forked from mirror/qemu
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
312 lines
14 KiB
C
312 lines
14 KiB
C
/*
|
|
* Simple interface for atomic operations.
|
|
*
|
|
* Copyright (C) 2013 Red Hat, Inc.
|
|
*
|
|
* Author: Paolo Bonzini <pbonzini@redhat.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
* See docs/devel/atomics.rst for discussion about the guarantees each
|
|
* atomic primitive is meant to provide.
|
|
*/
|
|
|
|
#ifndef QEMU_ATOMIC_H
|
|
#define QEMU_ATOMIC_H
|
|
|
|
#include "compiler.h"
|
|
|
|
/* Compiler barrier */
|
|
#define barrier() ({ asm volatile("" ::: "memory"); (void)0; })
|
|
|
|
/* The variable that receives the old value of an atomically-accessed
|
|
* variable must be non-qualified, because atomic builtins return values
|
|
* through a pointer-type argument as in __atomic_load(&var, &old, MODEL).
|
|
*
|
|
* This macro has to handle types smaller than int manually, because of
|
|
* implicit promotion. int and larger types, as well as pointers, can be
|
|
* converted to a non-qualified type just by applying a binary operator.
|
|
*/
|
|
#define typeof_strip_qual(expr) \
|
|
typeof( \
|
|
__builtin_choose_expr( \
|
|
__builtin_types_compatible_p(typeof(expr), bool) || \
|
|
__builtin_types_compatible_p(typeof(expr), const bool) || \
|
|
__builtin_types_compatible_p(typeof(expr), volatile bool) || \
|
|
__builtin_types_compatible_p(typeof(expr), const volatile bool), \
|
|
(bool)1, \
|
|
__builtin_choose_expr( \
|
|
__builtin_types_compatible_p(typeof(expr), signed char) || \
|
|
__builtin_types_compatible_p(typeof(expr), const signed char) || \
|
|
__builtin_types_compatible_p(typeof(expr), volatile signed char) || \
|
|
__builtin_types_compatible_p(typeof(expr), const volatile signed char), \
|
|
(signed char)1, \
|
|
__builtin_choose_expr( \
|
|
__builtin_types_compatible_p(typeof(expr), unsigned char) || \
|
|
__builtin_types_compatible_p(typeof(expr), const unsigned char) || \
|
|
__builtin_types_compatible_p(typeof(expr), volatile unsigned char) || \
|
|
__builtin_types_compatible_p(typeof(expr), const volatile unsigned char), \
|
|
(unsigned char)1, \
|
|
__builtin_choose_expr( \
|
|
__builtin_types_compatible_p(typeof(expr), signed short) || \
|
|
__builtin_types_compatible_p(typeof(expr), const signed short) || \
|
|
__builtin_types_compatible_p(typeof(expr), volatile signed short) || \
|
|
__builtin_types_compatible_p(typeof(expr), const volatile signed short), \
|
|
(signed short)1, \
|
|
__builtin_choose_expr( \
|
|
__builtin_types_compatible_p(typeof(expr), unsigned short) || \
|
|
__builtin_types_compatible_p(typeof(expr), const unsigned short) || \
|
|
__builtin_types_compatible_p(typeof(expr), volatile unsigned short) || \
|
|
__builtin_types_compatible_p(typeof(expr), const volatile unsigned short), \
|
|
(unsigned short)1, \
|
|
(expr)+0))))))
|
|
|
|
#ifndef __ATOMIC_RELAXED
|
|
#error "Expecting C11 atomic ops"
|
|
#endif
|
|
|
|
/* Manual memory barriers
|
|
*
|
|
*__atomic_thread_fence does not include a compiler barrier; instead,
|
|
* the barrier is part of __atomic_load/__atomic_store's "volatile-like"
|
|
* semantics. If smp_wmb() is a no-op, absence of the barrier means that
|
|
* the compiler is free to reorder stores on each side of the barrier.
|
|
* Add one here, and similarly in smp_rmb() and smp_read_barrier_depends().
