You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/hw/usb/dev-smartcard-reader.c

1497 lines
47 KiB
C

/*
* Copyright (C) 2011 Red Hat, Inc.
*
* CCID Device emulation
*
* Written by Alon Levy, with contributions from Robert Relyea.
*
* Based on usb-serial.c, see its copyright and attributions below.
*
* This work is licensed under the terms of the GNU GPL, version 2.1 or later.
* See the COPYING file in the top-level directory.
* ------- (original copyright & attribution for usb-serial.c below) --------
* Copyright (c) 2006 CodeSourcery.
* Copyright (c) 2008 Samuel Thibault <samuel.thibault@ens-lyon.org>
* Written by Paul Brook, reused for FTDI by Samuel Thibault,
*/
/*
* References:
*
* CCID Specification Revision 1.1 April 22nd 2005
* "Universal Serial Bus, Device Class: Smart Card"
* Specification for Integrated Circuit(s) Cards Interface Devices
*
* Endianness note: from the spec (1.3)
* "Fields that are larger than a byte are stored in little endian"
*
* KNOWN BUGS
* 1. remove/insert can sometimes result in removed state instead of inserted.
* This is a result of the following:
* symptom: dmesg shows ERMOTEIO (-121), pcscd shows -99. This can happen
* when a short packet is sent, as seen in uhci-usb.c, resulting from a urb
* from the guest requesting SPD and us returning a smaller packet.
* Not sure which messages trigger this.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qapi/error.h"
#include "qemu/cutils.h"
#include "qemu/error-report.h"
#include "qemu/module.h"
#include "hw/qdev-properties.h"
#include "hw/usb.h"
#include "migration/vmstate.h"
#include "desc.h"
#include "ccid.h"
#include "qom/object.h"
#define DPRINTF(s, lvl, fmt, ...) \
do { \
if (lvl <= s->debug) { \
printf("usb-ccid: " fmt , ## __VA_ARGS__); \
} \
} while (0)
#define D_WARN 1
#define D_INFO 2
#define D_MORE_INFO 3
#define D_VERBOSE 4
#define TYPE_USB_CCID_DEV "usb-ccid"
OBJECT_DECLARE_SIMPLE_TYPE(USBCCIDState, USB_CCID_DEV)
/*
* The two options for variable sized buffers:
* make them constant size, for large enough constant,
* or handle the migration complexity - VMState doesn't handle this case.
* sizes are expected never to be exceeded, unless guest misbehaves.
*/
#define BULK_OUT_DATA_SIZE (64 * KiB)
#define PENDING_ANSWERS_NUM 128
#define BULK_IN_BUF_SIZE 384
#define BULK_IN_PENDING_NUM 8
#define CCID_MAX_PACKET_SIZE 64
#define CCID_CONTROL_ABORT 0x1
#define CCID_CONTROL_GET_CLOCK_FREQUENCIES 0x2
#define CCID_CONTROL_GET_DATA_RATES 0x3
#define CCID_PRODUCT_DESCRIPTION "QEMU USB CCID"
#define CCID_VENDOR_DESCRIPTION "QEMU"
#define CCID_INTERFACE_NAME "CCID Interface"
#define CCID_SERIAL_NUMBER_STRING "1"
/*
* Using Gemplus Vendor and Product id
* Effect on various drivers:
* usbccid.sys (winxp, others untested) is a class driver so it doesn't care.
* linux has a number of class drivers, but openct filters based on
* vendor/product (/etc/openct.conf under fedora), hence Gemplus.
*/
#define CCID_VENDOR_ID 0x08e6
#define CCID_PRODUCT_ID 0x4433
#define CCID_DEVICE_VERSION 0x0000
/*
* BULK_OUT messages from PC to Reader
* Defined in CCID Rev 1.1 6.1 (page 26)
*/
#define CCID_MESSAGE_TYPE_PC_to_RDR_IccPowerOn 0x62
#define CCID_MESSAGE_TYPE_PC_to_RDR_IccPowerOff 0x63
#define CCID_MESSAGE_TYPE_PC_to_RDR_GetSlotStatus 0x65
#define CCID_MESSAGE_TYPE_PC_to_RDR_XfrBlock 0x6f
#define CCID_MESSAGE_TYPE_PC_to_RDR_GetParameters 0x6c
#define CCID_MESSAGE_TYPE_PC_to_RDR_ResetParameters 0x6d
#define CCID_MESSAGE_TYPE_PC_to_RDR_SetParameters 0x61
#define CCID_MESSAGE_TYPE_PC_to_RDR_Escape 0x6b
#define CCID_MESSAGE_TYPE_PC_to_RDR_IccClock 0x6e
#define CCID_MESSAGE_TYPE_PC_to_RDR_T0APDU 0x6a
#define CCID_MESSAGE_TYPE_PC_to_RDR_Secure 0x69
#define CCID_MESSAGE_TYPE_PC_to_RDR_Mechanical 0x71
#define CCID_MESSAGE_TYPE_PC_to_RDR_Abort 0x72
#define CCID_MESSAGE_TYPE_PC_to_RDR_SetDataRateAndClockFrequency 0x73
/*
* BULK_IN messages from Reader to PC
* Defined in CCID Rev 1.1 6.2 (page 48)
*/
#define CCID_MESSAGE_TYPE_RDR_to_PC_DataBlock 0x80
#define CCID_MESSAGE_TYPE_RDR_to_PC_SlotStatus 0x81
#define CCID_MESSAGE_TYPE_RDR_to_PC_Parameters 0x82
#define CCID_MESSAGE_TYPE_RDR_to_PC_Escape 0x83
#define CCID_MESSAGE_TYPE_RDR_to_PC_DataRateAndClockFrequency 0x84
/*
* INTERRUPT_IN messages from Reader to PC
* Defined in CCID Rev 1.1 6.3 (page 56)
*/
#define CCID_MESSAGE_TYPE_RDR_to_PC_NotifySlotChange 0x50
#define CCID_MESSAGE_TYPE_RDR_to_PC_HardwareError 0x51
/*
* Endpoints for CCID - addresses are up to us to decide.
