You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/hw/intc/spapr_xive_kvm.c

870 lines
24 KiB
C

/*
* QEMU PowerPC sPAPR XIVE interrupt controller model
*
* Copyright (c) 2017-2019, IBM Corporation.
*
* This code is licensed under the GPL version 2 or later. See the
* COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "target/ppc/cpu.h"
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
#include "sysemu/runstate.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_cpu_core.h"
#include "hw/ppc/spapr_xive.h"
#include "hw/ppc/xive.h"
#include "kvm_ppc.h"
#include "trace.h"
#include <sys/ioctl.h>
/*
* Helpers for CPU hotplug
*
* TODO: make a common KVMEnabledCPU layer for XICS and XIVE
*/
typedef struct KVMEnabledCPU {
unsigned long vcpu_id;
QLIST_ENTRY(KVMEnabledCPU) node;
} KVMEnabledCPU;
static QLIST_HEAD(, KVMEnabledCPU)
kvm_enabled_cpus = QLIST_HEAD_INITIALIZER(&kvm_enabled_cpus);
static bool kvm_cpu_is_enabled(CPUState *cs)
{
KVMEnabledCPU *enabled_cpu;
unsigned long vcpu_id = kvm_arch_vcpu_id(cs);
QLIST_FOREACH(enabled_cpu, &kvm_enabled_cpus, node) {
if (enabled_cpu->vcpu_id == vcpu_id) {
return true;
}
}
return false;
}
static void kvm_cpu_enable(CPUState *cs)
{
KVMEnabledCPU *enabled_cpu;
unsigned long vcpu_id = kvm_arch_vcpu_id(cs);
enabled_cpu = g_malloc(sizeof(*enabled_cpu));
enabled_cpu->vcpu_id = vcpu_id;
QLIST_INSERT_HEAD(&kvm_enabled_cpus, enabled_cpu, node);
}
static void kvm_cpu_disable_all(void)
{
KVMEnabledCPU *enabled_cpu, *next;
QLIST_FOREACH_SAFE(enabled_cpu, &kvm_enabled_cpus, node, next) {
QLIST_REMOVE(enabled_cpu, node);
g_free(enabled_cpu);
}
}
/*
* XIVE Thread Interrupt Management context (KVM)
*/
int kvmppc_xive_cpu_set_state(XiveTCTX *tctx, Error **errp)
{
SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
uint64_t state[2];
int ret;
assert(xive->fd != -1);
/* word0 and word1 of the OS ring. */
state[0] = *((uint64_t *) &tctx->regs[TM_QW1_OS]);
ret = kvm_set_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state);
if (ret != 0) {
error_setg_errno(errp, -ret,
"XIVE: could not restore KVM state of CPU %ld",
kvm_arch_vcpu_id(tctx->cs));
return ret;
}
return 0;
}
int kvmppc_xive_cpu_get_state(XiveTCTX *tctx, Error **errp)
{
SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
uint64_t state[2] = { 0 };
int ret;
assert(xive->fd != -1);
ret = kvm_get_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state);
if (ret != 0) {
error_setg_errno(errp, -ret,
"XIVE: could not capture KVM state of CPU %ld",
kvm_arch_vcpu_id(tctx->cs));
return ret;
}
/* word0 and word1 of the OS ring. */
*((uint64_t *) &tctx->regs[TM_QW1_OS]) = state[0];
return 0;
}
typedef struct {
XiveTCTX *tctx;
Error **errp;
int ret;
} XiveCpuGetState;
static void kvmppc_xive_cpu_do_synchronize_state(CPUState *cpu,
run_on_cpu_data arg)
{
XiveCpuGetState *s = arg.host_ptr;
s->ret = kvmppc_xive_cpu_get_state(s->tctx, s->errp);
}
int kvmppc_xive_cpu_synchronize_state(XiveTCTX *tctx, Error **errp)
{
XiveCpuGetState s = {
.tctx = tctx,
.errp = errp,
};
/*
* Kick the vCPU to make sure they are available for the KVM ioctl.
