forked from mirror/qemu
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
861 lines
29 KiB
C++
861 lines
29 KiB
C++
/*
|
|
* QEMU float support
|
|
*
|
|
* The code in this source file is derived from release 2a of the SoftFloat
|
|
* IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
|
|
* some later contributions) are provided under that license, as detailed below.
|
|
* It has subsequently been modified by contributors to the QEMU Project,
|
|
* so some portions are provided under:
|
|
* the SoftFloat-2a license
|
|
* the BSD license
|
|
* GPL-v2-or-later
|
|
*
|
|
* Any future contributions to this file after December 1st 2014 will be
|
|
* taken to be licensed under the Softfloat-2a license unless specifically
|
|
* indicated otherwise.
|
|
*/
|
|
|
|
/*
|
|
===============================================================================
|
|
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
|
Arithmetic Package, Release 2a.
|
|
|
|
Written by John R. Hauser. This work was made possible in part by the
|
|
International Computer Science Institute, located at Suite 600, 1947 Center
|
|
Street, Berkeley, California 94704. Funding was partially provided by the
|
|
National Science Foundation under grant MIP-9311980. The original version
|
|
of this code was written as part of a project to build a fixed-point vector
|
|
processor in collaboration with the University of California at Berkeley,
|
|
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
|
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
|
arithmetic/SoftFloat.html'.
|
|
|
|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
|
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
|
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
|
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
|
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
|
|
|
Derivative works are acceptable, even for commercial purposes, so long as
|
|
(1) they include prominent notice that the work is derivative, and (2) they
|
|
include prominent notice akin to these four paragraphs for those parts of
|
|
this code that are retained.
|
|
|
|
===============================================================================
|
|
*/
|
|
|
|
/* BSD licensing:
|
|
* Copyright (c) 2006, Fabrice Bellard
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Portions of this work are licensed under the terms of the GNU GPL,
|
|
* version 2 or later. See the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
/*
|
|
* Define whether architecture deviates from IEEE in not supporting
|
|
* signaling NaNs (so all NaNs are treated as quiet).
|
|
*/
|
|
static inline bool no_signaling_nans(float_status *status)
|
|
{
|
|
#if defined(TARGET_XTENSA)
|
|
return status->no_signaling_nans;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/* Define how the architecture discriminates signaling NaNs.
|
|
* This done with the most significant bit of the fraction.
|
|
* In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
|
|
* the msb must be zero. MIPS is (so far) unique in supporting both the
|
|
* 2008 revision and backward compatibility with their original choice.
|
|
* Thus for MIPS we must make the choice at runtime.
|
|
*/
|
|
static inline bool snan_bit_is_one(float_status *status)
|
|
{
|
|
#if defined(TARGET_MIPS)
|
|
return status->snan_bit_is_one;
|
|
#elif defined(TARGET_HPPA) || defined(TARGET_SH4)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| For the deconstructed floating-point with fraction FRAC, return true
|
|
| if the fraction represents a signalling NaN; otherwise false.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static bool parts_is_snan_frac(uint64_t frac, float_status *status)
|
|
{
|
|
if (no_signaling_nans(status)) {
|
|
return false;
|
|
} else {
|
|
bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
|
|
return msb == snan_bit_is_one(status);
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| The pattern for a default generated deconstructed floating-point NaN.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static void parts64_default_nan(FloatParts64 *p, float_status *status)
|
|
{
|
|
bool sign = 0;
|
|
uint64_t frac;
|
|
|
|
#if defined(TARGET_SPARC) || defined(TARGET_M68K)
|
|
/* !snan_bit_is_one, set all bits */
|
|
frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
|
|
#elif defined(TARGET_I386) || defined(TARGET_X86_64) \
|
|
|| defined(TARGET_MICROBLAZE)
|
|
/* !snan_bit_is_one, set sign and msb */
|
|
frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
|
|
sign = 1;
|
|
#elif defined(TARGET_HPPA)
|
|
/* snan_bit_is_one, set msb-1. */
|
|
frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
|
|
#elif defined(TARGET_HEXAGON)
|
|
sign = 1;
|
|
frac = ~0ULL;
|
|
#else
|
|
/*
|
|
* This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
|
|
* S390, SH4, TriCore, and Xtensa. Our other supported targets,
|
|
* CRIS, Nios2, and Tile, do not have floating-point.