|
|
*/
|
|
|
|
#define smp_mb() ({ barrier(); __atomic_thread_fence(__ATOMIC_SEQ_CST); })
|
|
#define smp_mb_release() ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); })
|
|
#define smp_mb_acquire() ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); })
|
|
|
|
/* Most compilers currently treat consume and acquire the same, but really
|
|
* no processors except Alpha need a barrier here. Leave it in if
|
|
* using Thread Sanitizer to avoid warnings, otherwise optimize it away.
|
|
*/
|
|
#ifdef QEMU_SANITIZE_THREAD
|
|
#define smp_read_barrier_depends() ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); })
|
|
#elif defined(__alpha__)
|
|
#define smp_read_barrier_depends() asm volatile("mb":::"memory")
|
|
#else
|
|
#define smp_read_barrier_depends() barrier()
|
|
#endif
|
|
|
|
/*
|
|
* A signal barrier forces all pending local memory ops to be observed before
|
|
* a SIGSEGV is delivered to the *same* thread. In practice this is exactly
|
|
* the same as barrier(), but since we have the correct builtin, use it.
|
|
*/
|
|
#define signal_barrier() __atomic_signal_fence(__ATOMIC_SEQ_CST)
|
|
|
|
/* Sanity check that the size of an atomic operation isn't "overly large".
|
|
* Despite the fact that e.g. i686 has 64-bit atomic operations, we do not
|
|
* want to use them because we ought not need them, and this lets us do a
|
|
* bit of sanity checking that other 32-bit hosts might build.
|
|
*
|
|
* That said, we have a problem on 64-bit ILP32 hosts in that in order to
|
|
* sync with TCG_OVERSIZED_GUEST, this must match TCG_TARGET_REG_BITS.
|
|
* We'd prefer not want to pull in everything else TCG related, so handle
|
|
* those few cases by hand.
|
|
*
|
|
* Note that x32 is fully detected with __x86_64__ + _ILP32, and that for
|
|
* Sparc we always force the use of sparcv9 in configure. MIPS n32 (ILP32) &
|
|
* n64 (LP64) ABIs are both detected using __mips64.
|
|
*/
|
|
#if defined(__x86_64__) || defined(__sparc__) || defined(__mips64)
|
|
# define ATOMIC_REG_SIZE 8
|
|
#else
|
|
# define ATOMIC_REG_SIZE sizeof(void *)
|
|
#endif
|
|
|
|
/* Weak atomic operations prevent the compiler moving other
|
|
* loads/stores past the atomic operation load/store. However there is
|
|
* no explicit memory barrier for the processor.
|
|
*
|
|
* The C11 memory model says that variables that are accessed from
|
|
* different threads should at least be done with __ATOMIC_RELAXED
|
|
* primitives or the result is undefined. Generally this has little to
|
|
* no effect on the generated code but not using the atomic primitives
|
|
* will get flagged by sanitizers as a violation.
|
|
*/
|
|
#define qatomic_read__nocheck(ptr) \
|
|
__atomic_load_n(ptr, __ATOMIC_RELAXED)
|
|
|
|
#define qatomic_read(ptr) \
|
|
({ \
|
|
qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
|
|
qatomic_read__nocheck(ptr); \
|
|
})
|
|
|
|
#define qatomic_set__nocheck(ptr, i) \
|
|
__atomic_store_n(ptr, i, __ATOMIC_RELAXED)
|
|
|
|
#define qatomic_set(ptr, i) do { \
|
|
qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
|
|
qatomic_set__nocheck(ptr, i); \
|
|
} while(0)
|
|
|
|
/* See above: most compilers currently treat consume and acquire the
|
|
* same, but this slows down qatomic_rcu_read unnecessarily.
