forked from mirror/qemu
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1350 lines
44 KiB
C
1350 lines
44 KiB
C
/*
|
|
* QEMU Hypervisor.framework support for Apple Silicon
|
|
|
|
* Copyright 2020 Alexander Graf <agraf@csgraf.de>
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/error-report.h"
|
|
|
|
#include "sysemu/runstate.h"
|
|
#include "sysemu/hvf.h"
|
|
#include "sysemu/hvf_int.h"
|
|
#include "sysemu/hw_accel.h"
|
|
#include "hvf_arm.h"
|
|
#include "cpregs.h"
|
|
|
|
#include <mach/mach_time.h>
|
|
|
|
#include "exec/address-spaces.h"
|
|
#include "hw/irq.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "sysemu/cpus.h"
|
|
#include "arm-powerctl.h"
|
|
#include "target/arm/cpu.h"
|
|
#include "target/arm/internals.h"
|
|
#include "trace/trace-target_arm_hvf.h"
|
|
#include "migration/vmstate.h"
|
|
|
|
#define HVF_SYSREG(crn, crm, op0, op1, op2) \
|
|
ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
|
|
#define PL1_WRITE_MASK 0x4
|
|
|
|
#define SYSREG_OP0_SHIFT 20
|
|
#define SYSREG_OP0_MASK 0x3
|
|
#define SYSREG_OP0(sysreg) ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
|
|
#define SYSREG_OP1_SHIFT 14
|
|
#define SYSREG_OP1_MASK 0x7
|
|
#define SYSREG_OP1(sysreg) ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
|
|
#define SYSREG_CRN_SHIFT 10
|
|
#define SYSREG_CRN_MASK 0xf
|
|
#define SYSREG_CRN(sysreg) ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
|
|
#define SYSREG_CRM_SHIFT 1
|
|
#define SYSREG_CRM_MASK 0xf
|
|
#define SYSREG_CRM(sysreg) ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
|
|
#define SYSREG_OP2_SHIFT 17
|
|
#define SYSREG_OP2_MASK 0x7
|
|
#define SYSREG_OP2(sysreg) ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
|
|
|
|
#define SYSREG(op0, op1, crn, crm, op2) \
|
|
((op0 << SYSREG_OP0_SHIFT) | \
|
|
(op1 << SYSREG_OP1_SHIFT) | \
|
|
(crn << SYSREG_CRN_SHIFT) | \
|
|
(crm << SYSREG_CRM_SHIFT) | \
|
|
(op2 << SYSREG_OP2_SHIFT))
|
|
#define SYSREG_MASK \
|
|
SYSREG(SYSREG_OP0_MASK, \
|
|
SYSREG_OP1_MASK, \
|
|
SYSREG_CRN_MASK, \
|
|
SYSREG_CRM_MASK, \
|
|
SYSREG_OP2_MASK)
|
|
#define SYSREG_OSLAR_EL1 SYSREG(2, 0, 1, 0, 4)
|
|
#define SYSREG_OSLSR_EL1 SYSREG(2, 0, 1, 1, 4)
|
|
#define SYSREG_OSDLR_EL1 SYSREG(2, 0, 1, 3, 4)
|
|
#define SYSREG_CNTPCT_EL0 SYSREG(3, 3, 14, 0, 1)
|
|
#define SYSREG_PMCR_EL0 SYSREG(3, 3, 9, 12, 0)
|
|
#define SYSREG_PMUSERENR_EL0 SYSREG(3, 3, 9, 14, 0)
|
|
#define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
|
|
#define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
|
|
#define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
|
|
#define SYSREG_PMOVSCLR_EL0 SYSREG(3, 3, 9, 12, 3)
|
|
#define SYSREG_PMSWINC_EL0 SYSREG(3, 3, 9, 12, 4)
|
|
#define SYSREG_PMSELR_EL0 SYSREG(3, 3, 9, 12, 5)
|
|
#define SYSREG_PMCEID0_EL0 SYSREG(3, 3, 9, 12, 6)
|
|
#define SYSREG_PMCEID1_EL0 SYSREG(3, 3, 9, 12, 7)
|
|
#define SYSREG_PMCCNTR_EL0 SYSREG(3, 3, 9, 13, 0)
|
|
#define SYSREG_PMCCFILTR_EL0 SYSREG(3, 3, 14, 15, 7)
|
|
|
|
#define WFX_IS_WFE (1 << 0)
|
|
|
|
#define TMR_CTL_ENABLE (1 << 0)
|
|
#define TMR_CTL_IMASK (1 << 1)
|
|
#define TMR_CTL_ISTATUS (1 << 2)
|
|
|
|
static void hvf_wfi(CPUState *cpu);
|
|
|
|
typedef struct HVFVTimer {
|
|
/* Vtimer value during migration and paused state */
|
|
uint64_t vtimer_val;
|
|
} HVFVTimer;
|
|
|
|
static HVFVTimer vtimer;
|
|
|
|
typedef struct ARMHostCPUFeatures {
|
|
ARMISARegisters isar;
|
|
uint64_t features;
|
|
uint64_t midr;
|
|
uint32_t reset_sctlr;
|
|
const char *dtb_compatible;
|
|
} ARMHostCPUFeatures;
|
|
|
|
static ARMHostCPUFeatures arm_host_cpu_features;
|
|
|
|
struct hvf_reg_match {
|
|
int reg;
|
|
uint64_t offset;
|
|
};
|
|
|
|
static const struct hvf_reg_match hvf_reg_match[] = {
|
|
{ HV_REG_X0, offsetof(CPUARMState, xregs[0]) },
|
|
{ HV_REG_X1, offsetof(CPUARMState, xregs[1]) },
|
|
{ HV_REG_X2, offsetof(CPUARMState, xregs[2]) },
|
|
{ HV_REG_X3, offsetof(CPUARMState, xregs[3]) },
|
|
{ HV_REG_X4, offsetof(CPUARMState, xregs[4]) },
|
|
{ HV_REG_X5, offsetof(CPUARMState, xregs[5]) },
|
|
{ HV_REG_X6, offsetof(CPUARMState, xregs[6]) },
|
|
{ HV_REG_X7, offsetof(CPUARMState, xregs[7]) },
|
|
{ HV_REG_X8, offsetof(CPUARMState, xregs[8]) },
|
|
{ HV_REG_X9, offsetof(CPUARMState, xregs[9]) },
|
|
{ HV_REG_X10, offsetof(CPUARMState, xregs[10]) },
|
|
{ HV_REG_X11, offsetof(CPUARMState, xregs[11]) },
|
|
{ HV_REG_X12, offsetof(CPUARMState, xregs[12]) },
|
|
{ HV_REG_X13, offsetof(CPUARMState, xregs[13]) },
|
|
{ HV_REG_X14, offsetof(CPUARMState, xregs[14]) },
|
|
{ HV_REG_X15, offsetof(CPUARMState, xregs[15]) },
|
|
{ HV_REG_X16, offsetof(CPUARMState, xregs[16]) },
|
|
{ HV_REG_X17, offsetof(CPUARMState, xregs[17]) },
|
|
{ HV_REG_X18, offsetof(CPUARMState, xregs[18]) },
|
|
{ HV_REG_X19, offsetof(CPUARMState, xregs[19]) },
|
|
{ HV_REG_X20, offsetof(CPUARMState, xregs[20]) },
|
|
{ HV_REG_X21, offsetof(CPUARMState, xregs[21]) },
|
|
{ HV_REG_X22, offsetof(CPUARMState, xregs[22]) },
|
|
{ HV_REG_X23, offsetof(CPUARMState, xregs[23]) },
|
|
{ HV_REG_X24, offsetof(CPUARMState, xregs[24]) },
|
|
{ HV_REG_X25, offsetof(CPUARMState, xregs[25]) },
|
|
{ HV_REG_X26, offsetof(CPUARMState, xregs[26]) },
|
|
{ HV_REG_X27, offsetof(CPUARMState, xregs[27]) },
|
|
{ HV_REG_X28, offsetof(CPUARMState, xregs[28]) },
|
|
{ HV_REG_X29, offsetof(CPUARMState, xregs[29]) },
|
|
{ HV_REG_X30, offsetof(CPUARMState, xregs[30]) },
|
|
{ HV_REG_PC, offsetof(CPUARMState, pc) },
|
|
};
|
|
|
|
static const struct hvf_reg_match hvf_fpreg_match[] = {
|
|
{ HV_SIMD_FP_REG_Q0, offsetof(CPUARMState, vfp.zregs[0]) },
|
|
{ HV_SIMD_FP_REG_Q1, offsetof(CPUARMState, vfp.zregs[1]) },
|
|
{ HV_SIMD_FP_REG_Q2, offsetof(CPUARMState, vfp.zregs[2]) },
|
|
{ HV_SIMD_FP_REG_Q3, offsetof(CPUARMState, vfp.zregs[3]) },
|
|
{ HV_SIMD_FP_REG_Q4, offsetof(CPUARMState, vfp.zregs[4]) },
|
|
{ HV_SIMD_FP_REG_Q5, offsetof(CPUARMState, vfp.zregs[5]) },
|
|