|
|
*/
|
|
if (snan_bit_is_one(status)) {
|
|
/* set all bits other than msb */
|
|
frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
|
|
} else {
|
|
/* set msb */
|
|
frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
|
|
}
|
|
#endif
|
|
|
|
*p = (FloatParts64) {
|
|
.cls = float_class_qnan,
|
|
.sign = sign,
|
|
.exp = INT_MAX,
|
|
.frac = frac
|
|
};
|
|
}
|
|
|
|
static void parts128_default_nan(FloatParts128 *p, float_status *status)
|
|
{
|
|
/*
|
|
* Extrapolate from the choices made by parts64_default_nan to fill
|
|
* in the quad-floating format. If the low bit is set, assume we
|
|
* want to set all non-snan bits.
|
|
*/
|
|
FloatParts64 p64;
|
|
parts64_default_nan(&p64, status);
|
|
|
|
*p = (FloatParts128) {
|
|
.cls = float_class_qnan,
|
|
.sign = p64.sign,
|
|
.exp = INT_MAX,
|
|
.frac_hi = p64.frac,
|
|
.frac_lo = -(p64.frac & 1)
|
|
};
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns a quiet NaN from a signalling NaN for the deconstructed
|
|
| floating-point parts.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static uint64_t parts_silence_nan_frac(uint64_t frac, float_status *status)
|
|
{
|
|
g_assert(!no_signaling_nans(status));
|
|
|
|
/* The only snan_bit_is_one target without default_nan_mode is HPPA. */
|
|
if (snan_bit_is_one(status)) {
|
|
frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
|
|
frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
|
|
} else {
|
|
frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
|
|
}
|
|
return frac;
|
|
}
|
|
|
|
static void parts64_silence_nan(FloatParts64 *p, float_status *status)
|
|
{
|
|
p->frac = parts_silence_nan_frac(p->frac, status);
|
|
p->cls = float_class_qnan;
|
|
}
|
|
|
|
static void parts128_silence_nan(FloatParts128 *p, float_status *status)
|
|
{
|
|
p->frac_hi = parts_silence_nan_frac(p->frac_hi, status);
|
|
p->cls = float_class_qnan;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| The pattern for a default generated extended double-precision NaN.
|
|
*----------------------------------------------------------------------------*/
|
|
floatx80 floatx80_default_nan(float_status *status)
|
|
{
|
|
floatx80 r;
|
|
|
|
/* None of the targets that have snan_bit_is_one use floatx80. */
|
|
assert(!snan_bit_is_one(status));
|
|
#if defined(TARGET_M68K)
|
|
r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
|
|
r.high = 0x7FFF;
|
|
#else
|
|
/* X86 */
|
|
r.low = UINT64_C(0xC000000000000000);
|
|
r.high = 0xFFFF;
|
|
#endif
|
|
return r;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| The pattern for a default generated extended double-precision inf.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
#define floatx80_infinity_high 0x7FFF
|
|
#if defined(TARGET_M68K)
|
|
#define floatx80_infinity_low UINT64_C(0x0000000000000000)
|
|
#else
|
|
#define floatx80_infinity_low UINT64_C(0x8000000000000000)
|
|
#endif
|
|
|
|
const floatx80 floatx80_infinity
|
|
= make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the half-precision floating-point value `a' is a quiet
|
|
| NaN; otherwise returns 0.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
bool float16_is_quiet_nan(float16 a_, float_status *status)
|
|
{
|
|
if (no_signaling_nans(status)) {
|
|
return float16_is_any_nan(a_);
|
|
} else {
|
|
uint16_t a = float16_val(a_);
|
|
if (snan_bit_is_one(status)) {
|
|
return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
|
|
} else {
|
|
|
|
return ((a >> 9) & 0x3F) == 0x3F;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the bfloat16 value `a' is a quiet
|
|
| NaN; otherwise returns 0.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
bool bfloat16_is_quiet_nan(bfloat16 a_, float_status *status)
|
|
{
|
|
if (no_signaling_nans(status)) {
|
|
return bfloat16_is_any_nan(a_);
|
|
} else {
|
|
uint16_t a = a_;
|
|
if (snan_bit_is_one(status)) {
|
|
return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
|
|
} else {
|
|
return ((a >> 6) & 0x1FF) == 0x1FF;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the half-precision floating-point value `a' is a signaling
|
|
| NaN; otherwise returns 0.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
bool float16_is_signaling_nan(float16 a_, float_status *status)