|
|
*/
|
|
#ifdef QEMU_SANITIZE_THREAD
|
|
#define qatomic_rcu_read__nocheck(ptr, valptr) \
|
|
__atomic_load(ptr, valptr, __ATOMIC_CONSUME);
|
|
#else
|
|
#define qatomic_rcu_read__nocheck(ptr, valptr) \
|
|
__atomic_load(ptr, valptr, __ATOMIC_RELAXED); \
|
|
smp_read_barrier_depends();
|
|
#endif
|
|
|
|
#define qatomic_rcu_read(ptr) \
|
|
({ \
|
|
qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
|
|
typeof_strip_qual(*ptr) _val; \
|
|
qatomic_rcu_read__nocheck(ptr, &_val); \
|
|
_val; \
|
|
})
|
|
|
|
#define qatomic_rcu_set(ptr, i) do { \
|
|
qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
|
|
__atomic_store_n(ptr, i, __ATOMIC_RELEASE); \
|
|
} while(0)
|
|
|
|
#define qatomic_load_acquire(ptr) \
|
|
({ \
|
|
qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
|
|
typeof_strip_qual(*ptr) _val; \
|
|
__atomic_load(ptr, &_val, __ATOMIC_ACQUIRE); \
|
|
_val; \
|
|
})
|
|
|
|
#define qatomic_store_release(ptr, i) do { \
|
|
qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
|
|
__atomic_store_n(ptr, i, __ATOMIC_RELEASE); \
|
|
} while(0)
|
|
|
|
|
|
/* All the remaining operations are fully sequentially consistent */
|
|
|
|
#define qatomic_xchg__nocheck(ptr, i) ({ \
|
|
__atomic_exchange_n(ptr, (i), __ATOMIC_SEQ_CST); \
|
|
})
|
|
|
|
#define qatomic_xchg(ptr, i) ({ \
|
|
qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
|
|
qatomic_xchg__nocheck(ptr, i); \
|
|
})
|
|
|
|
/* Returns the eventual value, failed or not */
|
|
#define qatomic_cmpxchg__nocheck(ptr, old, new) ({ \
|
|
typeof_strip_qual(*ptr) _old = (old); \
|
|
(void)__atomic_compare_exchange_n(ptr, &_old, new, false, \
|
|
__ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); \
|
|
_old; \
|
|
})
|
|
|
|
#define qatomic_cmpxchg(ptr, old, new) ({ \
|
|
qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
|
|
qatomic_cmpxchg__nocheck(ptr, old, new); \
|
|
})
|
|
|
|
/* Provide shorter names for GCC atomic builtins, return old value */
|
|
#define qatomic_fetch_inc(ptr) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST)
|
|
#define qatomic_fetch_dec(ptr) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST)
|
|
|
|
#define qatomic_fetch_add(ptr, n) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST)
|
|
#define qatomic_fetch_sub(ptr, n) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST)
|
|
#define qatomic_fetch_and(ptr, n) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST)
|
|
#define qatomic_fetch_or(ptr, n) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST)
|
|
#define qatomic_fetch_xor(ptr, n) __atomic_fetch_xor(ptr, n, __ATOMIC_SEQ_CST)
|
|
|
|
#define qatomic_inc_fetch(ptr) __atomic_add_fetch(ptr, 1, __ATOMIC_SEQ_CST)
|
|
#define qatomic_dec_fetch(ptr) __atomic_sub_fetch(ptr, 1, __ATOMIC_SEQ_CST)
|
|
#define qatomic_add_fetch(ptr, n) __atomic_add_fetch(ptr, n, __ATOMIC_SEQ_CST)
|
|
#define qatomic_sub_fetch(ptr, n) __atomic_sub_fetch(ptr, n, __ATOMIC_SEQ_CST)
|
|
#define qatomic_and_fetch(ptr, n) __atomic_and_fetch(ptr, n, __ATOMIC_SEQ_CST)
|
|
#define qatomic_or_fetch(ptr, n) __atomic_or_fetch(ptr, n, __ATOMIC_SEQ_CST)
|
|
#define qatomic_xor_fetch(ptr, n) __atomic_xor_fetch(ptr, n, __ATOMIC_SEQ_CST)
|
|
|
|
/* And even shorter names that return void. */
|
|
#define qatomic_inc(ptr) \
|
|
((void) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST))
|
|
#define qatomic_dec(ptr) \
|
|
((void) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST))
|
|
#define qatomic_add(ptr, n) \
|
|
((void) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST))
|
|
#define qatomic_sub(ptr, n) \
|
|
((void) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST))
|
|
#define qatomic_and(ptr, n) \
|
|
((void) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST))
|
|
#define qatomic_or(ptr, n) \
|
|
((void) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST))
|
|
#define qatomic_xor(ptr, n) \
|
|
((void) __atomic_fetch_xor(ptr, n, __ATOMIC_SEQ_CST))
|
|
|
|
#define smp_wmb() smp_mb_release()
|
|
#define smp_rmb() smp_mb_acquire()
|
|
|
|
/* qatomic_mb_read/set semantics map Java volatile variables. They are
|
|
* less expensive on some platforms (notably POWER) than fully
|
|
* sequentially consistent operations.
