qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

uri.c (62871B)


      1 /**
      2  * uri.c: set of generic URI related routines
      3  *
      4  * Reference: RFCs 3986, 2732 and 2373
      5  *
      6  * Copyright (C) 1998-2003 Daniel Veillard.  All Rights Reserved.
      7  *
      8  * Permission is hereby granted, free of charge, to any person obtaining a copy
      9  * of this software and associated documentation files (the "Software"), to deal
     10  * in the Software without restriction, including without limitation the rights
     11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     12  * copies of the Software, and to permit persons to whom the Software is
     13  * furnished to do so, subject to the following conditions:
     14  *
     15  * The above copyright notice and this permission notice shall be included in
     16  * all copies or substantial portions of the Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
     21  * DANIEL VEILLARD BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
     22  * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     23  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     24  *
     25  * Except as contained in this notice, the name of Daniel Veillard shall not
     26  * be used in advertising or otherwise to promote the sale, use or other
     27  * dealings in this Software without prior written authorization from him.
     28  *
     29  * daniel@veillard.com
     30  *
     31  **
     32  *
     33  * Copyright (C) 2007, 2009-2010 Red Hat, Inc.
     34  *
     35  * This library is free software; you can redistribute it and/or
     36  * modify it under the terms of the GNU Lesser General Public
     37  * License as published by the Free Software Foundation; either
     38  * version 2.1 of the License, or (at your option) any later version.
     39  *
     40  * This library is distributed in the hope that it will be useful,
     41  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     43  * Lesser General Public License for more details.
     44  *
     45  * You should have received a copy of the GNU Lesser General Public
     46  * License along with this library; if not, write to the Free Software
     47  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA
     48  *
     49  * Authors:
     50  *    Richard W.M. Jones <rjones@redhat.com>
     51  *
     52  */
     53 
     54 #include "qemu/osdep.h"
     55 #include "qemu/cutils.h"
     56 
     57 #include "qemu/uri.h"
     58 
     59 static void uri_clean(URI *uri);
     60 
     61 /*
     62  * Old rule from 2396 used in legacy handling code
     63  * alpha    = lowalpha | upalpha
     64  */
     65 #define IS_ALPHA(x) (IS_LOWALPHA(x) || IS_UPALPHA(x))
     66 
     67 /*
     68  * lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" |
     69  *            "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" |
     70  *            "u" | "v" | "w" | "x" | "y" | "z"
     71  */
     72 
     73 #define IS_LOWALPHA(x) (((x) >= 'a') && ((x) <= 'z'))
     74 
     75 /*
     76  * upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" |
     77  *           "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | "T" |
     78  *           "U" | "V" | "W" | "X" | "Y" | "Z"
     79  */
     80 #define IS_UPALPHA(x) (((x) >= 'A') && ((x) <= 'Z'))
     81 
     82 #ifdef IS_DIGIT
     83 #undef IS_DIGIT
     84 #endif
     85 /*
     86  * digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
     87  */
     88 #define IS_DIGIT(x) (((x) >= '0') && ((x) <= '9'))
     89 
     90 /*
     91  * alphanum = alpha | digit
     92  */
     93 
     94 #define IS_ALPHANUM(x) (IS_ALPHA(x) || IS_DIGIT(x))
     95 
     96 /*
     97  * mark = "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")"
     98  */
     99 
    100 #define IS_MARK(x) (((x) == '-') || ((x) == '_') || ((x) == '.') ||            \
    101     ((x) == '!') || ((x) == '~') || ((x) == '*') || ((x) == '\'') ||           \
    102     ((x) == '(') || ((x) == ')'))
    103 
    104 /*
    105  * unwise = "{" | "}" | "|" | "\" | "^" | "`"
    106  */
    107 
    108 #define IS_UNWISE(p)                                                           \
    109     (((*(p) == '{')) || ((*(p) == '}')) || ((*(p) == '|')) ||                  \
    110      ((*(p) == '\\')) || ((*(p) == '^')) || ((*(p) == '[')) ||                 \
    111      ((*(p) == ']')) || ((*(p) == '`')))
    112 /*
    113  * reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" | "$" | "," |
    114  *            "[" | "]"
    115  */
    116 
    117 #define IS_RESERVED(x) (((x) == ';') || ((x) == '/') || ((x) == '?') ||        \
    118     ((x) == ':') || ((x) == '@') || ((x) == '&') || ((x) == '=') ||            \
    119     ((x) == '+') || ((x) == '$') || ((x) == ',') || ((x) == '[') ||            \
    120     ((x) == ']'))
    121 
    122 /*
    123  * unreserved = alphanum | mark
    124  */
    125 
    126 #define IS_UNRESERVED(x) (IS_ALPHANUM(x) || IS_MARK(x))
    127 
    128 /*
    129  * Skip to next pointer char, handle escaped sequences
    130  */
    131 
    132 #define NEXT(p) ((*p == '%') ? p += 3 : p++)
    133 
    134 /*
    135  * Productions from the spec.
