You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/target/s390x/arch_dump.c

491 lines
14 KiB
C

/*
* writing ELF notes for s390x arch
*
*
* Copyright IBM Corp. 2012, 2013
*
* Ekaterina Tumanova <tumanova@linux.vnet.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "cpu.h"
#include "s390x-internal.h"
#include "elf.h"
#include "sysemu/dump.h"
#include "hw/s390x/pv.h"
#include "kvm/kvm_s390x.h"
struct S390xUserRegsStruct {
uint64_t psw[2];
uint64_t gprs[16];
uint32_t acrs[16];
} QEMU_PACKED;
typedef struct S390xUserRegsStruct S390xUserRegs;
struct S390xElfPrstatusStruct {
uint8_t pad1[32];
uint32_t pid;
uint8_t pad2[76];
S390xUserRegs regs;
uint8_t pad3[16];
} QEMU_PACKED;
typedef struct S390xElfPrstatusStruct S390xElfPrstatus;
struct S390xElfFpregsetStruct {
uint32_t fpc;
uint32_t pad;
uint64_t fprs[16];
} QEMU_PACKED;
typedef struct S390xElfFpregsetStruct S390xElfFpregset;
struct S390xElfVregsLoStruct {
uint64_t vregs[16];
} QEMU_PACKED;
typedef struct S390xElfVregsLoStruct S390xElfVregsLo;
struct S390xElfVregsHiStruct {
uint64_t vregs[16][2];
} QEMU_PACKED;
typedef struct S390xElfVregsHiStruct S390xElfVregsHi;
struct S390xElfGSCBStruct {
uint64_t gsregs[4];
} QEMU_PACKED;
typedef struct S390xElfGSCBStruct S390xElfGSCB;
typedef struct noteStruct {
Elf64_Nhdr hdr;
char name[8];
union {
S390xElfPrstatus prstatus;
S390xElfFpregset fpregset;
S390xElfVregsLo vregslo;
S390xElfVregsHi vregshi;
S390xElfGSCB gscb;
uint32_t prefix;
uint64_t timer;
uint64_t todcmp;
uint32_t todpreg;
uint64_t ctrs[16];
uint8_t dynamic[1]; /*
* Would be a flexible array member, if
* that was legal inside a union. Real
* size comes from PV info interface.
*/
} contents;
} QEMU_PACKED Note;
static bool pv_dump_initialized;
static void s390x_write_elf64_prstatus(Note *note, S390CPU *cpu, int id)
{
int i;
S390xUserRegs *regs;
note->hdr.n_type = cpu_to_be32(NT_PRSTATUS);
regs = &(note->contents.prstatus.regs);
regs->psw[0] = cpu_to_be64(cpu->env.psw.mask);
regs->psw[1] = cpu_to_be64(cpu->env.psw.addr);
for (i = 0; i <= 15; i++) {
regs->acrs[i] = cpu_to_be32(cpu->env.aregs[i]);
regs->gprs[i] = cpu_to_be64(cpu->env.regs[i]);
}
note->contents.prstatus.pid = id;
}
static void s390x_write_elf64_fpregset(Note *note, S390CPU *cpu, int id)
{
int i;
CPUS390XState *cs = &cpu->env;
note->hdr.n_type = cpu_to_be32(NT_FPREGSET);
note->contents.fpregset.fpc = cpu_to_be32(cpu->env.fpc);
for (i = 0; i <= 15; i++) {
note->contents.fpregset.fprs[i] = cpu_to_be64(*get_freg(cs, i));
}
}
static void s390x_write_elf64_vregslo(Note *note, S390CPU *cpu, int id)
{
int i;
note->hdr.n_type = cpu_to_be32(NT_S390_VXRS_LOW);
for (i = 0; i <= 15; i++) {
note->contents.vregslo.vregs[i] = cpu_to_be64(cpu->env.vregs[i][1]);
}
}
static void s390x_write_elf64_vregshi(Note *note, S390CPU *cpu, int id)
{
int i;
S390xElfVregsHi *temp_vregshi;
temp_vregshi = &note->contents.vregshi;
note->hdr.n_type = cpu_to_be32(NT_S390_VXRS_HIGH);
for (i = 0; i <= 15; i++) {
temp_vregshi->vregs[i][0] = cpu_to_be64(cpu->env.vregs[i + 16][0]);
temp_vregshi->vregs[i][1] = cpu_to_be64(cpu->env.vregs[i + 16][1]);
}
}
static void s390x_write_elf64_gscb(Note *note, S390CPU *cpu, int id)