|
|
*
|
|
* As long as they are used as paired operations they are safe to
|
|
* use. See docs/devel/atomics.rst for more discussion.
|
|
*/
|
|
|
|
#define qatomic_mb_read(ptr) \
|
|
qatomic_load_acquire(ptr)
|
|
|
|
#if !defined(QEMU_SANITIZE_THREAD) && \
|
|
(defined(__i386__) || defined(__x86_64__) || defined(__s390x__))
|
|
/* This is more efficient than a store plus a fence. */
|
|
# define qatomic_mb_set(ptr, i) ((void)qatomic_xchg(ptr, i))
|
|
#else
|
|
# define qatomic_mb_set(ptr, i) \
|
|
({ qatomic_store_release(ptr, i); smp_mb(); })
|
|
#endif
|
|
|
|
#define qatomic_fetch_inc_nonzero(ptr) ({ \
|
|
typeof_strip_qual(*ptr) _oldn = qatomic_read(ptr); \
|
|
while (_oldn && qatomic_cmpxchg(ptr, _oldn, _oldn + 1) != _oldn) { \
|
|
_oldn = qatomic_read(ptr); \
|
|
} \
|
|
_oldn; \
|
|
})
|
|
|
|
/*
|
|
* Abstractions to access atomically (i.e. "once") i64/u64 variables.
|
|
*
|
|
* The i386 abi is odd in that by default members are only aligned to
|
|
* 4 bytes, which means that 8-byte types can wind up mis-aligned.
|
|
* Clang will then warn about this, and emit a call into libatomic.
|
|
*
|
|
* Use of these types in structures when they will be used with atomic
|
|
* operations can avoid this.
|
|
*/
|
|
typedef int64_t aligned_int64_t __attribute__((aligned(8)));
|
|
typedef uint64_t aligned_uint64_t __attribute__((aligned(8)));
|
|
|
|
#ifdef CONFIG_ATOMIC64
|
|
/* Use __nocheck because sizeof(void *) might be < sizeof(u64) */
|
|
#define qatomic_read_i64(P) \
|
|
_Generic(*(P), int64_t: qatomic_read__nocheck(P))
|
|
#define qatomic_read_u64(P) \
|
|
_Generic(*(P), uint64_t: qatomic_read__nocheck(P))
|
|
#define qatomic_set_i64(P, V) \
|
|
_Generic(*(P), int64_t: qatomic_set__nocheck(P, V))
|
|
#define qatomic_set_u64(P, V) \
|
|
_Generic(*(P), uint64_t: qatomic_set__nocheck(P, V))
|
|
|
|
static inline void qatomic64_init(void)
|
|
{
|
|
}
|
|
#else /* !CONFIG_ATOMIC64 */
|
|
int64_t qatomic_read_i64(const int64_t *ptr);
|
|
uint64_t qatomic_read_u64(const uint64_t *ptr);
|
|
void qatomic_set_i64(int64_t *ptr, int64_t val);
|
|
void qatomic_set_u64(uint64_t *ptr, uint64_t val);
|
|
void qatomic64_init(void);
|
|
#endif /* !CONFIG_ATOMIC64 */
|
|
|
|
#endif /* QEMU_ATOMIC_H */
|