    136  *
    137  *    authority     = server | reg_name
    138  *    reg_name      = 1*( unreserved | escaped | "$" | "," |
    139  *                        ";" | ":" | "@" | "&" | "=" | "+" )
    140  *
    141  * path          = [ abs_path | opaque_part ]
    142  */
    143 
    144 /************************************************************************
    145  *                                                                      *
    146  *                         RFC 3986 parser                              *
    147  *                                                                      *
    148  ************************************************************************/
    149 
    150 #define ISA_DIGIT(p) ((*(p) >= '0') && (*(p) <= '9'))
    151 #define ISA_ALPHA(p) (((*(p) >= 'a') && (*(p) <= 'z')) ||                      \
    152                       ((*(p) >= 'A') && (*(p) <= 'Z')))
    153 #define ISA_HEXDIG(p)                                                          \
    154     (ISA_DIGIT(p) || ((*(p) >= 'a') && (*(p) <= 'f')) ||                       \
    155      ((*(p) >= 'A') && (*(p) <= 'F')))
    156 
    157 /*
    158  *    sub-delims    = "!" / "$" / "&" / "'" / "(" / ")"
    159  *                     / "*" / "+" / "," / ";" / "="
    160  */
    161 #define ISA_SUB_DELIM(p)                                                       \
    162     (((*(p) == '!')) || ((*(p) == '$')) || ((*(p) == '&')) ||                  \
    163      ((*(p) == '(')) || ((*(p) == ')')) || ((*(p) == '*')) ||                  \
    164      ((*(p) == '+')) || ((*(p) == ',')) || ((*(p) == ';')) ||                  \
    165      ((*(p) == '=')) || ((*(p) == '\'')))
    166 
    167 /*
    168  *    gen-delims    = ":" / "/" / "?" / "#" / "[" / "]" / "@"
    169  */
    170 #define ISA_GEN_DELIM(p)                                                       \
    171     (((*(p) == ':')) || ((*(p) == '/')) || ((*(p) == '?')) ||                  \
    172      ((*(p) == '#')) || ((*(p) == '[')) || ((*(p) == ']')) ||                  \
    173      ((*(p) == '@')))
    174 
    175 /*
    176  *    reserved      = gen-delims / sub-delims
    177  */
    178 #define ISA_RESERVED(p) (ISA_GEN_DELIM(p) || (ISA_SUB_DELIM(p)))
    179 
    180 /*
    181  *    unreserved    = ALPHA / DIGIT / "-" / "." / "_" / "~"
    182  */
    183 #define ISA_UNRESERVED(p)                                                      \
    184     ((ISA_ALPHA(p)) || (ISA_DIGIT(p)) || ((*(p) == '-')) ||                    \
    185      ((*(p) == '.')) || ((*(p) == '_')) || ((*(p) == '~')))
    186 
    187 /*
    188  *    pct-encoded   = "%" HEXDIG HEXDIG
    189  */
    190 #define ISA_PCT_ENCODED(p)                                                     \
    191     ((*(p) == '%') && (ISA_HEXDIG(p + 1)) && (ISA_HEXDIG(p + 2)))
    192 
    193 /*
    194  *    pchar         = unreserved / pct-encoded / sub-delims / ":" / "@"
    195  */
    196 #define ISA_PCHAR(p)                                                           \
    197     (ISA_UNRESERVED(p) || ISA_PCT_ENCODED(p) || ISA_SUB_DELIM(p) ||            \
    198      ((*(p) == ':')) || ((*(p) == '@')))
    199 
    200 /**
    201  * rfc3986_parse_scheme:
    202  * @uri:  pointer to an URI structure
    203  * @str:  pointer to the string to analyze
    204  *
    205  * Parse an URI scheme
    206  *
    207  * ALPHA *( ALPHA / DIGIT / "+" / "-" / "." )
    208  *
    209  * Returns 0 or the error code
    210  */
    211 static int rfc3986_parse_scheme(URI *uri, const char **str)
    212 {
    213     const char *cur;
    214 
    215     if (str == NULL) {
    216         return -1;
    217     }
    218 
    219     cur = *str;
    220     if (!ISA_ALPHA(cur)) {
    221         return 2;
    222     }
    223     cur++;
    224     while (ISA_ALPHA(cur) || ISA_DIGIT(cur) || (*cur == '+') || (*cur == '-') ||
    225            (*cur == '.')) {
    226         cur++;
    227     }
    228     if (uri != NULL) {
    229         g_free(uri->scheme);
    230         uri->scheme = g_strndup(*str, cur - *str);
    231     }
    232     *str = cur;
    233     return 0;
    234 }
    235 
    236 /**
    237  * rfc3986_parse_fragment:
    238  * @uri:  pointer to an URI structure
    239  * @str:  pointer to the string to analyze
    240  *
    241  * Parse the query part of an URI
    242  *
    243  * fragment      = *( pchar / "/" / "?" )
    244  * NOTE: the strict syntax as defined by 3986 does not allow '[' and ']'
    245  *       in the fragment identifier but this is used very broadly for
    246  *       xpointer scheme selection, so we are allowing it here to not break
    247  *       for example all the DocBook processing chains.
    248  *
    249  * Returns 0 or the error code
    250  */
    251 static int rfc3986_parse_fragment(URI *uri, const char **str)
    252 {
    253     const char *cur;
    254 
    255     if (str == NULL) {
    256         return -1;
    257     }
    258 
    259     cur = *str;
    260 
    261     while ((ISA_PCHAR(cur)) || (*cur == '/') || (*cur == '?') ||
    262            (*cur == '[') || (*cur == ']') ||
    263            ((uri != NULL) && (uri->cleanup & 1) && (IS_UNWISE(cur)))) {
    264         NEXT(cur);
    265     }
    266     if (uri != NULL) {
    267         g_free(uri->fragment);
    268         if (uri->cleanup & 2) {
    269             uri->fragment = g_strndup(*str, cur - *str);
    270         } else {
    271             uri->fragment = uri_string_unescape(*str, cur - *str, NULL);
    272         }
    273     }
    274     *str = cur;
    275     return 0;
    276 }
    277 
    278 /**
    279  * rfc3986_parse_query:
    280  * @uri:  pointer to an URI structure