* To support slot insertion and removal we must have an interrupt in ep
* in addition we need a bulk in and bulk out ep
* 5.2, page 20
*/
#define CCID_INT_IN_EP 1
#define CCID_BULK_IN_EP 2
#define CCID_BULK_OUT_EP 3
/* bmSlotICCState masks */
#define SLOT_0_STATE_MASK 1
#define SLOT_0_CHANGED_MASK 2
/* Status codes that go in bStatus (see 6.2.6) */
enum {
ICC_STATUS_PRESENT_ACTIVE = 0,
ICC_STATUS_PRESENT_INACTIVE,
ICC_STATUS_NOT_PRESENT
};
enum {
COMMAND_STATUS_NO_ERROR = 0,
COMMAND_STATUS_FAILED,
COMMAND_STATUS_TIME_EXTENSION_REQUIRED
};
/* Error codes that go in bError (see 6.2.6) */
enum {
ERROR_CMD_NOT_SUPPORTED = 0,
ERROR_CMD_ABORTED = -1,
ERROR_ICC_MUTE = -2,
ERROR_XFR_PARITY_ERROR = -3,
ERROR_XFR_OVERRUN = -4,
ERROR_HW_ERROR = -5,
};
/* 6.2.6 RDR_to_PC_SlotStatus definitions */
enum {
CLOCK_STATUS_RUNNING = 0,
/*
* 0 - Clock Running, 1 - Clock stopped in State L, 2 - H,
* 3 - unknown state. rest are RFU
*/
};
typedef struct QEMU_PACKED CCID_Header {
uint8_t bMessageType;
uint32_t dwLength;
uint8_t bSlot;
uint8_t bSeq;
} CCID_Header;
typedef struct QEMU_PACKED CCID_BULK_IN {
CCID_Header hdr;
uint8_t bStatus; /* Only used in BULK_IN */
uint8_t bError; /* Only used in BULK_IN */
} CCID_BULK_IN;
typedef struct QEMU_PACKED CCID_SlotStatus {
CCID_BULK_IN b;
uint8_t bClockStatus;
} CCID_SlotStatus;
typedef struct QEMU_PACKED CCID_T0ProtocolDataStructure {
uint8_t bmFindexDindex;
uint8_t bmTCCKST0;
uint8_t bGuardTimeT0;
uint8_t bWaitingIntegerT0;
uint8_t bClockStop;
} CCID_T0ProtocolDataStructure;
typedef struct QEMU_PACKED CCID_T1ProtocolDataStructure {
uint8_t bmFindexDindex;
uint8_t bmTCCKST1;
uint8_t bGuardTimeT1;
uint8_t bWaitingIntegerT1;
uint8_t bClockStop;
uint8_t bIFSC;
uint8_t bNadValue;
} CCID_T1ProtocolDataStructure;
typedef union CCID_ProtocolDataStructure {
CCID_T0ProtocolDataStructure t0;
CCID_T1ProtocolDataStructure t1;
uint8_t data[7]; /* must be = max(sizeof(t0), sizeof(t1)) */
} CCID_ProtocolDataStructure;
typedef struct QEMU_PACKED CCID_Parameter {
CCID_BULK_IN b;
uint8_t bProtocolNum;
CCID_ProtocolDataStructure abProtocolDataStructure;
} CCID_Parameter;
typedef struct QEMU_PACKED CCID_DataBlock {
CCID_BULK_IN b;
uint8_t bChainParameter;
uint8_t abData[];
} CCID_DataBlock;
/* 6.1.4 PC_to_RDR_XfrBlock */
typedef struct QEMU_PACKED CCID_XferBlock {
CCID_Header hdr;
uint8_t bBWI; /* Block Waiting Timeout */
uint16_t wLevelParameter; /* XXX currently unused */
uint8_t abData[];
} CCID_XferBlock;
typedef struct QEMU_PACKED CCID_IccPowerOn {
CCID_Header hdr;
uint8_t bPowerSelect;
uint16_t abRFU;
} CCID_IccPowerOn;
typedef struct QEMU_PACKED CCID_IccPowerOff {
CCID_Header hdr;
uint16_t abRFU;
} CCID_IccPowerOff;
typedef struct QEMU_PACKED CCID_SetParameters {
CCID_Header hdr;
uint8_t bProtocolNum;
uint16_t abRFU;
CCID_ProtocolDataStructure abProtocolDataStructure;
} CCID_SetParameters;
typedef struct CCID_Notify_Slot_Change {
uint8_t bMessageType; /* CCID_MESSAGE_TYPE_RDR_to_PC_NotifySlotChange */
uint8_t bmSlotICCState;
} CCID_Notify_Slot_Change;
/* used for DataBlock response to XferBlock */
typedef struct Answer {
uint8_t slot;
uint8_t seq;
} Answer;
/* pending BULK_IN messages */
typedef struct BulkIn {
uint8_t data[BULK_IN_BUF_SIZE];
uint32_t len;
uint32_t pos;
} BulkIn;
struct CCIDBus {
BusState qbus;
};
typedef struct CCIDBus CCIDBus;
/*
* powered - defaults to true, changed by PowerOn/PowerOff messages
*/
struct USBCCIDState {
USBDevice dev;
USBEndpoint *intr;
USBEndpoint *bulk;
CCIDBus bus;
CCIDCardState *card;
BulkIn bulk_in_pending[BULK_IN_PENDING_NUM]; /* circular */
uint32_t bulk_in_pending_start;
uint32_t bulk_in_pending_end; /* first free */
uint32_t bulk_in_pending_num;
BulkIn *current_bulk_in;
uint8_t bulk_out_data[BULK_OUT_DATA_SIZE];
uint32_t bulk_out_pos;
uint64_t last_answer_error;
Answer pending_answers[PENDING_ANSWERS_NUM];
uint32_t pending_answers_start;
uint32_t pending_answers_end;
uint32_t pending_answers_num;
uint8_t bError;
uint8_t bmCommandStatus;
uint8_t bProtocolNum;
CCID_ProtocolDataStructure abProtocolDataStructure;
uint32_t ulProtocolDataStructureSize;
uint32_t state_vmstate;
uint8_t bmSlotICCState;
uint8_t powered;
uint8_t notify_slot_change;
uint8_t debug;
};
/*
* CCID Spec chapter 4: CCID uses a standard device descriptor per Chapter 9,
* "USB Device Framework", section 9.6.1, in the Universal Serial Bus
* Specification.
*
* This device implemented based on the spec and with an Athena Smart Card
* Reader as reference:
* 0dc3:1004 Athena Smartcard Solutions, Inc.
*/
static const uint8_t qemu_ccid_descriptor[] = {
/* Smart Card Device Class Descriptor */
0x36, /* u8 bLength; */
0x21, /* u8 bDescriptorType; Functional */
0x10, 0x01, /* u16 bcdCCID; CCID Specification Release Number. */
0x00, /*
* u8 bMaxSlotIndex; The index of the highest available
* slot on this device. All slots are consecutive starting
* at 00h.