{ HV_SIMD_FP_REG_Q6, offsetof(CPUARMState, vfp.zregs[6]) },
|
|
{ HV_SIMD_FP_REG_Q7, offsetof(CPUARMState, vfp.zregs[7]) },
|
|
{ HV_SIMD_FP_REG_Q8, offsetof(CPUARMState, vfp.zregs[8]) },
|
|
{ HV_SIMD_FP_REG_Q9, offsetof(CPUARMState, vfp.zregs[9]) },
|
|
{ HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
|
|
{ HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
|
|
{ HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
|
|
{ HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
|
|
{ HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
|
|
{ HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
|
|
{ HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
|
|
{ HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
|
|
{ HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
|
|
{ HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
|
|
{ HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
|
|
{ HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
|
|
{ HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
|
|
{ HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
|
|
{ HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
|
|
{ HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
|
|
{ HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
|
|
{ HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
|
|
{ HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
|
|
{ HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
|
|
{ HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
|
|
{ HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
|
|
};
|
|
|
|
struct hvf_sreg_match {
|
|
int reg;
|
|
uint32_t key;
|
|
uint32_t cp_idx;
|
|
};
|
|
|
|
static struct hvf_sreg_match hvf_sreg_match[] = {
|
|
{ HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
|
|
{ HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
|
|
{ HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
|
|
{ HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
|
|
|
|
{ HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
|
|
{ HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
|
|
{ HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
|
|
{ HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
|
|
|
|
{ HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
|
|
{ HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
|
|
{ HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
|
|
{ HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
|
|
|
|
{ HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
|
|
{ HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
|
|
{ HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
|
|
{ HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
|
|
|
|
{ HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
|
|
{ HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
|
|
{ HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
|
|
{ HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
|
|
|
|
{ HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
|
|
{ HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
|
|
{ HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
|
|
{ HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
|
|
|
|
{ HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
|
|
{ HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
|
|
{ HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
|
|
{ HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
|
|
|
|
{ HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
|
|
{ HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
|
|
{ HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
|
|
{ HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
|
|
|
|
{ HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
|
|
{ HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
|
|
{ HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
|
|
{ HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
|
|
|
|
{ HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
|
|
{ HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
|
|
{ HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
|
|
{ HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
|
|
|
|
{ HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
|
|
{ HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
|
|
{ HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
|
|
{ HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
|
|
|
|
{ HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
|
|
{ HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
|
|
{ HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
|
|
{ HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
|
|
|
|
{ HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
|
|
{ HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
|
|
{ HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
|
|
{ HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
|
|
|
|
{ HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
|
|
{ HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
|
|
{ HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
|
|
{ HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
|
|
|
|
{ HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
|
|
{ HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
|
|
{ HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
|
|
{ HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
|
|
|
|
{ HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
|
|
{ HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
|
|
{ HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
|
|
{ HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
|
|
|
|
#ifdef SYNC_NO_RAW_REGS
|
|
/*
|
|
* The registers below are manually synced on init because they are
|
|
* marked as NO_RAW. We still list them to make number space sync easier.