*/
run_on_cpu(tctx->cs, kvmppc_xive_cpu_do_synchronize_state,
RUN_ON_CPU_HOST_PTR(&s));
return s.ret;
}
int kvmppc_xive_cpu_connect(XiveTCTX *tctx, Error **errp)
{
ERRP_GUARD();
SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
unsigned long vcpu_id;
int ret;
assert(xive->fd != -1);
/* Check if CPU was hot unplugged and replugged. */
if (kvm_cpu_is_enabled(tctx->cs)) {
return 0;
}
vcpu_id = kvm_arch_vcpu_id(tctx->cs);
trace_kvm_xive_cpu_connect(vcpu_id);
ret = kvm_vcpu_enable_cap(tctx->cs, KVM_CAP_PPC_IRQ_XIVE, 0, xive->fd,
vcpu_id, 0);
if (ret < 0) {
error_setg_errno(errp, -ret,
"XIVE: unable to connect CPU%ld to KVM device",
vcpu_id);
if (ret == -ENOSPC) {
error_append_hint(errp, "Try -smp maxcpus=N with N < %u\n",
MACHINE(qdev_get_machine())->smp.max_cpus);
}
return ret;
}
kvm_cpu_enable(tctx->cs);
return 0;
}
/*
* XIVE Interrupt Source (KVM)
*/
int kvmppc_xive_set_source_config(SpaprXive *xive, uint32_t lisn, XiveEAS *eas,
Error **errp)
{
uint32_t end_idx;
uint32_t end_blk;
uint8_t priority;
uint32_t server;
bool masked;
uint32_t eisn;
uint64_t kvm_src;
assert(xive_eas_is_valid(eas));
end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
end_blk = xive_get_field64(EAS_END_BLOCK, eas->w);
eisn = xive_get_field64(EAS_END_DATA, eas->w);
masked = xive_eas_is_masked(eas);
spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
kvm_src = priority << KVM_XIVE_SOURCE_PRIORITY_SHIFT &
KVM_XIVE_SOURCE_PRIORITY_MASK;
kvm_src |= server << KVM_XIVE_SOURCE_SERVER_SHIFT &
KVM_XIVE_SOURCE_SERVER_MASK;
kvm_src |= ((uint64_t) masked << KVM_XIVE_SOURCE_MASKED_SHIFT) &
KVM_XIVE_SOURCE_MASKED_MASK;
kvm_src |= ((uint64_t)eisn << KVM_XIVE_SOURCE_EISN_SHIFT) &
KVM_XIVE_SOURCE_EISN_MASK;
return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_CONFIG, lisn,
&kvm_src, true, errp);
}
void kvmppc_xive_sync_source(SpaprXive *xive, uint32_t lisn, Error **errp)
{
kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_SYNC, lisn,
NULL, true, errp);
}
/*
* At reset, the interrupt sources are simply created and MASKED. We
* only need to inform the KVM XIVE device about their type: LSI or
* MSI.
*/
int kvmppc_xive_source_reset_one(XiveSource *xsrc, int srcno, Error **errp)
{
SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
uint64_t state = 0;
trace_kvm_xive_source_reset(srcno);
assert(xive->fd != -1);
if (xive_source_irq_is_lsi(xsrc, srcno)) {
state |= KVM_XIVE_LEVEL_SENSITIVE;
if (xive_source_is_asserted(xsrc, srcno)) {
state |= KVM_XIVE_LEVEL_ASSERTED;
}
}
return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE, srcno, &state,
true, errp);
}
static int kvmppc_xive_source_reset(XiveSource *xsrc, Error **errp)
{
SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
int i;
for (i = 0; i < xsrc->nr_irqs; i++) {
int ret;
if (!xive_eas_is_valid(&xive->eat[i])) {
continue;
}
ret = kvmppc_xive_source_reset_one(xsrc, i, errp);
if (ret < 0) {
return ret;
}
}
return 0;
}
/*
* This is used to perform the magic loads on the ESB pages, described
* in xive.h.
*
* Memory barriers should not be needed for loads (no store for now).