{
int i;
note->hdr.n_type = cpu_to_be32(NT_S390_GS_CB);
for (i = 0; i < 4; i++) {
note->contents.gscb.gsregs[i] = cpu_to_be64(cpu->env.gscb[i]);
}
}
static void s390x_write_elf64_timer(Note *note, S390CPU *cpu, int id)
{
note->hdr.n_type = cpu_to_be32(NT_S390_TIMER);
note->contents.timer = cpu_to_be64((uint64_t)(cpu->env.cputm));
}
static void s390x_write_elf64_todcmp(Note *note, S390CPU *cpu, int id)
{
note->hdr.n_type = cpu_to_be32(NT_S390_TODCMP);
note->contents.todcmp = cpu_to_be64((uint64_t)(cpu->env.ckc));
}
static void s390x_write_elf64_todpreg(Note *note, S390CPU *cpu, int id)
{
note->hdr.n_type = cpu_to_be32(NT_S390_TODPREG);
note->contents.todpreg = cpu_to_be32((uint32_t)(cpu->env.todpr));
}
static void s390x_write_elf64_ctrs(Note *note, S390CPU *cpu, int id)
{
int i;
note->hdr.n_type = cpu_to_be32(NT_S390_CTRS);
for (i = 0; i <= 15; i++) {
note->contents.ctrs[i] = cpu_to_be64(cpu->env.cregs[i]);
}
}
static void s390x_write_elf64_prefix(Note *note, S390CPU *cpu, int id)
{
note->hdr.n_type = cpu_to_be32(NT_S390_PREFIX);
note->contents.prefix = cpu_to_be32((uint32_t)(cpu->env.psa));
}
static void s390x_write_elf64_pv(Note *note, S390CPU *cpu, int id)
{
note->hdr.n_type = cpu_to_be32(NT_S390_PV_CPU_DATA);
if (!pv_dump_initialized) {
return;
}
kvm_s390_dump_cpu(cpu, &note->contents.dynamic);
}
typedef struct NoteFuncDescStruct {
int contents_size;
uint64_t (*note_size_func)(void); /* NULL for non-dynamic sized contents */
void (*note_contents_func)(Note *note, S390CPU *cpu, int id);
bool pvonly;
} NoteFuncDesc;
static const NoteFuncDesc note_core[] = {
{sizeof_field(Note, contents.prstatus), NULL, s390x_write_elf64_prstatus, false},
{sizeof_field(Note, contents.fpregset), NULL, s390x_write_elf64_fpregset, false},
{ 0, NULL, NULL, false}
};
static const NoteFuncDesc note_linux[] = {
{sizeof_field(Note, contents.prefix), NULL, s390x_write_elf64_prefix, false},
{sizeof_field(Note, contents.ctrs), NULL, s390x_write_elf64_ctrs, false},
{sizeof_field(Note, contents.timer), NULL, s390x_write_elf64_timer, false},
{sizeof_field(Note, contents.todcmp), NULL, s390x_write_elf64_todcmp, false},
{sizeof_field(Note, contents.todpreg), NULL, s390x_write_elf64_todpreg, false},
{sizeof_field(Note, contents.vregslo), NULL, s390x_write_elf64_vregslo, false},
{sizeof_field(Note, contents.vregshi), NULL, s390x_write_elf64_vregshi, false},
{sizeof_field(Note, contents.gscb), NULL, s390x_write_elf64_gscb, false},
{0, kvm_s390_pv_dmp_get_size_cpu, s390x_write_elf64_pv, true},
{ 0, NULL, NULL, false}
};
static int s390x_write_elf64_notes(const char *note_name,
WriteCoreDumpFunction f,
S390CPU *cpu, int id,
DumpState *s,
const NoteFuncDesc *funcs)
{
Note note, *notep;
const NoteFuncDesc *nf;
int note_size, content_size;
int ret = -1;
assert(strlen(note_name) < sizeof(note.name));
for (nf = funcs; nf->note_contents_func; nf++) {
notep = &note;
if (nf->pvonly && !s390_is_pv()) {
continue;
}
content_size = nf->note_size_func ? nf->note_size_func() : nf->contents_size;
note_size = sizeof(note) - sizeof(notep->contents) + content_size;
/* Notes with dynamic sizes need to allocate a note */
if (nf->note_size_func) {
