param raddr the real address
* @param rw 0 = read, 1 = write, 2 = code fetch
* @param addr the translated address is stored to this pointer
* @param flags the PAGE_READ/WRITE/EXEC flags are stored to this pointer
* @return 0 = success, != 0, the exception to raise
*/
int mmu_translate_real(CPUS390XState *env, target_ulong raddr, int rw,
target_ulong *addr, int *flags, uint64_t *tec)
{
const bool lowprot_enabled = env->cregs[0] & CR0_LOWPROT;
*flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
if (is_low_address(raddr & TARGET_PAGE_MASK) && lowprot_enabled) {
/* see comment in mmu_translate() how this works */
*flags |= PAGE_WRITE_INV;
if (is_low_address(raddr) && rw == MMU_DATA_STORE) {
/* LAP sets bit 56 */
*tec = (raddr & TARGET_PAGE_MASK) | FS_WRITE | 0x80;
return PGM_PROTECTION;
}
}
*addr = mmu_real2abs(env, raddr & TARGET_PAGE_MASK);
if (!mmu_absolute_addr_valid(*addr, rw == MMU_DATA_STORE)) {
/* unused */
*tec = 0;
return PGM_ADDRESSING;
}
mmu_handle_skey(*addr, rw, flags);
return 0;
}