|
|
*/
|
|
{ HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
|
|
{ HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
|
|
{ HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
|
|
{ HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
|
|
#endif
|
|
{ HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
|
|
{ HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
|
|
{ HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
|
|
{ HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
|
|
{ HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
|
|
#ifdef SYNC_NO_MMFR0
|
|
/* We keep the hardware MMFR0 around. HW limits are there anyway */
|
|
{ HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
|
|
#endif
|
|
{ HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
|
|
{ HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
|
|
|
|
{ HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
|
|
{ HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
|
|
{ HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
|
|
{ HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
|
|
{ HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
|
|
{ HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
|
|
|
|
{ HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
|
|
{ HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
|
|
{ HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
|
|
{ HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
|
|
{ HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
|
|
{ HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
|
|
{ HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
|
|
{ HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
|
|
{ HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
|
|
{ HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
|
|
|
|
{ HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
|
|
{ HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
|
|
{ HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
|
|
{ HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
|
|
{ HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
|
|
{ HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
|
|
{ HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
|
|
{ HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
|
|
{ HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
|
|
{ HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
|
|
{ HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
|
|
{ HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
|
|
{ HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
|
|
{ HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
|
|
{ HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
|
|
{ HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
|
|
{ HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
|
|
{ HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
|
|
{ HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
|
|
{ HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
|
|
};
|
|
|
|
int hvf_get_registers(CPUState *cpu)
|
|
{
|
|
ARMCPU *arm_cpu = ARM_CPU(cpu);
|
|
CPUARMState *env = &arm_cpu->env;
|
|
hv_return_t ret;
|
|
uint64_t val;
|
|
hv_simd_fp_uchar16_t fpval;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
|
|
ret = hv_vcpu_get_reg(cpu->hvf->fd, hvf_reg_match[i].reg, &val);
|
|
*(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
|
|
assert_hvf_ok(ret);
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
|
|
ret = hv_vcpu_get_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
|
|
&fpval);
|
|
memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
|
|
assert_hvf_ok(ret);
|
|
}
|
|
|
|
val = 0;
|
|
ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPCR, &val);
|
|
assert_hvf_ok(ret);
|
|
vfp_set_fpcr(env, val);
|
|
|
|
val = 0;
|
|
ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPSR, &val);
|
|
assert_hvf_ok(ret);
|
|
vfp_set_fpsr(env, val);
|
|
|
|
ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_CPSR, &val);
|
|
assert_hvf_ok(ret);
|
|
pstate_write(env, val);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
|
|
if (hvf_sreg_match[i].cp_idx == -1) {
|
|
continue;
|
|
}
|
|
|
|
ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, &val);
|
|
assert_hvf_ok(ret);
|
|
|
|
arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
|
|
}
|
|
assert(write_list_to_cpustate(arm_cpu));
|
|
|
|
aarch64_restore_sp(env, arm_current_el(env));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int hvf_put_registers(CPUState *cpu)
|
|
{
|
|
ARMCPU *arm_cpu = ARM_CPU(cpu);
|
|
CPUARMState *env = &arm_cpu->env;
|
|
hv_return_t ret;
|
|
uint64_t val;
|
|
hv_simd_fp_uchar16_t fpval;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
|
|
val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
|
|
ret = hv_vcpu_set_reg(cpu->hvf->fd, hvf_reg_match[i].reg, val);
|
|
assert_hvf_ok(ret);
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
|
|
memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
|
|
ret = hv_vcpu_set_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
|
|
fpval);
|
|
assert_hvf_ok(ret);
|
|
}
|
|
|
|
ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPCR, vfp_get_fpcr(env));
|
|
assert_hvf_ok(ret);
|
|
|
|
ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPSR, vfp_get_fpsr(env));
|
|
assert_hvf_ok(ret);
|
|
|
|
ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_CPSR, pstate_read(env));
|
|
assert_hvf_ok(ret);
|
|
|
|
aarch64_save_sp(env, arm_current_el(env));
|
|
|
|
assert(write_cpustate_to_list(arm_cpu, false));
|
|
for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
|
|
if (hvf_sreg_match[i].cp_idx == -1) {
|
|
continue;
|
|
}
|
|
|
|
val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
|
|
ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, val);
|
|
assert_hvf_ok(ret);
|
|
}
|
|
|
|
ret = hv_vcpu_set_vtimer_offset(cpu->hvf->fd, hvf_state->vtimer_offset);
|
|
assert_hvf_ok(ret);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void flush_cpu_state(CPUState *cpu)
|
|
{
|
|
if (cpu->vcpu_dirty) {
|
|
hvf_put_registers(cpu);
|
|
cpu->vcpu_dirty = false;
|
|
}
|
|
}
|
|
|
|
static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
|
|
{
|
|
hv_return_t r;
|
|
|
|
flush_cpu_state(cpu);
|
|
|
|
if (rt < 31) {
|
|
r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_X0 + rt, val);
|
|
assert_hvf_ok(r);
|
|
}
|
|
}
|
|
|
|
static uint64_t hvf_get_reg(CPUState *cpu, int rt)
|
|
{
|
|
uint64_t val = 0;
|
|
hv_return_t r;
|
|
|
|
flush_cpu_state(cpu);
|
|
|
|
if (rt < 31) {
|
|
r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_X0 + rt, &val);
|
|
assert_hvf_ok(r);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
|
|
{
|
|
ARMISARegisters host_isar = {};
|
|
const struct isar_regs {
|
|
int reg;
|
|
uint64_t *val;
|
|
} regs[] = {
|
|
{ HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
|
|
{ HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
|
|
{ HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
|
|
{ HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
|
|
{ HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
|
|
{ HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
|
|
{ HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
|
|
{ HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
|
|
{ HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
|
|
};
|
|
hv_vcpu_t fd;
|
|
hv_return_t r = HV_SUCCESS;
|
|
hv_vcpu_exit_t *exit;
|
|
int i;
|
|
|
|
ahcf->dtb_compatible = "arm,arm-v8";
|
|
ahcf->features = (1ULL << ARM_FEATURE_V8) |
|
|
(1ULL << ARM_FEATURE_NEON) |
|
|
(1ULL << ARM_FEATURE_AARCH64) |
|
|
(1ULL << ARM_FEATURE_PMU) |
|
|
(1ULL << ARM_FEATURE_GENERIC_TIMER);
|
|
|
|
/* We set up a small vcpu to extract host registers */
|
|
|
|
if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
|
|
return false;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(regs); i++) {
|
|
r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
|
|
}
|
|
r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
|
|
r |= hv_vcpu_destroy(fd);
|
|
|
|
ahcf->isar = host_isar;
|
|
|
|
/*
|
|
* A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
|
|
* boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
|
|
*/
|
|
ahcf->reset_sctlr = 0x30100180;
|
|
/*
|
|
* SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
|
|
* let's disable it on boot and then allow guest software to turn it on by
|
|
* setting it to 0.