    281  * @str:  pointer to the string to analyze
    282  *
    283  * Parse the query part of an URI
    284  *
    285  * query = *uric
    286  *
    287  * Returns 0 or the error code
    288  */
    289 static int rfc3986_parse_query(URI *uri, const char **str)
    290 {
    291     const char *cur;
    292 
    293     if (str == NULL) {
    294         return -1;
    295     }
    296 
    297     cur = *str;
    298 
    299     while ((ISA_PCHAR(cur)) || (*cur == '/') || (*cur == '?') ||
    300            ((uri != NULL) && (uri->cleanup & 1) && (IS_UNWISE(cur)))) {
    301         NEXT(cur);
    302     }
    303     if (uri != NULL) {
    304         g_free(uri->query);
    305         uri->query = g_strndup(*str, cur - *str);
    306     }
    307     *str = cur;
    308     return 0;
    309 }
    310 
    311 /**
    312  * rfc3986_parse_port:
    313  * @uri:  pointer to an URI structure
    314  * @str:  the string to analyze
    315  *
    316  * Parse a port  part and fills in the appropriate fields
    317  * of the @uri structure
    318  *
    319  * port          = *DIGIT
    320  *
    321  * Returns 0 or the error code
    322  */
    323 static int rfc3986_parse_port(URI *uri, const char **str)
    324 {
    325     const char *cur = *str;
    326     int port = 0;
    327 
    328     if (ISA_DIGIT(cur)) {
    329         while (ISA_DIGIT(cur)) {
    330             port = port * 10 + (*cur - '0');
    331             if (port > 65535) {
    332                 return 1;
    333             }
    334             cur++;
    335         }
    336         if (uri) {
    337             uri->port = port;
    338         }
    339         *str = cur;
    340         return 0;
    341     }
    342     return 1;
    343 }
    344 
    345 /**
    346  * rfc3986_parse_user_info:
    347  * @uri:  pointer to an URI structure
    348  * @str:  the string to analyze
    349  *
    350  * Parse a user information part and fill in the appropriate fields
    351  * of the @uri structure
    352  *
    353  * userinfo      = *( unreserved / pct-encoded / sub-delims / ":" )
    354  *
    355  * Returns 0 or the error code
    356  */
    357 static int rfc3986_parse_user_info(URI *uri, const char **str)
    358 {
    359     const char *cur;
    360 
    361     cur = *str;
    362     while (ISA_UNRESERVED(cur) || ISA_PCT_ENCODED(cur) || ISA_SUB_DELIM(cur) ||
    363            (*cur == ':')) {
    364         NEXT(cur);
    365     }
    366     if (*cur == '@') {
    367         if (uri != NULL) {
    368             g_free(uri->user);
    369             if (uri->cleanup & 2) {
    370                 uri->user = g_strndup(*str, cur - *str);
    371             } else {
    372                 uri->user = uri_string_unescape(*str, cur - *str, NULL);
    373             }
    374         }
    375         *str = cur;
    376         return 0;
    377     }
    378     return 1;
    379 }
    380 
    381 /**
    382  * rfc3986_parse_dec_octet:
    383  * @str:  the string to analyze
    384  *
    385  *    dec-octet     = DIGIT                 ; 0-9
    386  *                  / %x31-39 DIGIT         ; 10-99
    387  *                  / "1" 2DIGIT            ; 100-199
    388  *                  / "2" %x30-34 DIGIT     ; 200-249
    389  *                  / "25" %x30-35          ; 250-255
    390  *
    391  * Skip a dec-octet.
    392  *
    393  * Returns 0 if found and skipped, 1 otherwise
    394  */
    395 static int rfc3986_parse_dec_octet(const char **str)
    396 {
    397     const char *cur = *str;
    398 
    399     if (!(ISA_DIGIT(cur))) {
    400         return 1;
    401     }
    402     if (!ISA_DIGIT(cur + 1)) {
    403         cur++;
    404     } else if ((*cur != '0') && (ISA_DIGIT(cur + 1)) && (!ISA_DIGIT(cur + 2))) {
    405         cur += 2;
    406     } else if ((*cur == '1') && (ISA_DIGIT(cur + 1)) && (ISA_DIGIT(cur + 2))) {
    407         cur += 3;
    408     } else if ((*cur == '2') && (*(cur + 1) >= '0') && (*(cur + 1) <= '4') &&
    409              (ISA_DIGIT(cur + 2))) {
    410         cur += 3;
    411     } else if ((*cur == '2') && (*(cur + 1) == '5') && (*(cur + 2) >= '0') &&
    412              (*(cur + 1) <= '5')) {
    413         cur += 3;
    414     } else {
    415         return 1;
    416     }
    417     *str = cur;
    418     return 0;
    419 }
    420 /**
    421  * rfc3986_parse_host:
    422  * @uri:  pointer to an URI structure
    423  * @str:  the string to analyze
    424  *
    425  * Parse an host part and fills in the appropriate fields
    426  * of the @uri structure
    427  *
    428  * host          = IP-literal / IPv4address / reg-name
    429  * IP-literal    = "[" ( IPv6address / IPvFuture  ) "]"
    430  * IPv4address   = dec-octet "." dec-octet "." dec-octet "." dec-octet
    431  * reg-name      = *( unreserved / pct-encoded / sub-delims )
    432  *
    433  * Returns 0 or the error code
    434  */
    435 static int rfc3986_parse_host(URI *uri, const char **str)
    436 {
    437     const char *cur = *str;
    438     const char *host;
    439 
    440     host = cur;
    441     /*
    442      * IPv6 and future addressing scheme are enclosed between brackets
    443      */
    444     if (*cur == '[') {
    445         cur++;
    446         while ((*cur != ']') && (*cur != 0)) {
    447             cur++;
    448         }
    449         if (*cur != ']') {
    450             return 1;
    451         }
    452         cur++;
    453         goto found;
    454     }
    455     /*
    456      * try to parse an IPv4
    457      */
    458     if (ISA_DIGIT(cur)) {
    459         if (rfc3986_parse_dec_octet(&cur) != 0) {