|
|
{
|
|
if (no_signaling_nans(status)) {
|
|
return 0;
|
|
} else {
|
|
uint16_t a = float16_val(a_);
|
|
if (snan_bit_is_one(status)) {
|
|
return ((a >> 9) & 0x3F) == 0x3F;
|
|
} else {
|
|
return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the bfloat16 value `a' is a signaling
|
|
| NaN; otherwise returns 0.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
bool bfloat16_is_signaling_nan(bfloat16 a_, float_status *status)
|
|
{
|
|
if (no_signaling_nans(status)) {
|
|
return 0;
|
|
} else {
|
|
uint16_t a = a_;
|
|
if (snan_bit_is_one(status)) {
|
|
return ((a >> 6) & 0x1FF) == 0x1FF;
|
|
} else {
|
|
return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is a quiet
|
|
| NaN; otherwise returns 0.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
bool float32_is_quiet_nan(float32 a_, float_status *status)
|
|
{
|
|
if (no_signaling_nans(status)) {
|
|
return float32_is_any_nan(a_);
|
|
} else {
|
|
uint32_t a = float32_val(a_);
|
|
if (snan_bit_is_one(status)) {
|
|
return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
|
|
} else {
|
|
return ((uint32_t)(a << 1) >= 0xFF800000);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is a signaling
|
|
| NaN; otherwise returns 0.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
bool float32_is_signaling_nan(float32 a_, float_status *status)
|
|
{
|
|
if (no_signaling_nans(status)) {
|
|
return 0;
|
|
} else {
|
|
uint32_t a = float32_val(a_);
|
|
if (snan_bit_is_one(status)) {
|
|
return ((uint32_t)(a << 1) >= 0xFF800000);
|
|
} else {
|
|
return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Select which NaN to propagate for a two-input operation.
|
|
| IEEE754 doesn't specify all the details of this, so the
|
|
| algorithm is target-specific.
|
|
| The routine is passed various bits of information about the
|
|
| two NaNs and should return 0 to select NaN a and 1 for NaN b.
|
|
| Note that signalling NaNs are always squashed to quiet NaNs
|
|
| by the caller, by calling floatXX_silence_nan() before
|
|
| returning them.
|
|
|
|
|
| aIsLargerSignificand is only valid if both a and b are NaNs
|
|
| of some kind, and is true if a has the larger significand,
|
|
| or if both a and b have the same significand but a is
|
|
| positive but b is negative. It is only needed for the x87
|
|
| tie-break rule.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static int pickNaN(FloatClass a_cls, FloatClass b_cls,
|
|
bool aIsLargerSignificand, float_status *status)
|
|
{
|
|
#if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA) || \
|
|
defined(TARGET_LOONGARCH64) || defined(TARGET_S390X)
|
|
/* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
|
|
* the first of:
|
|
* 1. A if it is signaling
|
|
* 2. B if it is signaling
|
|
* 3. A (quiet)
|
|
* 4. B (quiet)
|
|
* A signaling NaN is always quietened before returning it.
|
|
*/
|
|
/* According to MIPS specifications, if one of the two operands is
|
|
* a sNaN, a new qNaN has to be generated. This is done in
|
|
* floatXX_silence_nan(). For qNaN inputs the specifications
|
|
* says: "When possible, this QNaN result is one of the operand QNaN
|
|
* values." In practice it seems that most implementations choose
|
|
* the first operand if both operands are qNaN. In short this gives
|
|
* the following rules:
|
|
* 1. A if it is signaling
|
|
* 2. B if it is signaling
|
|
* 3. A (quiet)
|
|
* 4. B (quiet)
|
|
* A signaling NaN is always silenced before returning it.
|
|
*/
|
|
if (is_snan(a_cls)) {
|
|
return 0;
|
|
} else if (is_snan(b_cls)) {
|
|
return 1;
|
|
} else if (is_qnan(a_cls)) {
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
#elif defined(TARGET_PPC) || defined(TARGET_M68K)
|
|
/* PowerPC propagation rules:
|
|
* 1. A if it sNaN or qNaN
|
|
* 2. B if it sNaN or qNaN
|
|
* A signaling NaN is always silenced before returning it.
|
|
*/
|
|
/* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
|
|
* 3.4 FLOATING-POINT INSTRUCTION DETAILS
|
|
* If either operand, but not both operands, of an operation is a
|
|
* nonsignaling NaN, then that NaN is returned as the result. If both
|
|
* operands are nonsignaling NaNs, then the destination operand
|
|
* nonsignaling NaN is returned as the result.
