You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/docs/COLO-FT.txt

334 lines
18 KiB
Plaintext

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

COarse-grained LOck-stepping Virtual Machines for Non-stop Service
----------------------------------------
Copyright (c) 2016 Intel Corporation
Copyright (c) 2016 HUAWEI TECHNOLOGIES CO., LTD.
Copyright (c) 2016 Fujitsu, Corp.
This work is licensed under the terms of the GNU GPL, version 2 or later.
See the COPYING file in the top-level directory.
This document gives an overview of COLO's design and how to use it.
== Background ==
Virtual machine (VM) replication is a well known technique for providing
application-agnostic software-implemented hardware fault tolerance,
also known as "non-stop service".
COLO (COarse-grained LOck-stepping) is a high availability solution.
Both primary VM (PVM) and secondary VM (SVM) run in parallel. They receive the
same request from client, and generate response in parallel too.
If the response packets from PVM and SVM are identical, they are released
immediately. Otherwise, a VM checkpoint (on demand) is conducted.
== Architecture ==
The architecture of COLO is shown in the diagram below.
It consists of a pair of networked physical nodes:
The primary node running the PVM, and the secondary node running the SVM
to maintain a valid replica of the PVM.
PVM and SVM execute in parallel and generate output of response packets for
client requests according to the application semantics.
The incoming packets from the client or external network are received by the
primary node, and then forwarded to the secondary node, so that both the PVM
and the SVM are stimulated with the same requests.
COLO receives the outbound packets from both the PVM and SVM and compares them
before allowing the output to be sent to clients.
The SVM is qualified as a valid replica of the PVM, as long as it generates
identical responses to all client requests. Once the differences in the outputs
are detected between the PVM and SVM, COLO withholds transmission of the
outbound packets until it has successfully synchronized the PVM state to the SVM.
Primary Node Secondary Node
+------------+ +-----------------------+ +------------------------+ +------------+
| | | HeartBeat +<----->+ HeartBeat | | |
| Primary VM | +-----------+-----------+ +-----------+------------+ |Secondary VM|
| | | | | |
| | +-----------|-----------+ +-----------|------------+ | |
| | |QEMU +---v----+ | |QEMU +----v---+ | | |
| | | |Failover| | | |Failover| | | |
| | | +--------+ | | +--------+ | | |
| | | +---------------+ | | +---------------+ | | |
| | | | VM Checkpoint +-------------->+ VM Checkpoint | | | |
| | | +---------------+ | | +---------------+ | | |
|Requests<--------------------------\ /-----------------\ /--------------------->Requests|
| | | ^ ^ | | | | | | |
|Responses+---------------------\ /-|-|------------\ /-------------------------+Responses|
| | | | | | | | | | | | | | | |
| | | +-----------+ | | | | | | | | | | +----------+ | | |
| | | | COLO disk | | | | | | | | | | | | COLO disk| | | |
| | | | Manager +---------------------------->| Manager | | | |
| | | ++----------+ v v | | | | | v v | +---------++ | | |
| | | |+-----------+-+-+-++| | ++-+--+-+---------+ | | | |
| | | || COLO Proxy || | | COLO Proxy | | | | |
| | | || (compare packet || | |(adjust sequence | | | | |
| | | ||and mirror packet)|| | | and ACK) | | | | |
| | | |+------------+---+-+| | +-----------------+ | | | |
+------------+ +-----------------------+ +------------------------+ +------------+
+------------+ | | | | +------------+
| VM Monitor | | | | | | VM Monitor |
+------------+ | | | | +------------+
+---------------------------------------+ +----------------------------------------+
| Kernel | | | | | Kernel | |
+---------------------------------------+ +----------------------------------------+
| | | |
+--------------v+ +---------v---+--+ +------------------+ +v-------------+
| Storage | |External Network| | External Network | | Storage |
+---------------+ +----------------+ +------------------+ +--------------+
== Components introduction ==
You can see there are several components in COLO's diagram of architecture.
Their functions are described below.
HeartBeat:
Runs on both the primary and secondary nodes, to periodically check platform
availability. When the primary node suffers a hardware fail-stop failure,
the heartbeat stops responding, the secondary node will trigger a failover
as soon as it determines the absence.
COLO disk Manager:
When primary VM writes data into image, the colo disk manager captures this data
and sends it to secondary VM's which makes sure the context of secondary VM's
image is consistent with the context of primary VM 's image.
For more details, please refer to docs/block-replication.txt.