|
|
*/
|
|
ahcf->reset_sctlr |= 0x00800000;
|
|
|
|
/* Make sure we don't advertise AArch32 support for EL0/EL1 */
|
|
if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
|
|
return false;
|
|
}
|
|
|
|
return r == HV_SUCCESS;
|
|
}
|
|
|
|
void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
|
|
{
|
|
if (!arm_host_cpu_features.dtb_compatible) {
|
|
if (!hvf_enabled() ||
|
|
!hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
|
|
/*
|
|
* We can't report this error yet, so flag that we need to
|
|
* in arm_cpu_realizefn().
|
|
*/
|
|
cpu->host_cpu_probe_failed = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
|
|
cpu->isar = arm_host_cpu_features.isar;
|
|
cpu->env.features = arm_host_cpu_features.features;
|
|
cpu->midr = arm_host_cpu_features.midr;
|
|
cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
|
|
}
|
|
|
|
void hvf_arch_vcpu_destroy(CPUState *cpu)
|
|
{
|
|
}
|
|
|
|
int hvf_arch_init_vcpu(CPUState *cpu)
|
|
{
|
|
ARMCPU *arm_cpu = ARM_CPU(cpu);
|
|
CPUARMState *env = &arm_cpu->env;
|
|
uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
|
|
uint32_t sregs_cnt = 0;
|
|
uint64_t pfr;
|
|
hv_return_t ret;
|
|
int i;
|
|
|
|
env->aarch64 = true;
|
|
asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
|
|
|
|
/* Allocate enough space for our sysreg sync */
|
|
arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
|
|
sregs_match_len);
|
|
arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
|
|
sregs_match_len);
|
|
arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
|
|
arm_cpu->cpreg_vmstate_indexes,
|
|
sregs_match_len);
|
|
arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
|
|
arm_cpu->cpreg_vmstate_values,
|
|
sregs_match_len);
|
|
|
|
memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
|
|
|
|
/* Populate cp list for all known sysregs */
|
|
for (i = 0; i < sregs_match_len; i++) {
|
|
const ARMCPRegInfo *ri;
|
|
uint32_t key = hvf_sreg_match[i].key;
|
|
|
|
ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
|
|
if (ri) {
|
|
assert(!(ri->type & ARM_CP_NO_RAW));
|
|
hvf_sreg_match[i].cp_idx = sregs_cnt;
|
|
arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
|
|
} else {
|
|
hvf_sreg_match[i].cp_idx = -1;
|
|
}
|
|
}
|
|
arm_cpu->cpreg_array_len = sregs_cnt;
|
|
arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
|
|
|
|
assert(write_cpustate_to_list(arm_cpu, false));
|
|
|
|
/* Set CP_NO_RAW system registers on init */
|
|
ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MIDR_EL1,
|
|
arm_cpu->midr);
|
|
assert_hvf_ok(ret);
|
|
|
|
ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MPIDR_EL1,
|
|
arm_cpu->mp_affinity);
|
|
assert_hvf_ok(ret);
|
|
|
|
ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
|
|
assert_hvf_ok(ret);
|
|
pfr |= env->gicv3state ? (1 << 24) : 0;
|
|
ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
|
|
assert_hvf_ok(ret);
|
|
|
|
/* We're limited to underlying hardware caps, override internal versions */
|
|
ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
|
|
&arm_cpu->isar.id_aa64mmfr0);
|
|
assert_hvf_ok(ret);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void hvf_kick_vcpu_thread(CPUState *cpu)
|
|
{
|
|
cpus_kick_thread(cpu);
|
|
hv_vcpus_exit(&cpu->hvf->fd, 1);
|
|
}
|
|
|
|
static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
|
|
uint32_t syndrome)
|
|
{
|
|
ARMCPU *arm_cpu = ARM_CPU(cpu);
|
|
CPUARMState *env = &arm_cpu->env;
|
|
|
|
cpu->exception_index = excp;
|
|
env->exception.target_el = 1;
|
|
env->exception.syndrome = syndrome;
|
|
|
|
arm_cpu_do_interrupt(cpu);
|
|
}
|
|
|
|
static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
|
|
{
|
|
int32_t ret = arm_set_cpu_off(arm_cpu->mp_affinity);
|
|
assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* Handle a PSCI call.