*/
0x07, /* u8 bVoltageSupport; 01h - 5.0v, 02h - 3.0, 03 - 1.8 */
0x01, 0x00, /* u32 dwProtocols; RRRR PPPP. RRRR = 0000h.*/
0x00, 0x00, /* PPPP: 0001h = Protocol T=0, 0002h = Protocol T=1 */
/* u32 dwDefaultClock; in kHZ (0x0fa0 is 4 MHz) */
0xa0, 0x0f, 0x00, 0x00,
/* u32 dwMaximumClock; */
0x00, 0x00, 0x01, 0x00,
0x00, /* u8 bNumClockSupported; *
* 0 means just the default and max. */
/* u32 dwDataRate ;bps. 9600 == 00002580h */
0x80, 0x25, 0x00, 0x00,
/* u32 dwMaxDataRate ; 11520 bps == 0001C200h */
0x00, 0xC2, 0x01, 0x00,
0x00, /* u8 bNumDataRatesSupported; 00 means all rates between
* default and max */
/* u32 dwMaxIFSD; *
* maximum IFSD supported by CCID for protocol *
* T=1 (Maximum seen from various cards) */
0xfe, 0x00, 0x00, 0x00,
/* u32 dwSyncProtocols; 1 - 2-wire, 2 - 3-wire, 4 - I2C */
0x00, 0x00, 0x00, 0x00,
/* u32 dwMechanical; 0 - no special characteristics. */
0x00, 0x00, 0x00, 0x00,
/*
* u32 dwFeatures;
* 0 - No special characteristics
* + 2 Automatic parameter configuration based on ATR data
* + 4 Automatic activation of ICC on inserting
* + 8 Automatic ICC voltage selection
* + 10 Automatic ICC clock frequency change
* + 20 Automatic baud rate change
* + 40 Automatic parameters negotiation made by the CCID
* + 80 automatic PPS made by the CCID
* 100 CCID can set ICC in clock stop mode
* 200 NAD value other then 00 accepted (T=1 protocol)
* + 400 Automatic IFSD exchange as first exchange (T=1)
* One of the following only:
* + 10000 TPDU level exchanges with CCID
* 20000 Short APDU level exchange with CCID
* 40000 Short and Extended APDU level exchange with CCID
*
* 100000 USB Wake up signaling supported on card
* insertion and removal. Must set bit 5 in bmAttributes
* in Configuration descriptor if 100000 is set.
*/
0xfe, 0x04, 0x01, 0x00,
/*
* u32 dwMaxCCIDMessageLength; For extended APDU in
* [261 + 10 , 65544 + 10]. Otherwise the minimum is
* wMaxPacketSize of the Bulk-OUT endpoint
*/
0x12, 0x00, 0x01, 0x00,
0xFF, /*
* u8 bClassGetResponse; Significant only for CCID that
* offers an APDU level for exchanges. Indicates the
* default class value used by the CCID when it sends a
* Get Response command to perform the transportation of
* an APDU by T=0 protocol
* FFh indicates that the CCID echos the class of the APDU.
*/
0xFF, /*
* u8 bClassEnvelope; EAPDU only. Envelope command for
* T=0
*/
0x00, 0x00, /*
* u16 wLcdLayout; XXYY Number of lines (XX) and chars per
* line for LCD display used for PIN entry. 0000 - no LCD
*/
0x01, /*
* u8 bPINSupport; 01h PIN Verification,
* 02h PIN Modification
*/
0x01, /* u8 bMaxCCIDBusySlots; */
};
enum {
STR_MANUFACTURER = 1,
STR_PRODUCT,
STR_SERIALNUMBER,
STR_INTERFACE,
};
static const USBDescStrings desc_strings = {
[STR_MANUFACTURER] = "QEMU",
[STR_PRODUCT] = "QEMU USB CCID",
[STR_SERIALNUMBER] = "1",
[STR_INTERFACE] = "CCID Interface",
};
static const USBDescIface desc_iface0 = {
.bInterfaceNumber = 0,
.bNumEndpoints = 3,
.bInterfaceClass = USB_CLASS_CSCID,
.bInterfaceSubClass = USB_SUBCLASS_UNDEFINED,
.bInterfaceProtocol = 0x00,
.iInterface = STR_INTERFACE,
.ndesc = 1,
.descs = (USBDescOther[]) {
{
/* smartcard descriptor */
.data = qemu_ccid_descriptor,
},
},
.eps = (USBDescEndpoint[]) {
{
.bEndpointAddress = USB_DIR_IN | CCID_INT_IN_EP,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.bInterval = 255,
.wMaxPacketSize = 64,
},{
.bEndpointAddress = USB_DIR_IN | CCID_BULK_IN_EP,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = 64,
},{
.bEndpointAddress = USB_DIR_OUT | CCID_BULK_OUT_EP,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = 64,
},
}
};
static const USBDescDevice desc_device = {
.bcdUSB = 0x0110,
.bMaxPacketSize0 = 64,
.bNumConfigurations = 1,
.confs = (USBDescConfig[]) {
{
.bNumInterfaces = 1,
.bConfigurationValue = 1,
.bmAttributes = USB_CFG_ATT_ONE | USB_CFG_ATT_SELFPOWER |
USB_CFG_ATT_WAKEUP,
.bMaxPower = 50,
.nif = 1,
.ifs = &desc_iface0,
},
},
};
static const USBDesc desc_ccid = {
.id = {
.idVendor = CCID_VENDOR_ID,
.idProduct = CCID_PRODUCT_ID,
.bcdDevice = CCID_DEVICE_VERSION,
.iManufacturer = STR_MANUFACTURER,
.iProduct = STR_PRODUCT,
.iSerialNumber = STR_SERIALNUMBER,
},
.full = &desc_device,
.str = desc_strings,
};
static const uint8_t *ccid_card_get_atr(CCIDCardState *card, uint32_t *len)
{
CCIDCardClass *cc = CCID_CARD_GET_CLASS(card);
if (cc->get_atr) {
return cc->get_atr(card, len);
}
return NULL;
}
static void ccid_card_apdu_from_guest(CCIDCardState *card,
const uint8_t *apdu,
uint32_t len)
{
CCIDCardClass *cc = CCID_CARD_GET_CLASS(card);
if (cc->apdu_from_guest) {
cc->apdu_from_guest(card, apdu, len);
}
}
static bool ccid_has_pending_answers(USBCCIDState *s)
{
return s->pending_answers_num > 0;
}
static void ccid_clear_pending_answers(USBCCIDState *s)
{
s->pending_answers_num = 0;
s->pending_answers_start = 0;
s->pending_answers_end = 0;
}
static void ccid_print_pending_answers(USBCCIDState *s)
{
Answer *answer;
int i, count;
DPRINTF(s, D_VERBOSE, "usb-ccid: pending answers:");