Checkpoint/Failover Controller:
Modifications of save/restore flow to realize continuous migration,
to make sure the state of VM in Secondary side is always consistent with VM in
Primary side.
COLO Proxy:
Delivers packets to Primary and Secondary, and then compare the responses from
both side. Then decide whether to start a checkpoint according to some rules.
Please refer to docs/colo-proxy.txt for more information.
Note:
HeartBeat has not been implemented yet, so you need to trigger failover process
by using 'x-colo-lost-heartbeat' command.
== COLO operation status ==
+-----------------+
| |
| Start COLO |
| |
+--------+--------+
|
| Main qmp command:
| migrate-set-capabilities with x-colo
| migrate
|
v
+--------+--------+
| |
| COLO running |
| |
+--------+--------+
|
| Main qmp command:
| x-colo-lost-heartbeat
| or
| some error happened
v
+--------+--------+
| | send qmp event:
| COLO failover | COLO_EXIT
| |
+-----------------+
COLO use the qmp command to switch and report operation status.
The diagram just shows the main qmp command, you can get the detail
in test procedure.
== Test procedure ==
Note: Here we are running both instances on the same host for testing,
change the IP Addresses if you want to run it on two hosts. Initially
127.0.0.1 is the Primary Host and 127.0.0.2 is the Secondary Host.
== Startup qemu ==
1. Primary:
Note: Initially, $imagefolder/primary.qcow2 needs to be copied to all hosts.
You don't need to change any IP's here, because 0.0.0.0 listens on any
interface. The chardev's with 127.0.0.1 IP's loopback to the local qemu
instance.
# imagefolder="/mnt/vms/colo-test-primary"
# qemu-system-x86_64 -enable-kvm -cpu qemu64,kvmclock=on -m 512 -smp 1 -qmp stdio \
-device piix3-usb-uhci -device usb-tablet -name primary \
-netdev tap,id=hn0,vhost=off,helper=/usr/lib/qemu/qemu-bridge-helper \
-device rtl8139,id=e0,netdev=hn0 \
-chardev socket,id=mirror0,host=0.0.0.0,port=9003,server=on,wait=off \
-chardev socket,id=compare1,host=0.0.0.0,port=9004,server=on,wait=on \
-chardev socket,id=compare0,host=127.0.0.1,port=9001,server=on,wait=off \
-chardev socket,id=compare0-0,host=127.0.0.1,port=9001 \
-chardev socket,id=compare_out,host=127.0.0.1,port=9005,server=on,wait=off \
-chardev socket,id=compare_out0,host=127.0.0.1,port=9005 \
-object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0 \
-object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out \
-object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0 \
-object iothread,id=iothread1 \
-object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,\
outdev=compare_out0,iothread=iothread1 \
-drive if=ide,id=colo-disk0,driver=quorum,read-pattern=fifo,vote-threshold=1,\
children.0.file.filename=$imagefolder/primary.qcow2,children.0.driver=qcow2 -S
2. Secondary:
Note: Active and hidden images need to be created only once and the
size should be the same as primary.qcow2. Again, you don't need to change
any IP's here, except for the $primary_ip variable.
# imagefolder="/mnt/vms/colo-test-secondary"
# primary_ip=127.0.0.1
# qemu-img create -f qcow2 $imagefolder/secondary-active.qcow2 10G
# qemu-img create -f qcow2 $imagefolder/secondary-hidden.qcow2 10G
# qemu-system-x86_64 -enable-kvm -cpu qemu64,kvmclock=on -m 512 -smp 1 -qmp stdio \
-device piix3-usb-uhci -device usb-tablet -name secondary \
-netdev tap,id=hn0,vhost=off,helper=/usr/lib/qemu/qemu-bridge-helper \
-device rtl8139,id=e0,netdev=hn0 \
-chardev socket,id=red0,host=$primary_ip,port=9003,reconnect=1 \
-chardev socket,id=red1,host=$primary_ip,port=9004,reconnect=1 \
-object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0 \
-object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1 \
-object filter-rewriter,id=rew0,netdev=hn0,queue=all \
-drive if=none,id=parent0,file.filename=$imagefolder/primary.qcow2,driver=qcow2 \
-drive if=none,id=childs0,driver=replication,mode=secondary,file.driver=qcow2,\
top-id=colo-disk0,file.file.filename=$imagefolder/secondary-active.qcow2,\
file.backing.driver=qcow2,file.backing.file.filename=$imagefolder/secondary-hidden.qcow2,\
file.backing.backing=parent0 \
-drive if=ide,id=colo-disk0,driver=quorum,read-pattern=fifo,vote-threshold=1,\
children.0=childs0 \
-incoming tcp:0.0.0.0:9998
3. On Secondary VM's QEMU monitor, issue command
{"execute":"qmp_capabilities"}
{"execute": "nbd-server-start", "arguments": {"addr": {"type": "inet", "data": {"host": "0.0.0.0", "port": "9999"} } } }
{"execute": "nbd-server-add", "arguments": {"device": "parent0", "writable": true } }
Note:
a. The qmp command nbd-server-start and nbd-server-add must be run
before running the qmp command migrate on primary QEMU
b. Active disk, hidden disk and nbd target's length should be the
same.