|
|
*
|
|
* Returns 0 on success
|
|
* -1 when the PSCI call is unknown,
|
|
*/
|
|
static bool hvf_handle_psci_call(CPUState *cpu)
|
|
{
|
|
ARMCPU *arm_cpu = ARM_CPU(cpu);
|
|
CPUARMState *env = &arm_cpu->env;
|
|
uint64_t param[4] = {
|
|
env->xregs[0],
|
|
env->xregs[1],
|
|
env->xregs[2],
|
|
env->xregs[3]
|
|
};
|
|
uint64_t context_id, mpidr;
|
|
bool target_aarch64 = true;
|
|
CPUState *target_cpu_state;
|
|
ARMCPU *target_cpu;
|
|
target_ulong entry;
|
|
int target_el = 1;
|
|
int32_t ret = 0;
|
|
|
|
trace_hvf_psci_call(param[0], param[1], param[2], param[3],
|
|
arm_cpu->mp_affinity);
|
|
|
|
switch (param[0]) {
|
|
case QEMU_PSCI_0_2_FN_PSCI_VERSION:
|
|
ret = QEMU_PSCI_VERSION_1_1;
|
|
break;
|
|
case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
|
|
ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
|
|
break;
|
|
case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
|
|
case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
|
|
mpidr = param[1];
|
|
|
|
switch (param[2]) {
|
|
case 0:
|
|
target_cpu_state = arm_get_cpu_by_id(mpidr);
|
|
if (!target_cpu_state) {
|
|
ret = QEMU_PSCI_RET_INVALID_PARAMS;
|
|
break;
|
|
}
|
|
target_cpu = ARM_CPU(target_cpu_state);
|
|
|
|
ret = target_cpu->power_state;
|
|
break;
|
|
default:
|
|
/* Everything above affinity level 0 is always on. */
|
|
ret = 0;
|
|
}
|
|
break;
|
|
case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
|
|
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
|
|
/*
|
|
* QEMU reset and shutdown are async requests, but PSCI
|
|
* mandates that we never return from the reset/shutdown
|
|
* call, so power the CPU off now so it doesn't execute
|
|
* anything further.
|
|
*/
|
|
hvf_psci_cpu_off(arm_cpu);
|
|
break;
|
|
case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
|
|
qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
|
|
hvf_psci_cpu_off(arm_cpu);
|
|
break;
|
|
case QEMU_PSCI_0_1_FN_CPU_ON:
|
|
case QEMU_PSCI_0_2_FN_CPU_ON:
|
|
case QEMU_PSCI_0_2_FN64_CPU_ON:
|
|
mpidr = param[1];
|
|
entry = param[2];
|
|
context_id = param[3];
|
|
ret = arm_set_cpu_on(mpidr, entry, context_id,
|
|
target_el, target_aarch64);
|
|
break;
|
|
case QEMU_PSCI_0_1_FN_CPU_OFF:
|
|
case QEMU_PSCI_0_2_FN_CPU_OFF:
|
|
hvf_psci_cpu_off(arm_cpu);
|
|
break;
|
|
case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
|
|
case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
|
|
case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
|
|
/* Affinity levels are not supported in QEMU */
|
|
if (param[1] & 0xfffe0000) {
|
|
ret = QEMU_PSCI_RET_INVALID_PARAMS;
|
|
break;
|
|
}
|
|
/* Powerdown is not supported, we always go into WFI */
|
|
env->xregs[0] = 0;
|
|
hvf_wfi(cpu);
|
|
break;
|
|
case QEMU_PSCI_0_1_FN_MIGRATE:
|
|
case QEMU_PSCI_0_2_FN_MIGRATE:
|
|
ret = QEMU_PSCI_RET_NOT_SUPPORTED;
|
|
break;
|
|
case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
|
|
switch (param[1]) {
|
|
case QEMU_PSCI_0_2_FN_PSCI_VERSION:
|
|
case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
|
|
case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
|
|
case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
|
|
case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
|
|
case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
|
|
case QEMU_PSCI_0_1_FN_CPU_ON:
|
|
case QEMU_PSCI_0_2_FN_CPU_ON:
|
|
case QEMU_PSCI_0_2_FN64_CPU_ON:
|
|
case QEMU_PSCI_0_1_FN_CPU_OFF:
|
|
case QEMU_PSCI_0_2_FN_CPU_OFF:
|
|
case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
|
|
case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
|
|
case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
|
|
case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
|
|
ret = 0;
|
|
break;
|
|
case QEMU_PSCI_0_1_FN_MIGRATE:
|
|
case QEMU_PSCI_0_2_FN_MIGRATE:
|
|
default:
|
|
ret = QEMU_PSCI_RET_NOT_SUPPORTED;
|
|
}
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
env->xregs[0] = ret;
|
|
return true;
|
|
}
|
|
|
|
static bool is_id_sysreg(uint32_t reg)
|
|
{
|
|
return SYSREG_OP0(reg) == 3 &&
|
|
SYSREG_OP1(reg) == 0 &&
|
|
SYSREG_CRN(reg) == 0 &&
|
|
SYSREG_CRM(reg) >= 1 &&
|
|
SYSREG_CRM(reg) < 8;
|
|
}
|
|
|
|
static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
|
|
{
|
|