    460             goto not_ipv4;
    461         }
    462         if (*cur != '.') {
    463             goto not_ipv4;
    464         }
    465         cur++;
    466         if (rfc3986_parse_dec_octet(&cur) != 0) {
    467             goto not_ipv4;
    468         }
    469         if (*cur != '.') {
    470             goto not_ipv4;
    471         }
    472         if (rfc3986_parse_dec_octet(&cur) != 0) {
    473             goto not_ipv4;
    474         }
    475         if (*cur != '.') {
    476             goto not_ipv4;
    477         }
    478         if (rfc3986_parse_dec_octet(&cur) != 0) {
    479             goto not_ipv4;
    480         }
    481         goto found;
    482     not_ipv4:
    483         cur = *str;
    484     }
    485     /*
    486      * then this should be a hostname which can be empty
    487      */
    488     while (ISA_UNRESERVED(cur) || ISA_PCT_ENCODED(cur) || ISA_SUB_DELIM(cur)) {
    489         NEXT(cur);
    490     }
    491 found:
    492     if (uri != NULL) {
    493         g_free(uri->authority);
    494         uri->authority = NULL;
    495         g_free(uri->server);
    496         if (cur != host) {
    497             if (uri->cleanup & 2) {
    498                 uri->server = g_strndup(host, cur - host);
    499             } else {
    500                 uri->server = uri_string_unescape(host, cur - host, NULL);
    501             }
    502         } else {
    503             uri->server = NULL;
    504         }
    505     }
    506     *str = cur;
    507     return 0;
    508 }
    509 
    510 /**
    511  * rfc3986_parse_authority:
    512  * @uri:  pointer to an URI structure
    513  * @str:  the string to analyze
    514  *
    515  * Parse an authority part and fills in the appropriate fields
    516  * of the @uri structure
    517  *
    518  * authority     = [ userinfo "@" ] host [ ":" port ]
    519  *
    520  * Returns 0 or the error code
    521  */
    522 static int rfc3986_parse_authority(URI *uri, const char **str)
    523 {
    524     const char *cur;
    525     int ret;
    526 
    527     cur = *str;
    528     /*
    529      * try to parse a userinfo and check for the trailing @
    530      */
    531     ret = rfc3986_parse_user_info(uri, &cur);
    532     if ((ret != 0) || (*cur != '@')) {
    533         cur = *str;
    534     } else {
    535         cur++;
    536     }
    537     ret = rfc3986_parse_host(uri, &cur);
    538     if (ret != 0) {
    539         return ret;
    540     }
    541     if (*cur == ':') {
    542         cur++;
    543         ret = rfc3986_parse_port(uri, &cur);
    544         if (ret != 0) {
    545             return ret;
    546         }
    547     }
    548     *str = cur;
    549     return 0;
    550 }
    551 
    552 /**
    553  * rfc3986_parse_segment:
    554  * @str:  the string to analyze
    555  * @forbid: an optional forbidden character
    556  * @empty: allow an empty segment
    557  *
    558  * Parse a segment and fills in the appropriate fields
    559  * of the @uri structure
    560  *
    561  * segment       = *pchar
    562  * segment-nz    = 1*pchar
    563  * segment-nz-nc = 1*( unreserved / pct-encoded / sub-delims / "@" )
    564  *               ; non-zero-length segment without any colon ":"
    565  *
    566  * Returns 0 or the error code
    567  */
    568 static int rfc3986_parse_segment(const char **str, char forbid, int empty)
    569 {
    570     const char *cur;
    571 
    572     cur = *str;
    573     if (!ISA_PCHAR(cur)) {
    574         if (empty) {
    575             return 0;
    576         }
    577         return 1;
    578     }
    579     while (ISA_PCHAR(cur) && (*cur != forbid)) {
    580         NEXT(cur);
    581     }
    582     *str = cur;
    583     return 0;
    584 }
    585 
    586 /**
    587  * rfc3986_parse_path_ab_empty:
    588  * @uri:  pointer to an URI structure
    589  * @str:  the string to analyze
    590  *
    591  * Parse an path absolute or empty and fills in the appropriate fields
    592  * of the @uri structure
    593  *
    594  * path-abempty  = *( "/" segment )
    595  *
    596  * Returns 0 or the error code
    597  */
    598 static int rfc3986_parse_path_ab_empty(URI *uri, const char **str)
    599 {
    600     const char *cur;
    601     int ret;
    602 
    603     cur = *str;
    604 
    605     while (*cur == '/') {
    606         cur++;
    607         ret = rfc3986_parse_segment(&cur, 0, 1);
    608         if (ret != 0) {
    609             return ret;
    610         }
    611     }
    612     if (uri != NULL) {
    613         g_free(uri->path);
    614         if (*str != cur) {
    615             if (uri->cleanup & 2) {
    616                 uri->path = g_strndup(*str, cur - *str);
    617             } else {
    618                 uri->path = uri_string_unescape(*str, cur - *str, NULL);
    619             }
    620         } else {
    621             uri->path = NULL;
    622         }
    623     }
    624     *str = cur;
    625     return 0;
    626 }
    627 
    628 /**
    629  * rfc3986_parse_path_absolute:
    630  * @uri:  pointer to an URI structure
    631  * @str:  the string to analyze
    632  *
    633  * Parse an path absolute and fills in the appropriate fields
    634  * of the @uri structure
    635  *
    636  * path-absolute = "/" [ segment-nz *( "/" segment ) ]
    637  *
    638  * Returns 0 or the error code
    639  */
    640 static int rfc3986_parse_path_absolute(URI *uri, const char **str)
    641 {
    642     const char *cur;
    643     int ret;
    644 
    645     cur = *str;
    646 
    647     if (*cur != '/') {
    648         return 1;