c. It is better to put active disk and hidden disk in ramdisk. They
will be merged into the parent disk on failover.
4. On Primary VM's QEMU monitor, issue command:
{"execute":"qmp_capabilities"}
{"execute": "human-monitor-command", "arguments": {"command-line": "drive_add -n buddy driver=replication,mode=primary,file.driver=nbd,file.host=127.0.0.2,file.port=9999,file.export=parent0,node-name=replication0"}}
{"execute": "x-blockdev-change", "arguments":{"parent": "colo-disk0", "node": "replication0" } }
{"execute": "migrate-set-capabilities", "arguments": {"capabilities": [ {"capability": "x-colo", "state": true } ] } }
{"execute": "migrate", "arguments": {"uri": "tcp:127.0.0.2:9998" } }
Note:
a. There should be only one NBD Client for each primary disk.
b. The qmp command line must be run after running qmp command line in
secondary qemu.
5. After the above steps, you will see, whenever you make changes to PVM, SVM will be synced.
You can issue command '{ "execute": "migrate-set-parameters" , "arguments":{ "x-checkpoint-delay": 2000 } }'
to change the idle checkpoint period time
6. Failover test
You can kill one of the VMs and Failover on the surviving VM:
If you killed the Secondary, then follow "Primary Failover". After that,
if you want to resume the replication, follow "Primary resume replication"
If you killed the Primary, then follow "Secondary Failover". After that,
if you want to resume the replication, follow "Secondary resume replication"
== Primary Failover ==
The Secondary died, resume on the Primary
{"execute": "x-blockdev-change", "arguments":{ "parent": "colo-disk0", "child": "children.1"} }
{"execute": "human-monitor-command", "arguments":{ "command-line": "drive_del replication0" } }
{"execute": "object-del", "arguments":{ "id": "comp0" } }
{"execute": "object-del", "arguments":{ "id": "iothread1" } }
{"execute": "object-del", "arguments":{ "id": "m0" } }
{"execute": "object-del", "arguments":{ "id": "redire0" } }
{"execute": "object-del", "arguments":{ "id": "redire1" } }
{"execute": "x-colo-lost-heartbeat" }
== Secondary Failover ==
The Primary died, resume on the Secondary and prepare to become the new Primary
{"execute": "nbd-server-stop"}
{"execute": "x-colo-lost-heartbeat"}
{"execute": "object-del", "arguments":{ "id": "f2" } }
{"execute": "object-del", "arguments":{ "id": "f1" } }
{"execute": "chardev-remove", "arguments":{ "id": "red1" } }
{"execute": "chardev-remove", "arguments":{ "id": "red0" } }
{"execute": "chardev-add", "arguments":{ "id": "mirror0", "backend": {"type": "socket", "data": {"addr": { "type": "inet", "data": { "host": "0.0.0.0", "port": "9003" } }, "server": true } } } }
{"execute": "chardev-add", "arguments":{ "id": "compare1", "backend": {"type": "socket", "data": {"addr": { "type": "inet", "data": { "host": "0.0.0.0", "port": "9004" } }, "server": true } } } }
{"execute": "chardev-add", "arguments":{ "id": "compare0", "backend": {"type": "socket", "data": {"addr": { "type": "inet", "data": { "host": "127.0.0.1", "port": "9001" } }, "server": true } } } }
{"execute": "chardev-add", "arguments":{ "id": "compare0-0", "backend": {"type": "socket", "data": {"addr": { "type": "inet", "data": { "host": "127.0.0.1", "port": "9001" } }, "server": false } } } }
{"execute": "chardev-add", "arguments":{ "id": "compare_out", "backend": {"type": "socket", "data": {"addr": { "type": "inet", "data": { "host": "127.0.0.1", "port": "9005" } }, "server": true } } } }
{"execute": "chardev-add", "arguments":{ "id": "compare_out0", "backend": {"type": "socket", "data": {"addr": { "type": "inet", "data": { "host": "127.0.0.1", "port": "9005" } }, "server": false } } } }
== Primary resume replication ==
Resume replication after new Secondary is up.