ARMCPU *arm_cpu = ARM_CPU(cpu);
|
|
CPUARMState *env = &arm_cpu->env;
|
|
uint64_t val = 0;
|
|
|
|
switch (reg) {
|
|
case SYSREG_CNTPCT_EL0:
|
|
val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
|
|
gt_cntfrq_period_ns(arm_cpu);
|
|
break;
|
|
case SYSREG_PMCR_EL0:
|
|
val = env->cp15.c9_pmcr;
|
|
break;
|
|
case SYSREG_PMCCNTR_EL0:
|
|
pmu_op_start(env);
|
|
val = env->cp15.c15_ccnt;
|
|
pmu_op_finish(env);
|
|
break;
|
|
case SYSREG_PMCNTENCLR_EL0:
|
|
val = env->cp15.c9_pmcnten;
|
|
break;
|
|
case SYSREG_PMOVSCLR_EL0:
|
|
val = env->cp15.c9_pmovsr;
|
|
break;
|
|
case SYSREG_PMSELR_EL0:
|
|
val = env->cp15.c9_pmselr;
|
|
break;
|
|
case SYSREG_PMINTENCLR_EL1:
|
|
val = env->cp15.c9_pminten;
|
|
break;
|
|
case SYSREG_PMCCFILTR_EL0:
|
|
val = env->cp15.pmccfiltr_el0;
|
|
break;
|
|
case SYSREG_PMCNTENSET_EL0:
|
|
val = env->cp15.c9_pmcnten;
|
|
break;
|
|
case SYSREG_PMUSERENR_EL0:
|
|
val = env->cp15.c9_pmuserenr;
|
|
break;
|
|
case SYSREG_PMCEID0_EL0:
|
|
case SYSREG_PMCEID1_EL0:
|
|
/* We can't really count anything yet, declare all events invalid */
|
|
val = 0;
|
|
break;
|
|
case SYSREG_OSLSR_EL1:
|
|
val = env->cp15.oslsr_el1;
|
|
break;
|
|
case SYSREG_OSDLR_EL1:
|
|
/* Dummy register */
|
|
break;
|
|
default:
|
|
if (is_id_sysreg(reg)) {
|
|
/* ID system registers read as RES0 */
|
|
val = 0;
|
|
break;
|
|
}
|
|
cpu_synchronize_state(cpu);
|
|
trace_hvf_unhandled_sysreg_read(env->pc, reg,
|
|
SYSREG_OP0(reg),
|
|
SYSREG_OP1(reg),
|
|
SYSREG_CRN(reg),
|
|
SYSREG_CRM(reg),
|
|
SYSREG_OP2(reg));
|
|
hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
|
|
return 1;
|
|
}
|
|
|
|
trace_hvf_sysreg_read(reg,
|
|
SYSREG_OP0(reg),
|
|
SYSREG_OP1(reg),
|
|
SYSREG_CRN(reg),
|
|
SYSREG_CRM(reg),
|
|
SYSREG_OP2(reg),
|
|
val);
|
|
hvf_set_reg(cpu, rt, val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pmu_update_irq(CPUARMState *env)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
|
|
(env->cp15.c9_pminten & env->cp15.c9_pmovsr));
|
|
}
|
|
|
|
static bool pmu_event_supported(uint16_t number)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/* Returns true if the counter (pass 31 for PMCCNTR) should count events using
|
|
* the current EL, security state, and register configuration.
|
|
*/
|
|
static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
|
|
{
|
|
uint64_t filter;
|
|
bool enabled, filtered = true;
|
|
int el = arm_current_el(env);
|
|
|
|
enabled = (env->cp15.c9_pmcr & PMCRE) &&
|
|
(env->cp15.c9_pmcnten & (1 << counter));
|
|
|
|
if (counter == 31) {
|
|
filter = env->cp15.pmccfiltr_el0;
|
|
} else {
|
|
filter = env->cp15.c14_pmevtyper[counter];
|
|
}
|
|
|
|
if (el == 0) {
|
|
filtered = filter & PMXEVTYPER_U;
|
|
} else if (el == 1) {
|
|
filtered = filter & PMXEVTYPER_P;
|
|
}
|
|
|
|
if (counter != 31) {
|
|
/*
|
|
* If not checking PMCCNTR, ensure the counter is setup to an event we
|
|
* support
|
|
*/
|
|
uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
|
|
if (!pmu_event_supported(event)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return enabled && !filtered;
|
|
}
|
|
|
|
static void pmswinc_write(CPUARMState *env, uint64_t value)
|
|
{
|
|
unsigned int i;
|
|
for (i = 0; i < pmu_num_counters(env); i++) {
|
|
/* Increment a counter's count iff: */
|
|
if ((value & (1 << i)) && /* counter's bit is set */
|
|
/* counter is enabled and not filtered */
|
|
pmu_counter_enabled(env, i) &&
|
|
/* counter is SW_INCR */
|
|
(env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
|
|
/*
|
|
* Detect if this write causes an overflow since we can't predict
|
|
* PMSWINC overflows like we can for other events
|
|
*/
|
|
uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
|
|
|
|
if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
|
|
env->cp15.c9_pmovsr |= (1 << i);
|
|
pmu_update_irq(env);
|
|
}
|
|
|
|
env->cp15.c14_pmevcntr[i] = new_pmswinc;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
|
|
{
|
|
ARMCPU *arm_cpu = ARM_CPU(cpu);
|
|
CPUARMState *env = &arm_cpu->env;
|
|
|
|
trace_hvf_sysreg_write(reg,
|
|
SYSREG_OP0(reg),
|
|
SYSREG_OP1(reg),
|
|
SYSREG_CRN(reg),
|
|
SYSREG_CRM(reg),
|
|
SYSREG_OP2(reg),
|
|
val);
|
|
|
|
switch (reg) {
|
|
case SYSREG_PMCCNTR_EL0:
|
|
pmu_op_start(env);
|
|