notep = g_malloc(note_size);
}
memset(notep, 0, sizeof(note));
/* Setup note header data */
notep->hdr.n_descsz = cpu_to_be32(content_size);
notep->hdr.n_namesz = cpu_to_be32(strlen(note_name) + 1);
g_strlcpy(notep->name, note_name, sizeof(notep->name));
/* Get contents and write them out */
(*nf->note_contents_func)(notep, cpu, id);
ret = f(notep, note_size, s);
if (nf->note_size_func) {
g_free(notep);
}
if (ret < 0) {
return -1;
}
}
return 0;
}
int s390_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
int cpuid, DumpState *s)
{
S390CPU *cpu = S390_CPU(cs);
int r;
r = s390x_write_elf64_notes("CORE", f, cpu, cpuid, s, note_core);
if (r) {
return r;
}
return s390x_write_elf64_notes("LINUX", f, cpu, cpuid, s, note_linux);
}
/* PV dump section size functions */
static uint64_t get_mem_state_size_from_len(uint64_t len)
{
return (len / (MiB)) * kvm_s390_pv_dmp_get_size_mem_state();
}
static uint64_t get_size_mem_state(DumpState *s)
{
return get_mem_state_size_from_len(s->total_size);
}
static uint64_t get_size_completion_data(DumpState *s)
{
return kvm_s390_pv_dmp_get_size_completion_data();
}
/* PV dump section data functions*/
static int get_data_completion(DumpState *s, uint8_t *buff)
{
int rc;
if (!pv_dump_initialized) {
return 0;
}
rc = kvm_s390_dump_completion_data(buff);
if (!rc) {
pv_dump_initialized = false;
}
return rc;
}
static int get_mem_state(DumpState *s, uint8_t *buff)
{
int64_t memblock_size, memblock_start;
GuestPhysBlock *block;
uint64_t off;
int rc;
QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
memblock_start = dump_filtered_memblock_start(block, s->filter_area_begin,
s->filter_area_length);
if (memblock_start == -1) {
continue;
}
memblock_size = dump_filtered_memblock_size(block, s->filter_area_begin,
s->filter_area_length);
off = get_mem_state_size_from_len(block->target_start);
rc = kvm_s390_dump_mem_state(block->target_start,
get_mem_state_size_from_len(memblock_size),
buff + off);
if (rc) {
return rc;
}
}
return 0;
}
static struct sections {
uint64_t (*sections_size_func)(DumpState *s);
int (*sections_contents_func)(DumpState *s, uint8_t *buff);
char sctn_str[12];
} sections[] = {
{ get_size_mem_state, get_mem_state, "pv_mem_meta"},
{ get_size_completion_data, get_data_completion, "pv_compl"},
{NULL , NULL, ""}
};
static uint64_t arch_sections_write_hdr(DumpState *s, uint8_t *buff)
{
Elf64_Shdr *shdr = (void *)buff;
struct sections *sctn = sections;
uint64_t off = s->section_offset;
if (!pv_dump_initialized) {
return 0;
}
for (; sctn->sections_size_func; off += shdr->sh_size, sctn++, shdr++) {
memset(shdr, 0, sizeof(*shdr));
shdr->sh_type = SHT_PROGBITS;
shdr->sh_offset = off;
shdr->sh_size = sctn->sections_size_func(s);
shdr->sh_name = s->string_table_buf->len;
g_array_append_vals(s->string_table_buf, sctn->sctn_str, sizeof(sctn->sctn_str));
}
return (uintptr_t)shdr - (uintptr_t)buff;
}
/* Add arch specific number of sections and their respective sizes */
static void arch_sections_add(DumpState *s)
{
struct sections *sctn = sections;
/*
* We only do a PV dump if we are running a PV guest, KVM supports
* the dump API and we got valid dump length information.