*/
static uint64_t xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset,
uint64_t data, bool write)
{
uint64_t *addr = xsrc->esb_mmap + xive_source_esb_mgmt(xsrc, srcno) +
offset;
if (write) {
*addr = cpu_to_be64(data);
return -1;
} else {
/* Prevent the compiler from optimizing away the load */
volatile uint64_t value = be64_to_cpu(*addr);
return value;
}
}
static uint8_t xive_esb_read(XiveSource *xsrc, int srcno, uint32_t offset)
{
return xive_esb_rw(xsrc, srcno, offset, 0, 0) & 0x3;
}
static void kvmppc_xive_esb_trigger(XiveSource *xsrc, int srcno)
{
xive_esb_rw(xsrc, srcno, 0, 0, true);
}
uint64_t kvmppc_xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset,
uint64_t data, bool write)
{
if (write) {
return xive_esb_rw(xsrc, srcno, offset, data, 1);
}
/*
* Special Load EOI handling for LSI sources. Q bit is never set
* and the interrupt should be re-triggered if the level is still
* asserted.
*/
if (xive_source_irq_is_lsi(xsrc, srcno) &&
offset == XIVE_ESB_LOAD_EOI) {
xive_esb_read(xsrc, srcno, XIVE_ESB_SET_PQ_00);
if (xive_source_is_asserted(xsrc, srcno)) {
kvmppc_xive_esb_trigger(xsrc, srcno);
}
return 0;
} else {
return xive_esb_rw(xsrc, srcno, offset, 0, 0);
}
}
static void kvmppc_xive_source_get_state(XiveSource *xsrc)
{
SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
int i;
for (i = 0; i < xsrc->nr_irqs; i++) {
uint8_t pq;
if (!xive_eas_is_valid(&xive->eat[i])) {
continue;
}
/* Perform a load without side effect to retrieve the PQ bits */
pq = xive_esb_read(xsrc, i, XIVE_ESB_GET);
/* and save PQ locally */
xive_source_esb_set(xsrc, i, pq);
}
}
void kvmppc_xive_source_set_irq(void *opaque, int srcno, int val)
{
XiveSource *xsrc = opaque;
if (!xive_source_irq_is_lsi(xsrc, srcno)) {
if (!val) {
return;
}
} else {
xive_source_set_asserted(xsrc, srcno, val);
}
kvmppc_xive_esb_trigger(xsrc, srcno);
}
/*
* sPAPR XIVE interrupt controller (KVM)
*/
int kvmppc_xive_get_queue_config(SpaprXive *xive, uint8_t end_blk,
uint32_t end_idx, XiveEND *end,
Error **errp)
{
struct kvm_ppc_xive_eq kvm_eq = { 0 };
uint64_t kvm_eq_idx;
uint8_t priority;
uint32_t server;
int ret;
assert(xive_end_is_valid(end));
/* Encode the tuple (server, prio) as a KVM EQ index */
spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT &
KVM_XIVE_EQ_PRIORITY_MASK;
kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT &
KVM_XIVE_EQ_SERVER_MASK;
ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx,
&kvm_eq, false, errp);
if (ret < 0) {
return ret;
}
/*
* The EQ index and toggle bit are updated by HW. These are the
* only fields from KVM we want to update QEMU with. The other END
* fields should already be in the QEMU END table.
*/
end->w1 = xive_set_field32(END_W1_GENERATION, 0ul, kvm_eq.qtoggle) |
xive_set_field32(END_W1_PAGE_OFF, 0ul, kvm_eq.qindex);
return 0;
}
int kvmppc_xive_set_queue_config(SpaprXive *xive, uint8_t end_blk,
uint32_t end_idx, XiveEND *end,
Error **errp)
{
struct kvm_ppc_xive_eq kvm_eq = { 0 };
uint64_t kvm_eq_idx;
uint8_t priority;
uint32_t server;
/*
* Build the KVM state from the local END structure.
*/
kvm_eq.flags = 0;
if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0)) {
kvm_eq.flags |= KVM_XIVE_EQ_ALWAYS_NOTIFY;
}
/*
* If the hcall is disabling the EQ, set the size and page address
* to zero. When migrating, only valid ENDs are taken into
* account.