    649     }
    650     cur++;
    651     ret = rfc3986_parse_segment(&cur, 0, 0);
    652     if (ret == 0) {
    653         while (*cur == '/') {
    654             cur++;
    655             ret = rfc3986_parse_segment(&cur, 0, 1);
    656             if (ret != 0) {
    657                 return ret;
    658             }
    659         }
    660     }
    661     if (uri != NULL) {
    662         g_free(uri->path);
    663         if (cur != *str) {
    664             if (uri->cleanup & 2) {
    665                 uri->path = g_strndup(*str, cur - *str);
    666             } else {
    667                 uri->path = uri_string_unescape(*str, cur - *str, NULL);
    668             }
    669         } else {
    670             uri->path = NULL;
    671         }
    672     }
    673     *str = cur;
    674     return 0;
    675 }
    676 
    677 /**
    678  * rfc3986_parse_path_rootless:
    679  * @uri:  pointer to an URI structure
    680  * @str:  the string to analyze
    681  *
    682  * Parse an path without root and fills in the appropriate fields
    683  * of the @uri structure
    684  *
    685  * path-rootless = segment-nz *( "/" segment )
    686  *
    687  * Returns 0 or the error code
    688  */
    689 static int rfc3986_parse_path_rootless(URI *uri, const char **str)
    690 {
    691     const char *cur;
    692     int ret;
    693 
    694     cur = *str;
    695 
    696     ret = rfc3986_parse_segment(&cur, 0, 0);
    697     if (ret != 0) {
    698         return ret;
    699     }
    700     while (*cur == '/') {
    701         cur++;
    702         ret = rfc3986_parse_segment(&cur, 0, 1);
    703         if (ret != 0) {
    704             return ret;
    705         }
    706     }
    707     if (uri != NULL) {
    708         g_free(uri->path);
    709         if (cur != *str) {
    710             if (uri->cleanup & 2) {
    711                 uri->path = g_strndup(*str, cur - *str);
    712             } else {
    713                 uri->path = uri_string_unescape(*str, cur - *str, NULL);
    714             }
    715         } else {
    716             uri->path = NULL;
    717         }
    718     }
    719     *str = cur;
    720     return 0;
    721 }
    722 
    723 /**
    724  * rfc3986_parse_path_no_scheme:
    725  * @uri:  pointer to an URI structure
    726  * @str:  the string to analyze
    727  *
    728  * Parse an path which is not a scheme and fills in the appropriate fields
    729  * of the @uri structure
    730  *
    731  * path-noscheme = segment-nz-nc *( "/" segment )
    732  *
    733  * Returns 0 or the error code
    734  */
    735 static int rfc3986_parse_path_no_scheme(URI *uri, const char **str)
    736 {
    737     const char *cur;
    738     int ret;
    739 
    740     cur = *str;
    741 
    742     ret = rfc3986_parse_segment(&cur, ':', 0);
    743     if (ret != 0) {
    744         return ret;
    745     }
    746     while (*cur == '/') {
    747         cur++;
    748         ret = rfc3986_parse_segment(&cur, 0, 1);
    749         if (ret != 0) {
    750             return ret;
    751         }
    752     }
    753     if (uri != NULL) {
    754         g_free(uri->path);
    755         if (cur != *str) {
    756             if (uri->cleanup & 2) {
    757                 uri->path = g_strndup(*str, cur - *str);
    758             } else {
    759                 uri->path = uri_string_unescape(*str, cur - *str, NULL);
    760             }
    761         } else {
    762             uri->path = NULL;
    763         }
    764     }
    765     *str = cur;
    766     return 0;
    767 }
    768 
    769 /**
    770  * rfc3986_parse_hier_part:
    771  * @uri:  pointer to an URI structure
    772  * @str:  the string to analyze
    773  *
    774  * Parse an hierarchical part and fills in the appropriate fields
    775  * of the @uri structure
    776  *
    777  * hier-part     = "//" authority path-abempty
    778  *                / path-absolute
    779  *                / path-rootless
    780  *                / path-empty
    781  *
    782  * Returns 0 or the error code
    783  */
    784 static int rfc3986_parse_hier_part(URI *uri, const char **str)
    785 {
    786     const char *cur;
    787     int ret;
    788 
    789     cur = *str;
    790 
    791     if ((*cur == '/') && (*(cur + 1) == '/')) {
    792         cur += 2;
    793         ret = rfc3986_parse_authority(uri, &cur);
    794         if (ret != 0) {
    795             return ret;
    796         }
    797         ret = rfc3986_parse_path_ab_empty(uri, &cur);
    798         if (ret != 0) {
    799             return ret;
    800         }
    801         *str = cur;
    802         return 0;
    803     } else if (*cur == '/') {
    804         ret = rfc3986_parse_path_absolute(uri, &cur);
    805         if (ret != 0) {
    806             return ret;
    807         }
    808     } else if (ISA_PCHAR(cur)) {
    809         ret = rfc3986_parse_path_rootless(uri, &cur);
    810         if (ret != 0) {
    811             return ret;
    812         }
    813     } else {
    814         /* path-empty is effectively empty */
    815         if (uri != NULL) {
    816             g_free(uri->path);
    817             uri->path = NULL;
    818         }
    819     }
    820     *str = cur;
    821     return 0;
    822 }
    823 
    824 /**
    825  * rfc3986_parse_relative_ref:
    826  * @uri:  pointer to an URI structure
    827  * @str:  the string to analyze
    828  *
    829  * Parse an URI string and fills in the appropriate fields
    830  * of the @uri structure
    831  *
    832  * relative-ref  = relative-part [ "?" query ] [ "#" fragment ]