*/
if (!s390_is_pv() || !kvm_s390_get_protected_dump() ||
!kvm_s390_pv_info_basic_valid()) {
return;
}
/*
* Start the UV dump process by doing the initialize dump call via
* KVM as the proxy.
*/
if (!kvm_s390_dump_init()) {
pv_dump_initialized = true;
} else {
/*
* Dump init failed, maybe the guest owner disabled dumping.
* We'll continue the non-PV dump process since this is no
* reason to crash qemu.
*/
return;
}
for (; sctn->sections_size_func; sctn++) {
s->shdr_num += 1;
s->elf_section_data_size += sctn->sections_size_func(s);
}
}
/*
* After the PV dump has been initialized, the CPU data has been
* fetched and memory has been dumped, we need to grab the tweak data
* and the completion data.
*/
static int arch_sections_write(DumpState *s, uint8_t *buff)
{
struct sections *sctn = sections;
int rc;
if (!pv_dump_initialized) {
return -EINVAL;
}
for (; sctn->sections_size_func; sctn++) {
rc = sctn->sections_contents_func(s, buff);
buff += sctn->sections_size_func(s);
if (rc) {
return rc;
}
}
return 0;
}
int cpu_get_dump_info(ArchDumpInfo *info,
const struct GuestPhysBlockList *guest_phys_blocks)
{
info->d_machine = EM_S390;
info->d_endian = ELFDATA2MSB;
info->d_class = ELFCLASS64;
/*
* This is evaluated for each dump so we can freely switch
* between PV and non-PV.
*/
if (s390_is_pv() && kvm_s390_get_protected_dump() &&
kvm_s390_pv_info_basic_valid()) {
info->arch_sections_add_fn = *arch_sections_add;
info->arch_sections_write_hdr_fn = *arch_sections_write_hdr;
info->arch_sections_write_fn = *arch_sections_write;
} else {
info->arch_sections_add_fn = NULL;
info->arch_sections_write_hdr_fn = NULL;
info->arch_sections_write_fn = NULL;
}
return 0;
}
ssize_t cpu_get_note_size(int class, int machine, int nr_cpus)
{
int name_size = 8; /* "LINUX" or "CORE" + pad */
size_t elf_note_size = 0;
int note_head_size, content_size;
const NoteFuncDesc *nf;
assert(class == ELFCLASS64);
assert(machine == EM_S390);
note_head_size = sizeof(Elf64_Nhdr);
for (nf = note_core; nf->note_contents_func; nf++) {
elf_note_size = elf_note_size + note_head_size + name_size + nf->contents_size;
}
for (nf = note_linux; nf->note_contents_func; nf++) {
if (nf->pvonly && !s390_is_pv()) {
continue;
}
content_size = nf->contents_size ? nf->contents_size : nf->note_size_func();
elf_note_size = elf_note_size + note_head_size + name_size +
content_size;
}
return (elf_note_size) * nr_cpus;
}