*/
if (xive_end_is_valid(end)) {
kvm_eq.qshift = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
kvm_eq.qaddr = xive_end_qaddr(end);
/*
* The EQ toggle bit and index should only be relevant when
* restoring the EQ state
*/
kvm_eq.qtoggle = xive_get_field32(END_W1_GENERATION, end->w1);
kvm_eq.qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
} else {
kvm_eq.qshift = 0;
kvm_eq.qaddr = 0;
}
/* Encode the tuple (server, prio) as a KVM EQ index */
spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT &
KVM_XIVE_EQ_PRIORITY_MASK;
kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT &
KVM_XIVE_EQ_SERVER_MASK;
return
kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx,
&kvm_eq, true, errp);
}
void kvmppc_xive_reset(SpaprXive *xive, Error **errp)
{
kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, KVM_DEV_XIVE_RESET,
NULL, true, errp);
}
static int kvmppc_xive_get_queues(SpaprXive *xive, Error **errp)
{
int i;
int ret;
for (i = 0; i < xive->nr_ends; i++) {
if (!xive_end_is_valid(&xive->endt[i])) {
continue;
}
ret = kvmppc_xive_get_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i,
&xive->endt[i], errp);
if (ret < 0) {
return ret;
}
}
return 0;
}
/*
* The primary goal of the XIVE VM change handler is to mark the EQ
* pages dirty when all XIVE event notifications have stopped.
*
* Whenever the VM is stopped, the VM change handler sets the source
* PQs to PENDING to stop the flow of events and to possibly catch a
* triggered interrupt occuring while the VM is stopped. The previous
* state is saved in anticipation of a migration. The XIVE controller
* is then synced through KVM to flush any in-flight event
* notification and stabilize the EQs.
*
* At this stage, we can mark the EQ page dirty and let a migration
* sequence transfer the EQ pages to the destination, which is done
* just after the stop state.
*
* The previous configuration of the sources is restored when the VM
* runs again. If an interrupt was queued while the VM was stopped,
* simply generate a trigger.
*/
static void kvmppc_xive_change_state_handler(void *opaque, bool running,
RunState state)
{
SpaprXive *xive = opaque;
XiveSource *xsrc = &xive->source;
Error *local_err = NULL;
int i;
/*
* Restore the sources to their initial state. This is called when
* the VM resumes after a stop or a migration.
*/
if (running) {
for (i = 0; i < xsrc->nr_irqs; i++) {
uint8_t pq;
uint8_t old_pq;
if (!xive_eas_is_valid(&xive->eat[i])) {
continue;
}
pq = xive_source_esb_get(xsrc, i);
old_pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_00 + (pq << 8));
/*
* An interrupt was queued while the VM was stopped,
* generate a trigger.
*/
if (pq == XIVE_ESB_RESET && old_pq == XIVE_ESB_QUEUED) {
kvmppc_xive_esb_trigger(xsrc, i);
}
}
return;
}
/*
* Mask the sources, to stop the flow of event notifications, and
* save the PQs locally in the XiveSource object. The XiveSource
* state will be collected later on by its vmstate handler if a
* migration is in progress.
*/
for (i = 0; i < xsrc->nr_irqs; i++) {
uint8_t pq;
if (!xive_eas_is_valid(&xive->eat[i])) {
continue;
}
pq = xive_esb_read(xsrc, i, XIVE_ESB_GET);
/*
* PQ is set to PENDING to possibly catch a triggered
* interrupt occuring while the VM is stopped (hotplug event
* for instance) .
*/
if (pq != XIVE_ESB_OFF) {
pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_10);
}
xive_source_esb_set(xsrc, i, pq);
}
/*
* Sync the XIVE controller in KVM, to flush in-flight event
* notification that should be enqueued in the EQs and mark the
* XIVE EQ pages dirty to collect all updates.
*/
kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
KVM_DEV_XIVE_EQ_SYNC, NULL, true, &local_err);
if (local_err) {
error_report_err(local_err);
return;
}
}
void kvmppc_xive_synchronize_state(SpaprXive *xive, Error **errp)
{
assert(xive->fd != -1);
/*
* When the VM is stopped, the sources are masked and the previous
* state is saved in anticipation of a migration. We should not
* synchronize the source state in that case else we will override
* the saved state.