if (!ccid_has_pending_answers(s)) {
DPRINTF(s, D_VERBOSE, " empty\n");
return;
}
for (i = s->pending_answers_start, count = s->pending_answers_num ;
count > 0; count--, i++) {
answer = &s->pending_answers[i % PENDING_ANSWERS_NUM];
if (count == 1) {
DPRINTF(s, D_VERBOSE, "%d:%d\n", answer->slot, answer->seq);
} else {
DPRINTF(s, D_VERBOSE, "%d:%d,", answer->slot, answer->seq);
}
}
}
static void ccid_add_pending_answer(USBCCIDState *s, CCID_Header *hdr)
{
Answer *answer;
assert(s->pending_answers_num < PENDING_ANSWERS_NUM);
s->pending_answers_num++;
answer =
&s->pending_answers[(s->pending_answers_end++) % PENDING_ANSWERS_NUM];
answer->slot = hdr->bSlot;
answer->seq = hdr->bSeq;
ccid_print_pending_answers(s);
}
static void ccid_remove_pending_answer(USBCCIDState *s,
uint8_t *slot, uint8_t *seq)
{
Answer *answer;
assert(s->pending_answers_num > 0);
s->pending_answers_num--;
answer =
&s->pending_answers[(s->pending_answers_start++) % PENDING_ANSWERS_NUM];
*slot = answer->slot;
*seq = answer->seq;
ccid_print_pending_answers(s);
}
static void ccid_bulk_in_clear(USBCCIDState *s)
{
s->bulk_in_pending_start = 0;
s->bulk_in_pending_end = 0;
s->bulk_in_pending_num = 0;
}
static void ccid_bulk_in_release(USBCCIDState *s)
{
assert(s->current_bulk_in != NULL);
s->current_bulk_in->pos = 0;
s->current_bulk_in = NULL;
}
static void ccid_bulk_in_get(USBCCIDState *s)
{
if (s->current_bulk_in != NULL || s->bulk_in_pending_num == 0) {
return;
}
assert(s->bulk_in_pending_num > 0);
s->bulk_in_pending_num--;
s->current_bulk_in =
&s->bulk_in_pending[(s->bulk_in_pending_start++) % BULK_IN_PENDING_NUM];
}
static void *ccid_reserve_recv_buf(USBCCIDState *s, uint16_t len)
{
BulkIn *bulk_in;
DPRINTF(s, D_VERBOSE, "%s: QUEUE: reserve %d bytes\n", __func__, len);
/* look for an existing element */
if (len > BULK_IN_BUF_SIZE) {
DPRINTF(s, D_WARN, "usb-ccid.c: %s: len larger then max (%d>%d). "
"discarding message.\n",
__func__, len, BULK_IN_BUF_SIZE);
return NULL;
}
if (s->bulk_in_pending_num >= BULK_IN_PENDING_NUM) {
DPRINTF(s, D_WARN, "usb-ccid.c: %s: No free bulk_in buffers. "
"discarding message.\n", __func__);
return NULL;
}
bulk_in =
&s->bulk_in_pending[(s->bulk_in_pending_end++) % BULK_IN_PENDING_NUM];
s->bulk_in_pending_num++;
bulk_in->len = len;
return bulk_in->data;
}
static void ccid_reset(USBCCIDState *s)
{
ccid_bulk_in_clear(s);
ccid_clear_pending_answers(s);
}
static void ccid_detach(USBCCIDState *s)
{
ccid_reset(s);
}
static void ccid_handle_reset(USBDevice *dev)
{
USBCCIDState *s = USB_CCID_DEV(dev);
DPRINTF(s, 1, "Reset\n");
ccid_reset(s);
}
static const char *ccid_control_to_str(USBCCIDState *s, int request)
{
switch (request) {
/* generic - should be factored out if there are other debugees */
case DeviceOutRequest | USB_REQ_SET_ADDRESS:
return "(generic) set address";
case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
return "(generic) get descriptor";
case DeviceRequest | USB_REQ_GET_CONFIGURATION:
return "(generic) get configuration";
case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
return "(generic) set configuration";
case DeviceRequest | USB_REQ_GET_STATUS:
return "(generic) get status";
case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
return "(generic) clear feature";
case DeviceOutRequest | USB_REQ_SET_FEATURE:
return "(generic) set_feature";
case InterfaceRequest | USB_REQ_GET_INTERFACE:
return "(generic) get interface";
case InterfaceOutRequest | USB_REQ_SET_INTERFACE:
return "(generic) set interface";
/* class requests */
case ClassInterfaceOutRequest | CCID_CONTROL_ABORT:
return "ABORT";
case ClassInterfaceRequest | CCID_CONTROL_GET_CLOCK_FREQUENCIES:
return "GET_CLOCK_FREQUENCIES";
case ClassInterfaceRequest | CCID_CONTROL_GET_DATA_RATES:
return "GET_DATA_RATES";
}
return "unknown";
}
static void ccid_handle_control(USBDevice *dev, USBPacket *p, int request,
int value, int index, int length, uint8_t *data)
{
USBCCIDState *s = USB_CCID_DEV(dev);
int ret;
DPRINTF(s, 1, "%s: got control %s (%x), value %x\n", __func__,
ccid_control_to_str(s, request), request, value);
ret = usb_desc_handle_control(dev, p, request, value, index, length, data);
if (ret >= 0) {
return;
}
switch (request) {
/* Class specific requests. */
case ClassInterfaceOutRequest | CCID_CONTROL_ABORT:
DPRINTF(s, 1, "ccid_control abort UNIMPLEMENTED\n");
p->status = USB_RET_STALL;
break;
case ClassInterfaceRequest | CCID_CONTROL_GET_CLOCK_FREQUENCIES:
DPRINTF(s, 1, "ccid_control get clock frequencies UNIMPLEMENTED\n");
p->status = USB_RET_STALL;
break;
case ClassInterfaceRequest | CCID_CONTROL_GET_DATA_RATES:
DPRINTF(s, 1, "ccid_control get data rates UNIMPLEMENTED\n");
p->status = USB_RET_STALL;
break;
default:
DPRINTF(s, 1, "got unsupported/bogus control %x, value %x\n",
request, value);
p->status = USB_RET_STALL;
break;
}
}
static bool ccid_card_inserted(USBCCIDState *s)
{
return s->bmSlotICCState & SLOT_0_STATE_MASK;
}
static uint8_t ccid_card_status(USBCCIDState *s)
{
return ccid_card_inserted(s)
? (s->powered ?