|
|
* If either operand to an operation is a signaling NaN (SNaN), then the
|
|
* SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
|
|
* is set in the FPCR ENABLE byte, then the exception is taken and the
|
|
* destination is not modified. If the SNaN exception enable bit is not
|
|
* set, setting the SNaN bit in the operand to a one converts the SNaN to
|
|
* a nonsignaling NaN. The operation then continues as described in the
|
|
* preceding paragraph for nonsignaling NaNs.
|
|
*/
|
|
if (is_nan(a_cls)) {
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
#elif defined(TARGET_XTENSA)
|
|
/*
|
|
* Xtensa has two NaN propagation modes.
|
|
* Which one is active is controlled by float_status::use_first_nan.
|
|
*/
|
|
if (status->use_first_nan) {
|
|
if (is_nan(a_cls)) {
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
} else {
|
|
if (is_nan(b_cls)) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
#else
|
|
/* This implements x87 NaN propagation rules:
|
|
* SNaN + QNaN => return the QNaN
|
|
* two SNaNs => return the one with the larger significand, silenced
|
|
* two QNaNs => return the one with the larger significand
|
|
* SNaN and a non-NaN => return the SNaN, silenced
|
|
* QNaN and a non-NaN => return the QNaN
|
|
*
|
|
* If we get down to comparing significands and they are the same,
|
|
* return the NaN with the positive sign bit (if any).
|
|
*/
|
|
if (is_snan(a_cls)) {
|
|
if (is_snan(b_cls)) {
|
|
return aIsLargerSignificand ? 0 : 1;
|
|
}
|
|
return is_qnan(b_cls) ? 1 : 0;
|
|
} else if (is_qnan(a_cls)) {
|
|
if (is_snan(b_cls) || !is_qnan(b_cls)) {
|
|
return 0;
|
|
} else {
|
|
return aIsLargerSignificand ? 0 : 1;
|
|
}
|
|
} else {
|
|
return 1;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Select which NaN to propagate for a three-input operation.
|
|
| For the moment we assume that no CPU needs the 'larger significand'
|
|
| information.
|
|
| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
|
|
*----------------------------------------------------------------------------*/
|
|
static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
|
|
bool infzero, float_status *status)
|
|
{
|
|
#if defined(TARGET_ARM)
|
|
/* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
|
|
* the default NaN
|
|
*/
|
|
if (infzero && is_qnan(c_cls)) {
|
|
float_raise(float_flag_invalid | float_flag_invalid_imz, status);
|
|
return 3;
|
|
}
|
|
|
|
/* This looks different from the ARM ARM pseudocode, because the ARM ARM
|
|
* puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
|
|
*/
|
|
if (is_snan(c_cls)) {
|
|
return 2;
|
|
} else if (is_snan(a_cls)) {
|
|
return 0;
|
|
} else if (is_snan(b_cls)) {
|
|
return 1;
|
|
} else if (is_qnan(c_cls)) {
|
|
return 2;
|
|
} else if (is_qnan(a_cls)) {
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
#elif defined(TARGET_MIPS)
|
|
if (snan_bit_is_one(status)) {
|
|
/*
|
|
* For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
|
|
* case sets InvalidOp and returns the default NaN
|
|
*/
|
|
if (infzero) {
|
|
float_raise(float_flag_invalid | float_flag_invalid_imz, status);
|
|
return 3;
|
|
}
|
|
/* Prefer sNaN over qNaN, in the a, b, c order. */
|
|
if (is_snan(a_cls)) {
|
|
return 0;
|
|
} else if (is_snan(b_cls)) {
|
|
return 1;
|
|
} else if (is_snan(c_cls)) {
|
|
return 2;
|
|
} else if (is_qnan(a_cls)) {
|
|
return 0;
|
|
} else if (is_qnan(b_cls)) {
|
|
return 1;
|
|
} else {
|
|
return 2;
|
|
}
|
|
} else {
|
|
/*
|
|
* For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
|
|
* case sets InvalidOp and returns the input value 'c'
|
|
*/
|
|
if (infzero) {
|
|
float_raise(float_flag_invalid | float_flag_invalid_imz, status);
|
|
return 2;
|
|
}
|
|
/* Prefer sNaN over qNaN, in the c, a, b order. */
|
|
if (is_snan(c_cls)) {
|
|
return 2;
|
|
} else if (is_snan(a_cls)) {
|
|
return 0;