*/
if (runstate_is_running()) {
kvmppc_xive_source_get_state(&xive->source);
}
/* EAT: there is no extra state to query from KVM */
/* ENDT */
kvmppc_xive_get_queues(xive, errp);
}
/*
* The SpaprXive 'pre_save' method is called by the vmstate handler of
* the SpaprXive model, after the XIVE controller is synced in the VM
* change handler.
*/
int kvmppc_xive_pre_save(SpaprXive *xive)
{
Error *local_err = NULL;
int ret;
assert(xive->fd != -1);
/* EAT: there is no extra state to query from KVM */
/* ENDT */
ret = kvmppc_xive_get_queues(xive, &local_err);
if (ret < 0) {
error_report_err(local_err);
return ret;
}
return 0;
}
/*
* The SpaprXive 'post_load' method is not called by a vmstate
* handler. It is called at the sPAPR machine level at the end of the
* migration sequence by the sPAPR IRQ backend 'post_load' method,
* when all XIVE states have been transferred and loaded.
*/
int kvmppc_xive_post_load(SpaprXive *xive, int version_id)
{
Error *local_err = NULL;
CPUState *cs;
int i;
int ret;
/* The KVM XIVE device should be in use */
assert(xive->fd != -1);
/* Restore the ENDT first. The targetting depends on it. */
for (i = 0; i < xive->nr_ends; i++) {
if (!xive_end_is_valid(&xive->endt[i])) {
continue;
}
ret = kvmppc_xive_set_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i,
&xive->endt[i], &local_err);
if (ret < 0) {
goto fail;
}
}
/* Restore the EAT */
for (i = 0; i < xive->nr_irqs; i++) {
if (!xive_eas_is_valid(&xive->eat[i])) {
continue;
}
/*
* We can only restore the source config if the source has been
* previously set in KVM. Since we don't do that for all interrupts
* at reset time anymore, let's do it now.
*/
ret = kvmppc_xive_source_reset_one(&xive->source, i, &local_err);
if (ret < 0) {
goto fail;
}
ret = kvmppc_xive_set_source_config(xive, i, &xive->eat[i], &local_err);
if (ret < 0) {
goto fail;
}
}
/*
* Restore the thread interrupt contexts of initial CPUs.
*
* The context of hotplugged CPUs is restored later, by the
* 'post_load' handler of the XiveTCTX model because they are not
* available at the time the SpaprXive 'post_load' method is
* called. We can not restore the context of all CPUs in the
* 'post_load' handler of XiveTCTX because the machine is not
* necessarily connected to the KVM device at that time.
*/
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
ret = kvmppc_xive_cpu_set_state(spapr_cpu_state(cpu)->tctx, &local_err);
if (ret < 0) {
goto fail;
}
}
/* The source states will be restored when the machine starts running */
return 0;
fail:
error_report_err(local_err);
return ret;
}
/* Returns MAP_FAILED on error and sets errno */
static void *kvmppc_xive_mmap(SpaprXive *xive, int pgoff, size_t len,
Error **errp)
{
void *addr;
uint32_t page_shift = 16; /* TODO: fix page_shift */
addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, xive->fd,
pgoff << page_shift);
if (addr == MAP_FAILED) {
error_setg_errno(errp, errno, "XIVE: unable to set memory mapping");
}
return addr;
}
/*
* All the XIVE memory regions are now backed by mappings from the KVM
* XIVE device.
*/
int kvmppc_xive_connect(SpaprInterruptController *intc, uint32_t nr_servers,
Error **errp)
{
SpaprXive *xive = SPAPR_XIVE(intc);
XiveSource *xsrc = &xive->source;
size_t esb_len = xive_source_esb_len(xsrc);
size_t tima_len = 4ull << TM_SHIFT;
CPUState *cs;
int fd;
void *addr;
int ret;
/*
* The KVM XIVE device already in use. This is the case when
* rebooting under the XIVE-only interrupt mode.