ICC_STATUS_PRESENT_ACTIVE
: ICC_STATUS_PRESENT_INACTIVE
)
: ICC_STATUS_NOT_PRESENT;
}
static uint8_t ccid_calc_status(USBCCIDState *s)
{
/*
* page 55, 6.2.6, calculation of bStatus from bmICCStatus and
* bmCommandStatus
*/
uint8_t ret = ccid_card_status(s) | (s->bmCommandStatus << 6);
DPRINTF(s, D_VERBOSE, "%s: status = %d\n", __func__, ret);
return ret;
}
static void ccid_reset_error_status(USBCCIDState *s)
{
s->bError = ERROR_CMD_NOT_SUPPORTED;
s->bmCommandStatus = COMMAND_STATUS_NO_ERROR;
}
static void ccid_write_slot_status(USBCCIDState *s, CCID_Header *recv)
{
CCID_SlotStatus *h = ccid_reserve_recv_buf(s, sizeof(CCID_SlotStatus));
if (h == NULL) {
return;
}
h->b.hdr.bMessageType = CCID_MESSAGE_TYPE_RDR_to_PC_SlotStatus;
h->b.hdr.dwLength = 0;
h->b.hdr.bSlot = recv->bSlot;
h->b.hdr.bSeq = recv->bSeq;
h->b.bStatus = ccid_calc_status(s);
h->b.bError = s->bError;
h->bClockStatus = CLOCK_STATUS_RUNNING;
ccid_reset_error_status(s);
usb_wakeup(s->bulk, 0);
}
static void ccid_write_parameters(USBCCIDState *s, CCID_Header *recv)
{
CCID_Parameter *h;
uint32_t len = s->ulProtocolDataStructureSize;
h = ccid_reserve_recv_buf(s, sizeof(CCID_Parameter) + len);
if (h == NULL) {
return;
}
h->b.hdr.bMessageType = CCID_MESSAGE_TYPE_RDR_to_PC_Parameters;
h->b.hdr.dwLength = 0;
h->b.hdr.bSlot = recv->bSlot;
h->b.hdr.bSeq = recv->bSeq;
h->b.bStatus = ccid_calc_status(s);
h->b.bError = s->bError;
h->bProtocolNum = s->bProtocolNum;
h->abProtocolDataStructure = s->abProtocolDataStructure;
ccid_reset_error_status(s);
usb_wakeup(s->bulk, 0);
}
static void ccid_write_data_block(USBCCIDState *s, uint8_t slot, uint8_t seq,
const uint8_t *data, uint32_t len)
{
CCID_DataBlock *p = ccid_reserve_recv_buf(s, sizeof(*p) + len);
if (p == NULL) {
return;
}
p->b.hdr.bMessageType = CCID_MESSAGE_TYPE_RDR_to_PC_DataBlock;
p->b.hdr.dwLength = cpu_to_le32(len);
p->b.hdr.bSlot = slot;
p->b.hdr.bSeq = seq;
p->b.bStatus = ccid_calc_status(s);
p->b.bError = s->bError;
if (p->b.bError) {
DPRINTF(s, D_VERBOSE, "error %d\n", p->b.bError);
}
if (len) {
assert(data);
memcpy(p->abData, data, len);
}
ccid_reset_error_status(s);
usb_wakeup(s->bulk, 0);
}
static void ccid_report_error_failed(USBCCIDState *s, uint8_t error)
{
s->bmCommandStatus = COMMAND_STATUS_FAILED;
s->bError = error;
}
static void ccid_write_data_block_answer(USBCCIDState *s,
const uint8_t *data, uint32_t len)
{
uint8_t seq;
uint8_t slot;
if (!ccid_has_pending_answers(s)) {
DPRINTF(s, D_WARN, "error: no pending answer to return to guest\n");
ccid_report_error_failed(s, ERROR_ICC_MUTE);
return;
}
ccid_remove_pending_answer(s, &slot, &seq);
ccid_write_data_block(s, slot, seq, data, len);
}
static uint8_t atr_get_protocol_num(const uint8_t *atr, uint32_t len)
{
int i;
if (len < 2 || !(atr[1] & 0x80)) {
/* too short or TD1 not included */
return 0; /* T=0, default */
}
i = 1 + !!(atr[1] & 0x10) + !!(atr[1] & 0x20) + !!(atr[1] & 0x40);
i += !!(atr[1] & 0x80);
return atr[i] & 0x0f;
}
static void ccid_write_data_block_atr(USBCCIDState *s, CCID_Header *recv)
{
const uint8_t *atr = NULL;
uint32_t len = 0;
uint8_t atr_protocol_num;
CCID_T0ProtocolDataStructure *t0 = &s->abProtocolDataStructure.t0;
CCID_T1ProtocolDataStructure *t1 = &s->abProtocolDataStructure.t1;
if (s->card) {
atr = ccid_card_get_atr(s->card, &len);
}
atr_protocol_num = atr_get_protocol_num(atr, len);
DPRINTF(s, D_VERBOSE, "%s: atr contains protocol=%d\n", __func__,
atr_protocol_num);
/* set parameters from ATR - see spec page 109 */
s->bProtocolNum = (atr_protocol_num <= 1 ? atr_protocol_num
: s->bProtocolNum);
switch (atr_protocol_num) {
case 0:
/* TODO: unimplemented ATR T0 parameters */
t0->bmFindexDindex = 0;
t0->bmTCCKST0 = 0;
t0->bGuardTimeT0 = 0;
t0->bWaitingIntegerT0 = 0;
t0->bClockStop = 0;
break;
case 1:
/* TODO: unimplemented ATR T1 parameters */
t1->bmFindexDindex = 0;
t1->bmTCCKST1 = 0;
t1->bGuardTimeT1 = 0;
t1->bWaitingIntegerT1 = 0;
t1->bClockStop = 0;
t1->bIFSC = 0;
t1->bNadValue = 0;
break;
default:
DPRINTF(s, D_WARN, "%s: error: unsupported ATR protocol %d\n",
__func__, atr_protocol_num);
}
ccid_write_data_block(s, recv->bSlot, recv->bSeq, atr, len);
}
static void ccid_set_parameters(USBCCIDState *s, CCID_Header *recv)
{
CCID_SetParameters *ph = (CCID_SetParameters *) recv;
uint32_t protocol_num = ph->bProtocolNum & 3;
if (protocol_num != 0 && protocol_num != 1) {
ccid_report_error_failed(s, ERROR_CMD_NOT_SUPPORTED);
return;
}
s->bProtocolNum = protocol_num;
s->abProtocolDataStructure = ph->abProtocolDataStructure;
}
/*
* must be 5 bytes for T=0, 7 bytes for T=1
* See page 52
*/
static const CCID_ProtocolDataStructure defaultProtocolDataStructure = {
.t1 = {
.bmFindexDindex = 0x77,
.bmTCCKST1 = 0x00,
.bGuardTimeT1 = 0x00,
.bWaitingIntegerT1 = 0x00,
.bClockStop = 0x00,
.bIFSC = 0xfe,
.bNadValue = 0x00,
}
};