    833  * relative-part = "//" authority path-abempty
    834  *               / path-absolute
    835  *               / path-noscheme
    836  *               / path-empty
    837  *
    838  * Returns 0 or the error code
    839  */
    840 static int rfc3986_parse_relative_ref(URI *uri, const char *str)
    841 {
    842     int ret;
    843 
    844     if ((*str == '/') && (*(str + 1) == '/')) {
    845         str += 2;
    846         ret = rfc3986_parse_authority(uri, &str);
    847         if (ret != 0) {
    848             return ret;
    849         }
    850         ret = rfc3986_parse_path_ab_empty(uri, &str);
    851         if (ret != 0) {
    852             return ret;
    853         }
    854     } else if (*str == '/') {
    855         ret = rfc3986_parse_path_absolute(uri, &str);
    856         if (ret != 0) {
    857             return ret;
    858         }
    859     } else if (ISA_PCHAR(str)) {
    860         ret = rfc3986_parse_path_no_scheme(uri, &str);
    861         if (ret != 0) {
    862             return ret;
    863         }
    864     } else {
    865         /* path-empty is effectively empty */
    866         if (uri != NULL) {
    867             g_free(uri->path);
    868             uri->path = NULL;
    869         }
    870     }
    871 
    872     if (*str == '?') {
    873         str++;
    874         ret = rfc3986_parse_query(uri, &str);
    875         if (ret != 0) {
    876             return ret;
    877         }
    878     }
    879     if (*str == '#') {
    880         str++;
    881         ret = rfc3986_parse_fragment(uri, &str);
    882         if (ret != 0) {
    883             return ret;
    884         }
    885     }
    886     if (*str != 0) {
    887         uri_clean(uri);
    888         return 1;
    889     }
    890     return 0;
    891 }
    892 
    893 /**
    894  * rfc3986_parse:
    895  * @uri:  pointer to an URI structure
    896  * @str:  the string to analyze
    897  *
    898  * Parse an URI string and fills in the appropriate fields
    899  * of the @uri structure
    900  *
    901  * scheme ":" hier-part [ "?" query ] [ "#" fragment ]
    902  *
    903  * Returns 0 or the error code
    904  */
    905 static int rfc3986_parse(URI *uri, const char *str)
    906 {
    907     int ret;
    908 
    909     ret = rfc3986_parse_scheme(uri, &str);
    910     if (ret != 0) {
    911         return ret;
    912     }
    913     if (*str != ':') {
    914         return 1;
    915     }
    916     str++;
    917     ret = rfc3986_parse_hier_part(uri, &str);
    918     if (ret != 0) {
    919         return ret;
    920     }
    921     if (*str == '?') {
    922         str++;
    923         ret = rfc3986_parse_query(uri, &str);
    924         if (ret != 0) {
    925             return ret;
    926         }
    927     }
    928     if (*str == '#') {
    929         str++;
    930         ret = rfc3986_parse_fragment(uri, &str);
    931         if (ret != 0) {
    932             return ret;
    933         }
    934     }
    935     if (*str != 0) {
    936         uri_clean(uri);
    937         return 1;
    938     }
    939     return 0;
    940 }
    941 
    942 /**
    943  * rfc3986_parse_uri_reference:
    944  * @uri:  pointer to an URI structure
    945  * @str:  the string to analyze
    946  *
    947  * Parse an URI reference string and fills in the appropriate fields
    948  * of the @uri structure
    949  *
    950  * URI-reference = URI / relative-ref
    951  *
    952  * Returns 0 or the error code
    953  */
    954 static int rfc3986_parse_uri_reference(URI *uri, const char *str)
    955 {
    956     int ret;
    957 
    958     if (str == NULL) {
    959         return -1;
    960     }
    961     uri_clean(uri);
    962 
    963     /*
    964      * Try first to parse absolute refs, then fallback to relative if
    965      * it fails.
    966      */
    967     ret = rfc3986_parse(uri, str);
    968     if (ret != 0) {
    969         uri_clean(uri);
    970         ret = rfc3986_parse_relative_ref(uri, str);
    971         if (ret != 0) {
    972             uri_clean(uri);
    973             return ret;
    974         }
    975     }
    976     return 0;
    977 }
    978 
    979 /**
    980  * uri_parse:
    981  * @str:  the URI string to analyze
    982  *
    983  * Parse an URI based on RFC 3986
    984  *
    985  * URI-reference = [ absoluteURI | relativeURI ] [ "#" fragment ]
    986  *
    987  * Returns a newly built URI or NULL in case of error
    988  */
    989 URI *uri_parse(const char *str)
    990 {
    991     URI *uri;
    992     int ret;
    993 
    994     if (str == NULL) {
    995         return NULL;
    996     }
    997     uri = uri_new();
    998     ret = rfc3986_parse_uri_reference(uri, str);
    999     if (ret) {
   1000         uri_free(uri);
   1001         return NULL;
   1002     }
   1003     return uri;
   1004 }
   1005 
   1006 /**
   1007  * uri_parse_into:
   1008  * @uri:  pointer to an URI structure
   1009  * @str:  the string to analyze
   1010  *
   1011  * Parse an URI reference string based on RFC 3986 and fills in the
   1012  * appropriate fields of the @uri structure
   1013  *
   1014  * URI-reference = URI / relative-ref
   1015  *
   1016  * Returns 0 or the error code
   1017  */
   1018 int uri_parse_into(URI *uri, const char *str)
   1019 {
   1020     return rfc3986_parse_uri_reference(uri, str);
   1021 }
   1022 
   1023 /**
   1024  * uri_parse_raw:
   1025  * @str:  the URI string to analyze
   1026  * @raw:  if 1 unescaping of URI pieces are disabled
   1027  *
   1028  * Parse an URI but allows to keep intact the original fragments.