env->cp15.c15_ccnt = val;
|
|
pmu_op_finish(env);
|
|
break;
|
|
case SYSREG_PMCR_EL0:
|
|
pmu_op_start(env);
|
|
|
|
if (val & PMCRC) {
|
|
/* The counter has been reset */
|
|
env->cp15.c15_ccnt = 0;
|
|
}
|
|
|
|
if (val & PMCRP) {
|
|
unsigned int i;
|
|
for (i = 0; i < pmu_num_counters(env); i++) {
|
|
env->cp15.c14_pmevcntr[i] = 0;
|
|
}
|
|
}
|
|
|
|
env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
|
|
env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK);
|
|
|
|
pmu_op_finish(env);
|
|
break;
|
|
case SYSREG_PMUSERENR_EL0:
|
|
env->cp15.c9_pmuserenr = val & 0xf;
|
|
break;
|
|
case SYSREG_PMCNTENSET_EL0:
|
|
env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
|
|
break;
|
|
case SYSREG_PMCNTENCLR_EL0:
|
|
env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
|
|
break;
|
|
case SYSREG_PMINTENCLR_EL1:
|
|
pmu_op_start(env);
|
|
env->cp15.c9_pminten |= val;
|
|
pmu_op_finish(env);
|
|
break;
|
|
case SYSREG_PMOVSCLR_EL0:
|
|
pmu_op_start(env);
|
|
env->cp15.c9_pmovsr &= ~val;
|
|
pmu_op_finish(env);
|
|
break;
|
|
case SYSREG_PMSWINC_EL0:
|
|
pmu_op_start(env);
|
|
pmswinc_write(env, val);
|
|
pmu_op_finish(env);
|
|
break;
|
|
case SYSREG_PMSELR_EL0:
|
|
env->cp15.c9_pmselr = val & 0x1f;
|
|
break;
|
|
case SYSREG_PMCCFILTR_EL0:
|
|
pmu_op_start(env);
|
|
env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
|
|
pmu_op_finish(env);
|
|
break;
|
|
case SYSREG_OSLAR_EL1:
|
|
env->cp15.oslsr_el1 = val & 1;
|
|
break;
|
|
case SYSREG_OSDLR_EL1:
|
|
/* Dummy register */
|
|
break;
|
|
default:
|
|
cpu_synchronize_state(cpu);
|
|
trace_hvf_unhandled_sysreg_write(env->pc, reg,
|
|
SYSREG_OP0(reg),
|
|
SYSREG_OP1(reg),
|
|
SYSREG_CRN(reg),
|
|
SYSREG_CRM(reg),
|
|
SYSREG_OP2(reg));
|
|
hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hvf_inject_interrupts(CPUState *cpu)
|
|
{
|
|
if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
|
|
trace_hvf_inject_fiq();
|
|
hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_FIQ,
|
|
true);
|
|
}
|
|
|
|
if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
|
|
trace_hvf_inject_irq();
|
|
hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_IRQ,
|
|
true);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint64_t hvf_vtimer_val_raw(void)
|
|
{
|
|
/*
|
|
* mach_absolute_time() returns the vtimer value without the VM
|
|
* offset that we define. Add our own offset on top.
|
|
*/
|
|
return mach_absolute_time() - hvf_state->vtimer_offset;
|
|
}
|
|
|
|
static uint64_t hvf_vtimer_val(void)
|
|
{
|
|
if (!runstate_is_running()) {
|
|
/* VM is paused, the vtimer value is in vtimer.vtimer_val */
|
|
return vtimer.vtimer_val;
|
|
}
|
|
|
|
return hvf_vtimer_val_raw();
|
|
}
|
|
|
|
static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
|
|
{
|
|
/*
|
|
* Use pselect to sleep so that other threads can IPI us while we're
|
|
* sleeping.
|
|
*/
|
|
qatomic_mb_set(&cpu->thread_kicked, false);
|
|
qemu_mutex_unlock_iothread();
|
|
pselect(0, 0, 0, 0, ts, &cpu->hvf->unblock_ipi_mask);
|
|
qemu_mutex_lock_iothread();
|
|
}
|
|
|
|
static void hvf_wfi(CPUState *cpu)
|
|
{
|
|
ARMCPU *arm_cpu = ARM_CPU(cpu);
|
|
struct timespec ts;
|
|
hv_return_t r;
|
|
uint64_t ctl;
|
|
uint64_t cval;
|
|
int64_t ticks_to_sleep;
|
|
uint64_t seconds;
|
|
uint64_t nanos;
|
|
uint32_t cntfrq;
|
|
|
|
if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
|
|
/* Interrupt pending, no need to wait */
|
|
return;
|
|
}
|
|
|
|
r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
|
|
assert_hvf_ok(r);
|
|
|
|
if (!(ctl & 1) || (ctl & 2)) {
|
|
/* Timer disabled or masked, just wait for an IPI. */
|
|
hvf_wait_for_ipi(cpu, NULL);
|
|
return;
|
|
}
|
|
|
|
r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
|
|
assert_hvf_ok(r);
|
|
|
|
ticks_to_sleep = cval - hvf_vtimer_val();
|
|
if (ticks_to_sleep < 0) {
|
|
return;
|
|
}
|
|
|
|
cntfrq = gt_cntfrq_period_ns(arm_cpu);
|
|
seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
|
|
ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
|
|
nanos = ticks_to_sleep * cntfrq;
|
|
|
|
/*
|
|
* Don't sleep for less than the time a context switch would take,
|
|
* so that we can satisfy fast timer requests on the same CPU.
|
|
* Measurements on M1 show the sweet spot to be ~2ms.