static void ccid_reset_parameters(USBCCIDState *s)
{
s->bProtocolNum = 0; /* T=0 */
s->abProtocolDataStructure = defaultProtocolDataStructure;
}
/* NOTE: only a single slot is supported (SLOT_0) */
static void ccid_on_slot_change(USBCCIDState *s, bool full)
{
/* RDR_to_PC_NotifySlotChange, 6.3.1 page 56 */
uint8_t current = s->bmSlotICCState;
if (full) {
s->bmSlotICCState |= SLOT_0_STATE_MASK;
} else {
s->bmSlotICCState &= ~SLOT_0_STATE_MASK;
}
if (current != s->bmSlotICCState) {
s->bmSlotICCState |= SLOT_0_CHANGED_MASK;
}
s->notify_slot_change = true;
usb_wakeup(s->intr, 0);
}
static void ccid_write_data_block_error(
USBCCIDState *s, uint8_t slot, uint8_t seq)
{
ccid_write_data_block(s, slot, seq, NULL, 0);
}
static void ccid_on_apdu_from_guest(USBCCIDState *s, CCID_XferBlock *recv)
{
uint32_t len;
if (ccid_card_status(s) != ICC_STATUS_PRESENT_ACTIVE) {
DPRINTF(s, 1,
"usb-ccid: not sending apdu to client, no card connected\n");
ccid_write_data_block_error(s, recv->hdr.bSlot, recv->hdr.bSeq);
return;
}
len = le32_to_cpu(recv->hdr.dwLength);
DPRINTF(s, 1, "%s: seq %d, len %u\n", __func__,
recv->hdr.bSeq, len);
ccid_add_pending_answer(s, (CCID_Header *)recv);
if (s->card && len <= BULK_OUT_DATA_SIZE) {
ccid_card_apdu_from_guest(s->card, recv->abData, len);
} else {
DPRINTF(s, D_WARN, "warning: discarded apdu\n");
}
}
static const char *ccid_message_type_to_str(uint8_t type)
{
switch (type) {
case CCID_MESSAGE_TYPE_PC_to_RDR_IccPowerOn: return "IccPowerOn";
case CCID_MESSAGE_TYPE_PC_to_RDR_IccPowerOff: return "IccPowerOff";
case CCID_MESSAGE_TYPE_PC_to_RDR_GetSlotStatus: return "GetSlotStatus";
case CCID_MESSAGE_TYPE_PC_to_RDR_XfrBlock: return "XfrBlock";
case CCID_MESSAGE_TYPE_PC_to_RDR_GetParameters: return "GetParameters";
case CCID_MESSAGE_TYPE_PC_to_RDR_ResetParameters: return "ResetParameters";
case CCID_MESSAGE_TYPE_PC_to_RDR_SetParameters: return "SetParameters";
case CCID_MESSAGE_TYPE_PC_to_RDR_Escape: return "Escape";
case CCID_MESSAGE_TYPE_PC_to_RDR_IccClock: return "IccClock";
case CCID_MESSAGE_TYPE_PC_to_RDR_T0APDU: return "T0APDU";
case CCID_MESSAGE_TYPE_PC_to_RDR_Secure: return "Secure";
case CCID_MESSAGE_TYPE_PC_to_RDR_Mechanical: return "Mechanical";
case CCID_MESSAGE_TYPE_PC_to_RDR_Abort: return "Abort";
case CCID_MESSAGE_TYPE_PC_to_RDR_SetDataRateAndClockFrequency:
return "SetDataRateAndClockFrequency";
}
return "unknown";
}
static void ccid_handle_bulk_out(USBCCIDState *s, USBPacket *p)
{
CCID_Header *ccid_header;
if (p->iov.size + s->bulk_out_pos > BULK_OUT_DATA_SIZE) {
goto err;
}
usb_packet_copy(p, s->bulk_out_data + s->bulk_out_pos, p->iov.size);
s->bulk_out_pos += p->iov.size;
if (s->bulk_out_pos < 10) {
DPRINTF(s, 1, "%s: header incomplete\n", __func__);
goto err;
}
ccid_header = (CCID_Header *)s->bulk_out_data;
if ((s->bulk_out_pos - 10 < ccid_header->dwLength) &&
(p->iov.size == CCID_MAX_PACKET_SIZE)) {
DPRINTF(s, D_VERBOSE,
"usb-ccid: bulk_in: expecting more packets (%u/%u)\n",
s->bulk_out_pos - 10, ccid_header->dwLength);
return;
}
if (s->bulk_out_pos - 10 != ccid_header->dwLength) {
DPRINTF(s, 1,
"usb-ccid: bulk_in: message size mismatch (got %u, expected %u)\n",
s->bulk_out_pos - 10, ccid_header->dwLength);
goto err;
}
DPRINTF(s, D_MORE_INFO, "%s %x %s\n", __func__,
ccid_header->bMessageType,
ccid_message_type_to_str(ccid_header->bMessageType));
switch (ccid_header->bMessageType) {
case CCID_MESSAGE_TYPE_PC_to_RDR_GetSlotStatus:
ccid_write_slot_status(s, ccid_header);
break;
case CCID_MESSAGE_TYPE_PC_to_RDR_IccPowerOn:
DPRINTF(s, 1, "%s: PowerOn: %d\n", __func__,
((CCID_IccPowerOn *)(ccid_header))->bPowerSelect);
s->powered = true;
if (!ccid_card_inserted(s)) {
ccid_report_error_failed(s, ERROR_ICC_MUTE);
}
/* atr is written regardless of error. */
ccid_write_data_block_atr(s, ccid_header);
break;
case CCID_MESSAGE_TYPE_PC_to_RDR_IccPowerOff:
ccid_reset_error_status(s);
s->powered = false;
ccid_write_slot_status(s, ccid_header);
break;
case CCID_MESSAGE_TYPE_PC_to_RDR_XfrBlock:
ccid_on_apdu_from_guest(s, (CCID_XferBlock *)s->bulk_out_data);
break;
case CCID_MESSAGE_TYPE_PC_to_RDR_SetParameters:
ccid_reset_error_status(s);
ccid_set_parameters(s, ccid_header);
ccid_write_parameters(s, ccid_header);
break;
case CCID_MESSAGE_TYPE_PC_to_RDR_ResetParameters:
ccid_reset_error_status(s);
ccid_reset_parameters(s);
ccid_write_parameters(s, ccid_header);
break;
case CCID_MESSAGE_TYPE_PC_to_RDR_GetParameters:
ccid_reset_error_status(s);
ccid_write_parameters(s, ccid_header);
break;
case CCID_MESSAGE_TYPE_PC_to_RDR_Mechanical:
ccid_report_error_failed(s, 0);
ccid_write_slot_status(s, ccid_header);
break;
default:
DPRINTF(s, 1,
"handle_data: ERROR: unhandled message type %Xh\n",
ccid_header->bMessageType);
/*
* The caller is expecting the device to respond, tell it we
* don't support the operation.