   1029  *
   1030  * URI-reference = URI / relative-ref
   1031  *
   1032  * Returns a newly built URI or NULL in case of error
   1033  */
   1034 URI *uri_parse_raw(const char *str, int raw)
   1035 {
   1036     URI *uri;
   1037     int ret;
   1038 
   1039     if (str == NULL) {
   1040         return NULL;
   1041     }
   1042     uri = uri_new();
   1043     if (raw) {
   1044         uri->cleanup |= 2;
   1045     }
   1046     ret = uri_parse_into(uri, str);
   1047     if (ret) {
   1048         uri_free(uri);
   1049         return NULL;
   1050     }
   1051     return uri;
   1052 }
   1053 
   1054 /************************************************************************
   1055  *                                                                      *
   1056  *                    Generic URI structure functions                   *
   1057  *                                                                      *
   1058  ************************************************************************/
   1059 
   1060 /**
   1061  * uri_new:
   1062  *
   1063  * Simply creates an empty URI
   1064  *
   1065  * Returns the new structure or NULL in case of error
   1066  */
   1067 URI *uri_new(void)
   1068 {
   1069     return g_new0(URI, 1);
   1070 }
   1071 
   1072 /**
   1073  * realloc2n:
   1074  *
   1075  * Function to handle properly a reallocation when saving an URI
   1076  * Also imposes some limit on the length of an URI string output
   1077  */
   1078 static char *realloc2n(char *ret, int *max)
   1079 {
   1080     char *temp;
   1081     int tmp;
   1082 
   1083     tmp = *max * 2;
   1084     temp = g_realloc(ret, (tmp + 1));
   1085     *max = tmp;
   1086     return temp;
   1087 }
   1088 
   1089 /**
   1090  * uri_to_string:
   1091  * @uri:  pointer to an URI
   1092  *
   1093  * Save the URI as an escaped string
   1094  *
   1095  * Returns a new string (to be deallocated by caller)
   1096  */
   1097 char *uri_to_string(URI *uri)
   1098 {
   1099     char *ret = NULL;
   1100     char *temp;
   1101     const char *p;
   1102     int len;
   1103     int max;
   1104 
   1105     if (uri == NULL) {
   1106         return NULL;
   1107     }
   1108 
   1109     max = 80;
   1110     ret = g_malloc(max + 1);
   1111     len = 0;
   1112 
   1113     if (uri->scheme != NULL) {
   1114         p = uri->scheme;
   1115         while (*p != 0) {
   1116             if (len >= max) {
   1117                 temp = realloc2n(ret, &max);
   1118                 ret = temp;
   1119             }
   1120             ret[len++] = *p++;
   1121         }
   1122         if (len >= max) {
   1123             temp = realloc2n(ret, &max);
   1124             ret = temp;
   1125         }
   1126         ret[len++] = ':';
   1127     }
   1128     if (uri->opaque != NULL) {
   1129         p = uri->opaque;
   1130         while (*p != 0) {
   1131             if (len + 3 >= max) {
   1132                 temp = realloc2n(ret, &max);
   1133                 ret = temp;
   1134             }
   1135             if (IS_RESERVED(*(p)) || IS_UNRESERVED(*(p))) {
   1136                 ret[len++] = *p++;
   1137             } else {
   1138                 int val = *(unsigned char *)p++;
   1139                 int hi = val / 0x10, lo = val % 0x10;
   1140                 ret[len++] = '%';
   1141                 ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
   1142                 ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
   1143             }
   1144         }
   1145     } else {
   1146         if (uri->server != NULL) {
   1147             if (len + 3 >= max) {
   1148                 temp = realloc2n(ret, &max);
   1149                 ret = temp;
   1150             }
   1151             ret[len++] = '/';
   1152             ret[len++] = '/';
   1153             if (uri->user != NULL) {
   1154                 p = uri->user;
   1155                 while (*p != 0) {
   1156                     if (len + 3 >= max) {
   1157                         temp = realloc2n(ret, &max);
   1158                         ret = temp;
   1159                     }
   1160                     if ((IS_UNRESERVED(*(p))) || ((*(p) == ';')) ||
   1161                         ((*(p) == ':')) || ((*(p) == '&')) || ((*(p) == '=')) ||
   1162                         ((*(p) == '+')) || ((*(p) == '$')) || ((*(p) == ','))) {
   1163                         ret[len++] = *p++;
   1164                     } else {
   1165                         int val = *(unsigned char *)p++;
   1166                         int hi = val / 0x10, lo = val % 0x10;
   1167                         ret[len++] = '%';
   1168                         ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
   1169                         ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
   1170                     }
   1171                 }
   1172                 if (len + 3 >= max) {
   1173                     temp = realloc2n(ret, &max);
   1174                     ret = temp;
   1175                 }
   1176                 ret[len++] = '@';
   1177             }
   1178             p = uri->server;
   1179             while (*p != 0) {
   1180                 if (len >= max) {
   1181                     temp = realloc2n(ret, &max);
   1182                     ret = temp;
   1183                 }
   1184                 ret[len++] = *p++;
   1185             }
   1186             if (uri->port > 0) {
   1187                 if (len + 10 >= max) {
   1188                     temp = realloc2n(ret, &max);
   1189                     ret = temp;
   1190                 }
   1191                 len += snprintf(&ret[len], max - len, ":%d", uri->port);
   1192             }
   1193         } else if (uri->authority != NULL) {
   1194             if (len + 3 >= max) {
   1195                 temp = realloc2n(ret, &max);
   1196                 ret = temp;
   1197             }
   1198             ret[len++] = '/';
   1199             ret[len++] = '/';
   1200             p = uri->authority;
   1201             while (*p != 0) {
   1202                 if (len + 3 >= max) {
   1203                     temp = realloc2n(ret, &max);
   1204                     ret = temp;
   1205                 }
   1206                 if ((IS_UNRESERVED(*(p))) || ((*(p) == '$')) ||
   1207                     ((*(p) == ',')) || ((*(p) == ';')) || ((*(p) == ':')) ||
   1208                     ((*(p) == '@')) || ((*(p) == '&')) || ((*(p) == '=')) ||
   1209                     ((*(p) == '+'))) {
   1210                     ret[len++] = *p++;
   1211                 } else {
   1212                     int val = *(unsigned char *)p++;
   1213                     int hi = val / 0x10, lo = val % 0x10;
   1214                     ret[len++] = '%';
   1215                     ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
   1216                     ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
   1217                 }
   1218             }
   1219         } else if (uri->scheme != NULL) {
   1220             if (len + 3 >= max) {
   1221                 temp = realloc2n(ret, &max);
   1222                 ret = temp;
   1223             }
   1224             ret[len++] = '/';
   1225             ret[len++] = '/';
   1226         }
   1227         if (uri->path != NULL) {
   1228             p = uri->path;
   1229             /*
   1230              * the colon in file:///d: should not be escaped or
   1231              * Windows accesses fail later.
