You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/scripts/performance/topN_callgrind.py

141 lines
5.6 KiB
Python

#!/usr/bin/env python3
# Print the top N most executed functions in QEMU using callgrind.
# Syntax:
# topN_callgrind.py [-h] [-n] <number of displayed top functions> -- \
# <qemu executable> [<qemu executable options>] \
# <target executable> [<target execurable options>]
#
# [-h] - Print the script arguments help message.
# [-n] - Specify the number of top functions to print.
# - If this flag is not specified, the tool defaults to 25.
#
# Example of usage:
# topN_callgrind.py -n 20 -- qemu-arm coulomb_double-arm
#
# This file is a part of the project "TCG Continuous Benchmarking".
#
# Copyright (C) 2020 Ahmed Karaman <ahmedkhaledkaraman@gmail.com>
# Copyright (C) 2020 Aleksandar Markovic <aleksandar.qemu.devel@gmail.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import argparse
import os
import subprocess
import sys
# Parse the command line arguments
parser = argparse.ArgumentParser(
usage='topN_callgrind.py [-h] [-n] <number of displayed top functions> -- '
'<qemu executable> [<qemu executable options>] '
'<target executable> [<target executable options>]')
parser.add_argument('-n', dest='top', type=int, default=25,
help='Specify the number of top functions to print.')
parser.add_argument('command', type=str, nargs='+', help=argparse.SUPPRESS)
args = parser.parse_args()
# Extract the needed variables from the args
command = args.command
top = args.top
# Insure that valgrind is installed
check_valgrind_presence = subprocess.run(["which", "valgrind"],
stdout=subprocess.DEVNULL)
if check_valgrind_presence.returncode:
sys.exit("Please install valgrind before running the script!")
# Run callgrind
callgrind = subprocess.run((
["valgrind", "--tool=callgrind", "--callgrind-out-file=/tmp/callgrind.data"]
+ command),
stdout=subprocess.DEVNULL,
stderr=subprocess.PIPE)
if callgrind.returncode:
sys.exit(callgrind.stderr.decode("utf-8"))
# Save callgrind_annotate output to /tmp/callgrind_annotate.out
with open("/tmp/callgrind_annotate.out", "w") as output:
callgrind_annotate = subprocess.run(["callgrind_annotate",
"/tmp/callgrind.data"],
stdout=output,
stderr=subprocess.PIPE)
if callgrind_annotate.returncode:
os.unlink('/tmp/callgrind.data')
output.close()
os.unlink('/tmp/callgrind_annotate.out')
sys.exit(callgrind_annotate.stderr.decode("utf-8"))
# Read the callgrind_annotate output to callgrind_data[]
callgrind_data = []
with open('/tmp/callgrind_annotate.out', 'r') as data:
callgrind_data = data.readlines()
# Line number with the total number of instructions
total_instructions_line_number = 20
# Get the total number of instructions
total_instructions_line_data = callgrind_data[total_instructions_line_number]
total_number_of_instructions = total_instructions_line_data.split(' ')[0]
total_number_of_instructions = int(
total_number_of_instructions.replace(',', ''))
# Line number with the top function
first_func_line = 25
# Number of functions recorded by callgrind, last two lines are always empty
number_of_functions = len(callgrind_data) - first_func_line - 2
# Limit the number of top functions to "top"
number_of_top_functions = (top if number_of_functions >
top else number_of_functions)
# Store the data of the top functions in top_functions[]
top_functions = callgrind_data[first_func_line:
first_func_line + number_of_top_functions]
# Print table header
print('{:>4} {:>10} {:<30} {}\n{} {} {} {}'.format('No.',
'Percentage',
'Function Name',
'Source File',
'-' * 4,
'-' * 10,
'-' * 30,
'-' * 30,
))
# Print top N functions
for (index, function) in enumerate(top_functions, start=1):
function_data = function.split()
# Calculate function percentage
function_instructions = float(function_data[0].replace(',', ''))
function_percentage = (function_instructions /
total_number_of_instructions)*100
# Get function name and source files path
function_source_file, function_name = function_data[1].split(':')
# Print extracted data
print('{:>4} {:>9.3f}% {:<30} {}'.format(index,
round(function_percentage, 3),
function_name,
function_source_file))
# Remove intermediate files
os.unlink('/tmp/callgrind.data')
os.unlink('/tmp/callgrind_annotate.out')