|
|
} else if (is_snan(b_cls)) {
|
|
return 1;
|
|
} else if (is_qnan(c_cls)) {
|
|
return 2;
|
|
} else if (is_qnan(a_cls)) {
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
#elif defined(TARGET_LOONGARCH64)
|
|
/*
|
|
* For LoongArch systems that conform to IEEE754-2008, the (inf,zero,nan)
|
|
* case sets InvalidOp and returns the input value 'c'
|
|
*/
|
|
if (infzero) {
|
|
float_raise(float_flag_invalid | float_flag_invalid_imz, status);
|
|
return 2;
|
|
}
|
|
/* Prefer sNaN over qNaN, in the c, a, b order. */
|
|
if (is_snan(c_cls)) {
|
|
return 2;
|
|
} else if (is_snan(a_cls)) {
|
|
return 0;
|
|
} else if (is_snan(b_cls)) {
|
|
return 1;
|
|
} else if (is_qnan(c_cls)) {
|
|
return 2;
|
|
} else if (is_qnan(a_cls)) {
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
#elif defined(TARGET_PPC)
|
|
/* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
|
|
* to return an input NaN if we have one (ie c) rather than generating
|
|
* a default NaN
|
|
*/
|
|
if (infzero) {
|
|
float_raise(float_flag_invalid | float_flag_invalid_imz, status);
|
|
return 2;
|
|
}
|
|
|
|
/* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
|
|
* otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
|
|
*/
|
|
if (is_nan(a_cls)) {
|
|
return 0;
|
|
} else if (is_nan(c_cls)) {
|
|
return 2;
|
|
} else {
|
|
return 1;
|
|
}
|
|
#elif defined(TARGET_RISCV)
|
|
/* For RISC-V, InvalidOp is set when multiplicands are Inf and zero */
|
|
if (infzero) {
|
|
float_raise(float_flag_invalid | float_flag_invalid_imz, status);
|
|
}
|
|
return 3; /* default NaN */
|
|
#elif defined(TARGET_XTENSA)
|
|
/*
|
|
* For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
|
|
* an input NaN if we have one (ie c).
|
|
*/
|
|
if (infzero) {
|
|
float_raise(float_flag_invalid | float_flag_invalid_imz, status);
|
|
return 2;
|
|
}
|
|
if (status->use_first_nan) {
|
|
if (is_nan(a_cls)) {
|
|
return 0;
|
|
} else if (is_nan(b_cls)) {
|
|
return 1;
|
|
} else {
|
|
return 2;
|
|
}
|
|
} else {
|
|
if (is_nan(c_cls)) {
|
|
return 2;
|
|
} else if (is_nan(b_cls)) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
#else
|
|
/* A default implementation: prefer a to b to c.
|
|
* This is unlikely to actually match any real implementation.
|
|
*/
|
|
if (is_nan(a_cls)) {
|
|
return 0;
|
|
} else if (is_nan(b_cls)) {
|
|
return 1;
|
|
} else {
|
|
return 2;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is a quiet
|
|
| NaN; otherwise returns 0.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
bool float64_is_quiet_nan(float64 a_, float_status *status)
|
|
{
|
|
if (no_signaling_nans(status)) {
|
|
return float64_is_any_nan(a_);
|
|
} else {
|
|
uint64_t a = float64_val(a_);
|
|
if (snan_bit_is_one(status)) {
|
|
return (((a >> 51) & 0xFFF) == 0xFFE)
|
|
&& (a & 0x0007FFFFFFFFFFFFULL);
|
|
} else {
|
|
return ((a << 1) >= 0xFFF0000000000000ULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is a signaling
|
|
| NaN; otherwise returns 0.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
bool float64_is_signaling_nan(float64 a_, float_status *status)
|
|
{
|
|
if (no_signaling_nans(status)) {
|
|
return 0;
|
|
} else {
|
|
uint64_t a = float64_val(a_);
|
|
if (snan_bit_is_one(status)) {
|
|
return ((a << 1) >= 0xFFF0000000000000ULL);
|
|
} else {
|
|
return (((a >> 51) & 0xFFF) == 0xFFE)
|
|
&& (a & UINT64_C(0x0007FFFFFFFFFFFF));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point value `a' is a
|
|
| quiet NaN; otherwise returns 0. This slightly differs from the same
|
|
| function for other types as floatx80 has an explicit bit.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int floatx80_is_quiet_nan(floatx80 a, float_status *status)
|
|
{
|
|
if (no_signaling_nans(status)) {
|
|
return floatx80_is_any_nan(a);
|
|
} else {
|
|
if (snan_bit_is_one(status)) {
|
|
uint64_t aLow;