*/
if (xive->fd != -1) {
return 0;
}
if (!kvmppc_has_cap_xive()) {
error_setg(errp, "IRQ_XIVE capability must be present for KVM");
return -1;
}
/* First, create the KVM XIVE device */
fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_XIVE, false);
if (fd < 0) {
error_setg_errno(errp, -fd, "XIVE: error creating KVM device");
return -1;
}
xive->fd = fd;
/* Tell KVM about the # of VCPUs we may have */
if (kvm_device_check_attr(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
KVM_DEV_XIVE_NR_SERVERS)) {
ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
KVM_DEV_XIVE_NR_SERVERS, &nr_servers, true,
errp);
if (ret < 0) {
goto fail;
}
}
/*
* 1. Source ESB pages - KVM mapping
*/
addr = kvmppc_xive_mmap(xive, KVM_XIVE_ESB_PAGE_OFFSET, esb_len, errp);
if (addr == MAP_FAILED) {
goto fail;
}
xsrc->esb_mmap = addr;
memory_region_init_ram_device_ptr(&xsrc->esb_mmio_kvm, OBJECT(xsrc),
"xive.esb-kvm", esb_len, xsrc->esb_mmap);
memory_region_add_subregion_overlap(&xsrc->esb_mmio, 0,
&xsrc->esb_mmio_kvm, 1);
/*
* 2. END ESB pages (No KVM support yet)
*/
/*
* 3. TIMA pages - KVM mapping
*/
addr = kvmppc_xive_mmap(xive, KVM_XIVE_TIMA_PAGE_OFFSET, tima_len, errp);
if (addr == MAP_FAILED) {
goto fail;
}
xive->tm_mmap = addr;
memory_region_init_ram_device_ptr(&xive->tm_mmio_kvm, OBJECT(xive),
"xive.tima", tima_len, xive->tm_mmap);
memory_region_add_subregion_overlap(&xive->tm_mmio, 0,
&xive->tm_mmio_kvm, 1);
xive->change = qemu_add_vm_change_state_handler(
kvmppc_xive_change_state_handler, xive);
/* Connect the presenters to the initial VCPUs of the machine */
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
ret = kvmppc_xive_cpu_connect(spapr_cpu_state(cpu)->tctx, errp);
if (ret < 0) {
goto fail;
}
}
/* Update the KVM sources */
ret = kvmppc_xive_source_reset(xsrc, errp);
if (ret < 0) {
goto fail;
}
kvm_kernel_irqchip = true;
kvm_msi_via_irqfd_allowed = true;
kvm_gsi_direct_mapping = true;
return 0;
fail:
kvmppc_xive_disconnect(intc);
return -1;
}
void kvmppc_xive_disconnect(SpaprInterruptController *intc)
{
SpaprXive *xive = SPAPR_XIVE(intc);
XiveSource *xsrc;
size_t esb_len;
assert(xive->fd != -1);
/* Clear the KVM mapping */
xsrc = &xive->source;
esb_len = xive_source_esb_len(xsrc);
if (xsrc->esb_mmap) {
memory_region_del_subregion(&xsrc->esb_mmio, &xsrc->esb_mmio_kvm);
object_unparent(OBJECT(&xsrc->esb_mmio_kvm));
munmap(xsrc->esb_mmap, esb_len);
xsrc->esb_mmap = NULL;
}
if (xive->tm_mmap) {
memory_region_del_subregion(&xive->tm_mmio, &xive->tm_mmio_kvm);
object_unparent(OBJECT(&xive->tm_mmio_kvm));
munmap(xive->tm_mmap, 4ull << TM_SHIFT);
xive->tm_mmap = NULL;
}
/*
* When the KVM device fd is closed, the KVM device is destroyed
* and removed from the list of devices of the VM. The VCPU
* presenters are also detached from the device.
*/
close(xive->fd);
xive->fd = -1;
kvm_kernel_irqchip = false;
kvm_msi_via_irqfd_allowed = false;
kvm_gsi_direct_mapping = false;
/* Clear the local list of presenter (hotplug) */
kvm_cpu_disable_all();
/* VM Change state handler is not needed anymore */
if (xive->change) {
qemu_del_vm_change_state_handler(xive->change);
xive->change = NULL;
}
}