|
|
*/
|
|
if (!seconds && nanos < (2 * SCALE_MS)) {
|
|
return;
|
|
}
|
|
|
|
ts = (struct timespec) { seconds, nanos };
|
|
hvf_wait_for_ipi(cpu, &ts);
|
|
}
|
|
|
|
static void hvf_sync_vtimer(CPUState *cpu)
|
|
{
|
|
ARMCPU *arm_cpu = ARM_CPU(cpu);
|
|
hv_return_t r;
|
|
uint64_t ctl;
|
|
bool irq_state;
|
|
|
|
if (!cpu->hvf->vtimer_masked) {
|
|
/* We will get notified on vtimer changes by hvf, nothing to do */
|
|
return;
|
|
}
|
|
|
|
r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
|
|
assert_hvf_ok(r);
|
|
|
|
irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
|
|
(TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
|
|
qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
|
|
|
|
if (!irq_state) {
|
|
/* Timer no longer asserting, we can unmask it */
|
|
hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false);
|
|
cpu->hvf->vtimer_masked = false;
|
|
}
|
|
}
|
|
|
|
int hvf_vcpu_exec(CPUState *cpu)
|
|
{
|
|
ARMCPU *arm_cpu = ARM_CPU(cpu);
|
|
CPUARMState *env = &arm_cpu->env;
|
|
hv_vcpu_exit_t *hvf_exit = cpu->hvf->exit;
|
|
hv_return_t r;
|
|
bool advance_pc = false;
|
|
|
|
if (hvf_inject_interrupts(cpu)) {
|
|
return EXCP_INTERRUPT;
|
|
}
|
|
|
|
if (cpu->halted) {
|
|
return EXCP_HLT;
|
|
}
|
|
|
|
flush_cpu_state(cpu);
|
|
|
|
qemu_mutex_unlock_iothread();
|
|
assert_hvf_ok(hv_vcpu_run(cpu->hvf->fd));
|
|
|
|
/* handle VMEXIT */
|
|
uint64_t exit_reason = hvf_exit->reason;
|
|
uint64_t syndrome = hvf_exit->exception.syndrome;
|
|
uint32_t ec = syn_get_ec(syndrome);
|
|
|
|
qemu_mutex_lock_iothread();
|
|
switch (exit_reason) {
|
|
case HV_EXIT_REASON_EXCEPTION:
|
|
/* This is the main one, handle below. */
|
|
break;
|
|
case HV_EXIT_REASON_VTIMER_ACTIVATED:
|
|
qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
|
|
cpu->hvf->vtimer_masked = true;
|
|
return 0;
|
|
case HV_EXIT_REASON_CANCELED:
|
|
/* we got kicked, no exit to process */
|
|
return 0;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
hvf_sync_vtimer(cpu);
|
|
|
|
switch (ec) {
|
|
case EC_DATAABORT: {
|
|
bool isv = syndrome & ARM_EL_ISV;
|
|
bool iswrite = (syndrome >> 6) & 1;
|
|
bool s1ptw = (syndrome >> 7) & 1;
|
|
uint32_t sas = (syndrome >> 22) & 3;
|
|
uint32_t len = 1 << sas;
|
|
uint32_t srt = (syndrome >> 16) & 0x1f;
|
|
uint32_t cm = (syndrome >> 8) & 0x1;
|
|
uint64_t val = 0;
|
|
|
|
trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
|
|
hvf_exit->exception.physical_address, isv,
|
|
iswrite, s1ptw, len, srt);
|
|
|
|
if (cm) {
|
|
/* We don't cache MMIO regions */
|
|
advance_pc = true;
|
|
break;
|
|
}
|
|
|
|
assert(isv);
|
|
|
|
if (iswrite) {
|
|
val = hvf_get_reg(cpu, srt);
|
|
address_space_write(&address_space_memory,
|
|
hvf_exit->exception.physical_address,
|
|
MEMTXATTRS_UNSPECIFIED, &val, len);
|
|
} else {
|
|
address_space_read(&address_space_memory,
|
|
hvf_exit->exception.physical_address,
|
|
MEMTXATTRS_UNSPECIFIED, &val, len);
|
|
hvf_set_reg(cpu, srt, val);
|
|
}
|
|
|
|
advance_pc = true;
|
|
break;
|
|
}
|
|
case EC_SYSTEMREGISTERTRAP: {
|
|
bool isread = (syndrome >> 0) & 1;
|
|
uint32_t rt = (syndrome >> 5) & 0x1f;
|
|
uint32_t reg = syndrome & SYSREG_MASK;
|
|
uint64_t val;
|
|
int ret = 0;
|
|
|
|
if (isread) {
|
|
ret = hvf_sysreg_read(cpu, reg, rt);
|
|
} else {
|
|
val = hvf_get_reg(cpu, rt);
|
|
ret = hvf_sysreg_write(cpu, reg, val);
|
|
}
|
|
|
|
advance_pc = !ret;
|
|
break;
|
|
}
|
|
case EC_WFX_TRAP:
|
|
advance_pc = true;
|
|
if (!(syndrome & WFX_IS_WFE)) {
|
|
hvf_wfi(cpu);
|
|
}
|
|
break;
|
|
case EC_AA64_HVC:
|
|
cpu_synchronize_state(cpu);
|
|
if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
|
|
if (!hvf_handle_psci_call(cpu)) {
|
|
trace_hvf_unknown_hvc(env->xregs[0]);
|
|
/* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
|
|
env->xregs[0] = -1;
|
|
}
|
|
} else {
|
|
trace_hvf_unknown_hvc(env->xregs[0]);
|
|
hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
|
|
}
|
|
break;
|
|
case EC_AA64_SMC:
|
|
cpu_synchronize_state(cpu);
|
|
if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
|
|
advance_pc = true;
|
|
|
|
if (!hvf_handle_psci_call(cpu)) {
|
|
trace_hvf_unknown_smc(env->xregs[0]);
|
|
/* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
|
|
env->xregs[0] = -1;
|
|
}
|
|
} else {
|
|
trace_hvf_unknown_smc(env->xregs[0]);
|
|
hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
|
|
}
|
|
break;
|
|
default:
|
|
cpu_synchronize_state(cpu);
|
|
trace_hvf_exit(syndrome, ec, env->pc);
|
|
error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
|
|
}
|
|
|
|
if (advance_pc) {
|
|
uint64_t pc;
|
|
|
|
flush_cpu_state(cpu);
|
|
|
|
r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_PC, &pc);
|
|
assert_hvf_ok(r);
|
|
pc += 4;
|
|
r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_PC, pc);
|
|
assert_hvf_ok(r);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_hvf_vtimer = {
|
|
.name = "hvf-vtimer",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT64(vtimer_val, HVFVTimer),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static void hvf_vm_state_change(void *opaque, bool running, RunState state)
|
|
{
|
|
HVFVTimer *s = opaque;
|
|
|
|
if (running) {
|
|
/* Update vtimer offset on all CPUs */
|
|
hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
|
|
cpu_synchronize_all_states();
|
|
} else {
|
|
/* Remember vtimer value on every pause */
|
|
s->vtimer_val = hvf_vtimer_val_raw();
|
|
}
|
|
}
|
|
|
|
int hvf_arch_init(void)
|
|
{
|
|
hvf_state->vtimer_offset = mach_absolute_time();
|
|
vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
|
|
qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
|
|
return 0;
|
|
}
|