*/
ccid_report_error_failed(s, ERROR_CMD_NOT_SUPPORTED);
ccid_write_slot_status(s, ccid_header);
break;
}
s->bulk_out_pos = 0;
return;
err:
p->status = USB_RET_STALL;
s->bulk_out_pos = 0;
return;
}
static void ccid_bulk_in_copy_to_guest(USBCCIDState *s, USBPacket *p,
unsigned int max_packet_size)
{
int len = 0;
ccid_bulk_in_get(s);
if (s->current_bulk_in != NULL) {
len = MIN(s->current_bulk_in->len - s->current_bulk_in->pos,
p->iov.size);
if (len) {
usb_packet_copy(p, s->current_bulk_in->data +
s->current_bulk_in->pos, len);
}
s->current_bulk_in->pos += len;
if (s->current_bulk_in->pos == s->current_bulk_in->len
&& len != max_packet_size) {
ccid_bulk_in_release(s);
}
} else {
/* return when device has no data - usb 2.0 spec Table 8-4 */
p->status = USB_RET_NAK;
}
if (len) {
DPRINTF(s, D_MORE_INFO,
"%s: %zd/%d req/act to guest (BULK_IN)\n",
__func__, p->iov.size, len);
}
if (len < p->iov.size) {
DPRINTF(s, 1,
"%s: returning short (EREMOTEIO) %d < %zd\n",
__func__, len, p->iov.size);
}
}
static void ccid_handle_data(USBDevice *dev, USBPacket *p)
{
USBCCIDState *s = USB_CCID_DEV(dev);
uint8_t buf[2];
switch (p->pid) {
case USB_TOKEN_OUT:
ccid_handle_bulk_out(s, p);
break;
case USB_TOKEN_IN:
switch (p->ep->nr) {
case CCID_BULK_IN_EP:
ccid_bulk_in_copy_to_guest(s, p, dev->ep_ctl.max_packet_size);
break;
case CCID_INT_IN_EP:
if (s->notify_slot_change) {
/* page 56, RDR_to_PC_NotifySlotChange */
buf[0] = CCID_MESSAGE_TYPE_RDR_to_PC_NotifySlotChange;
buf[1] = s->bmSlotICCState;
usb_packet_copy(p, buf, 2);
s->notify_slot_change = false;
s->bmSlotICCState &= ~SLOT_0_CHANGED_MASK;
DPRINTF(s, D_INFO,
"handle_data: int_in: notify_slot_change %X, "
"requested len %zd\n",
s->bmSlotICCState, p->iov.size);
} else {
p->status = USB_RET_NAK;
}
break;
default:
DPRINTF(s, 1, "Bad endpoint\n");
p->status = USB_RET_STALL;
break;
}
break;
default:
DPRINTF(s, 1, "Bad token\n");
p->status = USB_RET_STALL;
break;
}
}
static void ccid_unrealize(USBDevice *dev)
{
USBCCIDState *s = USB_CCID_DEV(dev);
ccid_bulk_in_clear(s);
}
static void ccid_flush_pending_answers(USBCCIDState *s)
{
while (ccid_has_pending_answers(s)) {
ccid_write_data_block_answer(s, NULL, 0);
}
}
static Answer *ccid_peek_next_answer(USBCCIDState *s)
{
return s->pending_answers_num == 0
? NULL
: &s->pending_answers[s->pending_answers_start % PENDING_ANSWERS_NUM];
}
static Property ccid_props[] = {
DEFINE_PROP_UINT32("slot", struct CCIDCardState, slot, 0),
DEFINE_PROP_END_OF_LIST(),
};
#define TYPE_CCID_BUS "ccid-bus"
OBJECT_DECLARE_SIMPLE_TYPE(CCIDBus, CCID_BUS)
static const TypeInfo ccid_bus_info = {
.name = TYPE_CCID_BUS,
.parent = TYPE_BUS,
.instance_size = sizeof(CCIDBus),
};
void ccid_card_send_apdu_to_guest(CCIDCardState *card,
uint8_t *apdu, uint32_t len)
{
DeviceState *qdev = DEVICE(card);
USBDevice *dev = USB_DEVICE(qdev->parent_bus->parent);
USBCCIDState *s = USB_CCID_DEV(dev);
Answer *answer;
if (!ccid_has_pending_answers(s)) {
DPRINTF(s, 1, "CCID ERROR: got an APDU without pending answers\n");
return;
}
s->bmCommandStatus = COMMAND_STATUS_NO_ERROR;
answer = ccid_peek_next_answer(s);
if (answer == NULL) {
DPRINTF(s, D_WARN, "%s: error: unexpected lack of answer\n", __func__);
ccid_report_error_failed(s, ERROR_HW_ERROR);
return;
}
DPRINTF(s, 1, "APDU returned to guest %u (answer seq %d, slot %d)\n",
len, answer->seq, answer->slot);
ccid_write_data_block_answer(s, apdu, len);
}
void ccid_card_card_removed(CCIDCardState *card)
{
DeviceState *qdev = DEVICE(card);
USBDevice *dev = USB_DEVICE(qdev->parent_bus->parent);
USBCCIDState *s = USB_CCID_DEV(dev);
ccid_on_slot_change(s, false);
ccid_flush_pending_answers(s);
ccid_reset(s);
}
int ccid_card_ccid_attach(CCIDCardState *card)
{
DeviceState *qdev = DEVICE(card);
USBDevice *dev = USB_DEVICE(qdev->parent_bus->parent);
USBCCIDState *s = USB_CCID_DEV(dev);
DPRINTF(s, 1, "CCID Attach\n");
return 0;
}
void ccid_card_ccid_detach(CCIDCardState *card)
{
DeviceState *qdev = DEVICE(card);
USBDevice *dev = USB_DEVICE(qdev->parent_bus->parent);
USBCCIDState *s = USB_CCID_DEV(dev);
DPRINTF(s, 1, "CCID Detach\n");
if (ccid_card_inserted(s)) {
ccid_on_slot_change(s, false);
}
ccid_detach(s);
}
void ccid_card_card_error(CCIDCardState *card, uint64_t error)
{
DeviceState *qdev = DEVICE(card);
USBDevice *dev = USB_DEVICE(qdev->parent_bus->parent);
USBCCIDState *s = USB_CCID_DEV(dev);
s->bmCommandStatus = COMMAND_STATUS_FAILED;
s->last_answer_error = error;
DPRINTF(s, 1, "VSC_Error: %" PRIX64 "\n", s->last_answer_error);
/* TODO: these errors should be more verbose and propagated to the guest.*/
/*
* We flush all pending answers on CardRemove message in ccid-card-passthru,
* so check that first to not trigger abort
*/
if (ccid_has_pending_answers(s)) {
ccid_write_data_block_answer(s, NULL, 0);
}
}
void ccid_card_card_inserted(CCIDCardState *card)
{
DeviceState *qdev = DEVICE(card);
USBDevice *dev = USB_DEVICE(qdev->parent_bus->parent);
USBCCIDState *s = USB_CCID_DEV(dev);
s->bmCommandStatus = COMMAND_STATUS_NO_ERROR;
ccid_flush_pending_answers(s);
ccid_on_slot_change(s, true);
}
static void ccid_card_unrealize(DeviceState *qdev)
{
CCIDCardState *card = CCID_CARD(qdev);
CCIDCardClass *cc = CCID_CARD_GET_CLASS(card);
USBDevice *dev = USB_DEVICE(qdev->parent_bus->parent);
USBCCIDState *s = USB_CCID_DEV(dev);
if (ccid_card_inserted(s)) {
ccid_card_card_removed(card);
}
if (cc->unrealize) {
cc->unrealize(card);
}
s->card = NULL;
}
static void ccid_card_realize(DeviceState *qdev, Error **errp)
{
CCIDCardState *card = CCID_CARD(qdev);