|
|
|
|
aLow = a.low & ~0x4000000000000000ULL;
|
|
return ((a.high & 0x7FFF) == 0x7FFF)
|
|
&& (aLow << 1)
|
|
&& (a.low == aLow);
|
|
} else {
|
|
return ((a.high & 0x7FFF) == 0x7FFF)
|
|
&& (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point value `a' is a
|
|
| signaling NaN; otherwise returns 0. This slightly differs from the same
|
|
| function for other types as floatx80 has an explicit bit.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int floatx80_is_signaling_nan(floatx80 a, float_status *status)
|
|
{
|
|
if (no_signaling_nans(status)) {
|
|
return 0;
|
|
} else {
|
|
if (snan_bit_is_one(status)) {
|
|
return ((a.high & 0x7FFF) == 0x7FFF)
|
|
&& ((a.low << 1) >= 0x8000000000000000ULL);
|
|
} else {
|
|
uint64_t aLow;
|
|
|
|
aLow = a.low & ~UINT64_C(0x4000000000000000);
|
|
return ((a.high & 0x7FFF) == 0x7FFF)
|
|
&& (uint64_t)(aLow << 1)
|
|
&& (a.low == aLow);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns a quiet NaN from a signalling NaN for the extended double-precision
|
|
| floating point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
|
|
{
|
|
/* None of the targets that have snan_bit_is_one use floatx80. */
|
|
assert(!snan_bit_is_one(status));
|
|
a.low |= UINT64_C(0xC000000000000000);
|
|
return a;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes two extended double-precision floating-point values `a' and `b', one
|
|
| of which is a NaN, and returns the appropriate NaN result. If either `a' or
|
|
| `b' is a signaling NaN, the invalid exception is raised.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
|
|
{
|
|
bool aIsLargerSignificand;
|
|
FloatClass a_cls, b_cls;
|
|
|
|
/* This is not complete, but is good enough for pickNaN. */
|
|
a_cls = (!floatx80_is_any_nan(a)
|
|
? float_class_normal
|
|
: floatx80_is_signaling_nan(a, status)
|
|
? float_class_snan
|
|
: float_class_qnan);
|
|
b_cls = (!floatx80_is_any_nan(b)
|
|
? float_class_normal
|
|
: floatx80_is_signaling_nan(b, status)
|
|
? float_class_snan
|
|
: float_class_qnan);
|
|
|
|
if (is_snan(a_cls) || is_snan(b_cls)) {
|
|
float_raise(float_flag_invalid, status);
|
|
}
|
|
|
|
if (status->default_nan_mode) {
|
|
return floatx80_default_nan(status);
|
|
}
|
|
|
|
if (a.low < b.low) {
|
|
aIsLargerSignificand = 0;
|
|
} else if (b.low < a.low) {
|
|
aIsLargerSignificand = 1;
|
|
} else {
|
|
aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
|
|
}
|
|
|
|
if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
|
|
if (is_snan(b_cls)) {
|
|
return floatx80_silence_nan(b, status);
|
|
}
|
|
return b;
|
|
} else {
|
|
if (is_snan(a_cls)) {
|
|
return floatx80_silence_nan(a, status);
|
|
}
|
|
return a;
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
|
|
| NaN; otherwise returns 0.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
bool float128_is_quiet_nan(float128 a, float_status *status)
|
|
{
|
|
if (no_signaling_nans(status)) {
|
|
return float128_is_any_nan(a);
|
|
} else {
|
|
if (snan_bit_is_one(status)) {
|
|
return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
|
|
&& (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
|
|
} else {
|
|
return ((a.high << 1) >= 0xFFFF000000000000ULL)
|
|
&& (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the quadruple-precision floating-point value `a' is a
|
|
| signaling NaN; otherwise returns 0.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
bool float128_is_signaling_nan(float128 a, float_status *status)
|
|
{
|
|
if (no_signaling_nans(status)) {
|
|
return 0;
|
|
} else {
|
|
if (snan_bit_is_one(status)) {
|
|
return ((a.high << 1) >= 0xFFFF000000000000ULL)
|
|
&& (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
|
|
} else {
|
|
return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
|
|
&& (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
|
|
}
|
|
}
|
|
}
|