Start the new Secondary (Steps 2 and 3 above), then on the Primary:
{"execute": "drive-mirror", "arguments":{ "device": "colo-disk0", "job-id": "resync", "target": "nbd://127.0.0.2:9999/parent0", "mode": "existing", "format": "raw", "sync": "full"} }
Wait until disk is synced, then:
{"execute": "stop"}
{"execute": "block-job-cancel", "arguments":{ "device": "resync"} }
{"execute": "human-monitor-command", "arguments":{ "command-line": "drive_add -n buddy driver=replication,mode=primary,file.driver=nbd,file.host=127.0.0.2,file.port=9999,file.export=parent0,node-name=replication0"}}
{"execute": "x-blockdev-change", "arguments":{ "parent": "colo-disk0", "node": "replication0" } }
{"execute": "object-add", "arguments":{ "qom-type": "filter-mirror", "id": "m0", "netdev": "hn0", "queue": "tx", "outdev": "mirror0" } }
{"execute": "object-add", "arguments":{ "qom-type": "filter-redirector", "id": "redire0", "netdev": "hn0", "queue": "rx", "indev": "compare_out" } }
{"execute": "object-add", "arguments":{ "qom-type": "filter-redirector", "id": "redire1", "netdev": "hn0", "queue": "rx", "outdev": "compare0" } }
{"execute": "object-add", "arguments":{ "qom-type": "iothread", "id": "iothread1" } }
{"execute": "object-add", "arguments":{ "qom-type": "colo-compare", "id": "comp0", "primary_in": "compare0-0", "secondary_in": "compare1", "outdev": "compare_out0", "iothread": "iothread1" } }
{"execute": "migrate-set-capabilities", "arguments":{ "capabilities": [ {"capability": "x-colo", "state": true } ] } }
{"execute": "migrate", "arguments":{ "uri": "tcp:127.0.0.2:9998" } }
Note:
If this Primary previously was a Secondary, then we need to insert the
filters before the filter-rewriter by using the
""insert": "before", "position": "id=rew0"" Options. See below.
== Secondary resume replication ==
Become Primary and resume replication after new Secondary is up. Note
that now 127.0.0.1 is the Secondary and 127.0.0.2 is the Primary.
Start the new Secondary (Steps 2 and 3 above, but with primary_ip=127.0.0.2),
then on the old Secondary:
{"execute": "drive-mirror", "arguments":{ "device": "colo-disk0", "job-id": "resync", "target": "nbd://127.0.0.1:9999/parent0", "mode": "existing", "format": "raw", "sync": "full"} }
Wait until disk is synced, then:
{"execute": "stop"}
{"execute": "block-job-cancel", "arguments":{ "device": "resync" } }
{"execute": "human-monitor-command", "arguments":{ "command-line": "drive_add -n buddy driver=replication,mode=primary,file.driver=nbd,file.host=127.0.0.1,file.port=9999,file.export=parent0,node-name=replication0"}}
{"execute": "x-blockdev-change", "arguments":{ "parent": "colo-disk0", "node": "replication0" } }
{"execute": "object-add", "arguments":{ "qom-type": "filter-mirror", "id": "m0", "insert": "before", "position": "id=rew0", "netdev": "hn0", "queue": "tx", "outdev": "mirror0" } }
{"execute": "object-add", "arguments":{ "qom-type": "filter-redirector", "id": "redire0", "insert": "before", "position": "id=rew0", "netdev": "hn0", "queue": "rx", "indev": "compare_out" } }
{"execute": "object-add", "arguments":{ "qom-type": "filter-redirector", "id": "redire1", "insert": "before", "position": "id=rew0", "netdev": "hn0", "queue": "rx", "outdev": "compare0" } }
{"execute": "object-add", "arguments":{ "qom-type": "iothread", "id": "iothread1" } }
{"execute": "object-add", "arguments":{ "qom-type": "colo-compare", "id": "comp0", "primary_in": "compare0-0", "secondary_in": "compare1", "outdev": "compare_out0", "iothread": "iothread1" } }
{"execute": "migrate-set-capabilities", "arguments":{ "capabilities": [ {"capability": "x-colo", "state": true } ] } }
{"execute": "migrate", "arguments":{ "uri": "tcp:127.0.0.1:9998" } }
== TODO ==
1. Support shared storage.
2. Develop the heartbeat part.
3. Reduce checkpoint VMs downtime while doing checkpoint.