CCIDCardClass *cc = CCID_CARD_GET_CLASS(card);
USBDevice *dev = USB_DEVICE(qdev->parent_bus->parent);
USBCCIDState *s = USB_CCID_DEV(dev);
Error *local_err = NULL;
if (card->slot != 0) {
error_setg(errp, "usb-ccid supports one slot, can't add %d",
card->slot);
return;
}
if (s->card != NULL) {
error_setg(errp, "usb-ccid card already full, not adding");
return;
}
if (cc->realize) {
cc->realize(card, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
}
s->card = card;
}
static void ccid_realize(USBDevice *dev, Error **errp)
{
USBCCIDState *s = USB_CCID_DEV(dev);
usb_desc_create_serial(dev);
usb_desc_init(dev);
qbus_init(&s->bus, sizeof(s->bus), TYPE_CCID_BUS, DEVICE(dev), NULL);
qbus_set_hotplug_handler(BUS(&s->bus), OBJECT(dev));
s->intr = usb_ep_get(dev, USB_TOKEN_IN, CCID_INT_IN_EP);
s->bulk = usb_ep_get(dev, USB_TOKEN_IN, CCID_BULK_IN_EP);
s->card = NULL;
s->dev.speed = USB_SPEED_FULL;
s->dev.speedmask = USB_SPEED_MASK_FULL;
s->notify_slot_change = false;
s->powered = true;
s->pending_answers_num = 0;
s->last_answer_error = 0;
s->bulk_in_pending_start = 0;
s->bulk_in_pending_end = 0;
s->current_bulk_in = NULL;
ccid_reset_error_status(s);
s->bulk_out_pos = 0;
ccid_reset_parameters(s);
ccid_reset(s);
s->debug = parse_debug_env("QEMU_CCID_DEBUG", D_VERBOSE, s->debug);
}
static int ccid_post_load(void *opaque, int version_id)
{
USBCCIDState *s = opaque;
/*
* This must be done after usb_device_attach, which sets state to ATTACHED,
* while it must be DEFAULT in order to accept packets (like it is after
* reset, but reset will reset our addr and call our reset handler which
* may change state, and we don't want to do that when migrating).
*/
s->dev.state = s->state_vmstate;
return 0;
}
static int ccid_pre_save(void *opaque)
{
USBCCIDState *s = opaque;
s->state_vmstate = s->dev.state;
return 0;
}
static const VMStateDescription bulk_in_vmstate = {
.name = "CCID BulkIn state",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_BUFFER(data, BulkIn),
VMSTATE_UINT32(len, BulkIn),
VMSTATE_UINT32(pos, BulkIn),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription answer_vmstate = {
.name = "CCID Answer state",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(slot, Answer),
VMSTATE_UINT8(seq, Answer),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription usb_device_vmstate = {
.name = "usb_device",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(addr, USBDevice),
VMSTATE_BUFFER(setup_buf, USBDevice),
VMSTATE_BUFFER(data_buf, USBDevice),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription ccid_vmstate = {
.name = "usb-ccid",
.version_id = 1,
.minimum_version_id = 1,
.post_load = ccid_post_load,
.pre_save = ccid_pre_save,
.fields = (VMStateField[]) {
VMSTATE_STRUCT(dev, USBCCIDState, 1, usb_device_vmstate, USBDevice),
VMSTATE_UINT8(debug, USBCCIDState),
VMSTATE_BUFFER(bulk_out_data, USBCCIDState),
VMSTATE_UINT32(bulk_out_pos, USBCCIDState),
VMSTATE_UINT8(bmSlotICCState, USBCCIDState),
VMSTATE_UINT8(powered, USBCCIDState),
VMSTATE_UINT8(notify_slot_change, USBCCIDState),
VMSTATE_UINT64(last_answer_error, USBCCIDState),
VMSTATE_UINT8(bError, USBCCIDState),
VMSTATE_UINT8(bmCommandStatus, USBCCIDState),
VMSTATE_UINT8(bProtocolNum, USBCCIDState),
VMSTATE_BUFFER(abProtocolDataStructure.data, USBCCIDState),
VMSTATE_UINT32(ulProtocolDataStructureSize, USBCCIDState),
VMSTATE_STRUCT_ARRAY(bulk_in_pending, USBCCIDState,
BULK_IN_PENDING_NUM, 1, bulk_in_vmstate, BulkIn),
VMSTATE_UINT32(bulk_in_pending_start, USBCCIDState),
VMSTATE_UINT32(bulk_in_pending_end, USBCCIDState),
VMSTATE_STRUCT_ARRAY(pending_answers, USBCCIDState,
PENDING_ANSWERS_NUM, 1, answer_vmstate, Answer),
VMSTATE_UINT32(pending_answers_num, USBCCIDState),
VMSTATE_UNUSED(1), /* was migration_state */
VMSTATE_UINT32(state_vmstate, USBCCIDState),
VMSTATE_END_OF_LIST()
}
};
static Property ccid_properties[] = {
DEFINE_PROP_UINT8("debug", USBCCIDState, debug, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void ccid_class_initfn(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
USBDeviceClass *uc = USB_DEVICE_CLASS(klass);
HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(klass);
uc->realize = ccid_realize;
uc->product_desc = "QEMU USB CCID";
uc->usb_desc = &desc_ccid;
uc->handle_reset = ccid_handle_reset;
uc->handle_control = ccid_handle_control;
uc->handle_data = ccid_handle_data;
uc->unrealize = ccid_unrealize;
dc->desc = "CCID Rev 1.1 smartcard reader";
dc->vmsd = &ccid_vmstate;
device_class_set_props(dc, ccid_properties);
set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
hc->unplug = qdev_simple_device_unplug_cb;
}
static const TypeInfo ccid_info = {
.name = TYPE_USB_CCID_DEV,
.parent = TYPE_USB_DEVICE,
.instance_size = sizeof(USBCCIDState),
.class_init = ccid_class_initfn,
.interfaces = (InterfaceInfo[]) {
{ TYPE_HOTPLUG_HANDLER },
{ }
}
};
static void ccid_card_class_init(ObjectClass *klass, void *data)
{
DeviceClass *k = DEVICE_CLASS(klass);
k->bus_type = TYPE_CCID_BUS;
k->realize = ccid_card_realize;
k->unrealize = ccid_card_unrealize;
device_class_set_props(k, ccid_props);
}
static const TypeInfo ccid_card_type_info = {
.name = TYPE_CCID_CARD,
.parent = TYPE_DEVICE,
.instance_size = sizeof(CCIDCardState),
.abstract = true,
.class_size = sizeof(CCIDCardClass),
.class_init = ccid_card_class_init,
};
static void ccid_register_types(void)
{
type_register_static(&ccid_bus_info);
type_register_static(&ccid_card_type_info);
type_register_static(&ccid_info);
}
type_init(ccid_register_types)