   1232              */
   1233             if ((uri->scheme != NULL) && (p[0] == '/') &&
   1234                 (((p[1] >= 'a') && (p[1] <= 'z')) ||
   1235                  ((p[1] >= 'A') && (p[1] <= 'Z'))) &&
   1236                 (p[2] == ':') && (!strcmp(uri->scheme, "file"))) {
   1237                 if (len + 3 >= max) {
   1238                     temp = realloc2n(ret, &max);
   1239                     ret = temp;
   1240                 }
   1241                 ret[len++] = *p++;
   1242                 ret[len++] = *p++;
   1243                 ret[len++] = *p++;
   1244             }
   1245             while (*p != 0) {
   1246                 if (len + 3 >= max) {
   1247                     temp = realloc2n(ret, &max);
   1248                     ret = temp;
   1249                 }
   1250                 if ((IS_UNRESERVED(*(p))) || ((*(p) == '/')) ||
   1251                     ((*(p) == ';')) || ((*(p) == '@')) || ((*(p) == '&')) ||
   1252                     ((*(p) == '=')) || ((*(p) == '+')) || ((*(p) == '$')) ||
   1253                     ((*(p) == ','))) {
   1254                     ret[len++] = *p++;
   1255                 } else {
   1256                     int val = *(unsigned char *)p++;
   1257                     int hi = val / 0x10, lo = val % 0x10;
   1258                     ret[len++] = '%';
   1259                     ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
   1260                     ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
   1261                 }
   1262             }
   1263         }
   1264         if (uri->query != NULL) {
   1265             if (len + 1 >= max) {
   1266                 temp = realloc2n(ret, &max);
   1267                 ret = temp;
   1268             }
   1269             ret[len++] = '?';
   1270             p = uri->query;
   1271             while (*p != 0) {
   1272                 if (len + 1 >= max) {
   1273                     temp = realloc2n(ret, &max);
   1274                     ret = temp;
   1275                 }
   1276                 ret[len++] = *p++;
   1277             }
   1278         }
   1279     }
   1280     if (uri->fragment != NULL) {
   1281         if (len + 3 >= max) {
   1282             temp = realloc2n(ret, &max);
   1283             ret = temp;
   1284         }
   1285         ret[len++] = '#';
   1286         p = uri->fragment;
   1287         while (*p != 0) {
   1288             if (len + 3 >= max) {
   1289                 temp = realloc2n(ret, &max);
   1290                 ret = temp;
   1291             }
   1292             if ((IS_UNRESERVED(*(p))) || (IS_RESERVED(*(p)))) {
   1293                 ret[len++] = *p++;
   1294             } else {
   1295                 int val = *(unsigned char *)p++;
   1296                 int hi = val / 0x10, lo = val % 0x10;
   1297                 ret[len++] = '%';
   1298                 ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
   1299                 ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
   1300             }
   1301         }
   1302     }
   1303     if (len >= max) {
   1304         temp = realloc2n(ret, &max);
   1305         ret = temp;
   1306     }
   1307     ret[len] = 0;
   1308     return ret;
   1309 }
   1310 
   1311 /**
   1312  * uri_clean:
   1313  * @uri:  pointer to an URI
   1314  *
   1315  * Make sure the URI struct is free of content
   1316  */
   1317 static void uri_clean(URI *uri)
   1318 {
   1319     if (uri == NULL) {
   1320         return;
   1321     }
   1322 
   1323     g_free(uri->scheme);
   1324     uri->scheme = NULL;
   1325     g_free(uri->server);
   1326     uri->server = NULL;
   1327     g_free(uri->user);
   1328     uri->user = NULL;
   1329     g_free(uri->path);
   1330     uri->path = NULL;
   1331     g_free(uri->fragment);
   1332     uri->fragment = NULL;
   1333     g_free(uri->opaque);
   1334     uri->opaque = NULL;
   1335     g_free(uri->authority);
   1336     uri->authority = NULL;
   1337     g_free(uri->query);
   1338     uri->query = NULL;
   1339 }
   1340 
   1341 /**
   1342  * uri_free:
   1343  * @uri:  pointer to an URI, NULL is ignored
   1344  *
   1345  * Free up the URI struct
   1346  */
   1347 void uri_free(URI *uri)
   1348 {
   1349     uri_clean(uri);
   1350     g_free(uri);
   1351 }
   1352 
   1353 /************************************************************************
   1354  *                                                                      *
   1355  *                           Helper functions                           *
   1356  *                                                                      *
   1357  ************************************************************************/
   1358 
   1359 /**
   1360  * normalize_uri_path:
   1361  * @path:  pointer to the path string
   1362  *
   1363  * Applies the 5 normalization steps to a path string--that is, RFC 2396
   1364  * Section 5.2, steps 6.c through 6.g.
   1365  *
   1366  * Normalization occurs directly on the string, no new allocation is done
   1367  *
   1368  * Returns 0 or an error code
   1369  */
   1370 static int normalize_uri_path(char *path)
   1371 {
   1372     char *cur, *out;
   1373 
   1374     if (path == NULL) {
   1375         return -1;
   1376     }
   1377 
   1378     /* Skip all initial "/" chars.  We want to get to the beginning of the
   1379      * first non-empty segment.
   1380      */
   1381     cur = path;
   1382     while (cur[0] == '/') {
   1383         ++cur;
   1384     }
   1385     if (cur[0] == '\0') {
   1386         return 0;
   1387     }
   1388 
   1389     /* Keep everything we've seen so far.  */
   1390     out = cur;
   1391 
   1392     /*
   1393      * Analyze each segment in sequence for cases (c) and (d).
   1394      */
   1395     while (cur[0] != '\0') {
   1396         /*
   1397          * c) All occurrences of "./", where "." is a complete path segment,
   1398          *    are removed from the buffer string.
   1399          */
   1400         if ((cur[0] == '.') && (cur[1] == '/')) {
   1401             cur += 2;
   1402             /* '//' normalization should be done at this point too */
   1403             while (cur[0] == '/') {
   1404                 cur++;
   1405             }
   1406             continue;
   1407         }
   1408 
   1409         /*
   1410          * d) If the buffer string ends with "." as a complete path segment,
   1411          *    that "." is removed.
   1412          */
   1413         if ((cur[0] == '.') && (cur[1] == '\0')) {
   1414             break;
   1415         }
   1416 
   1417         /* Otherwise keep the segment.  */
   1418         while (cur[0] != '/') {
   1419             if (cur[0] == '\0') {
   1420                 goto done_cd;
   1421             }
   1422             (out++)[0] = (cur++)[0];
   1423         }
   1424         /* nomalize // */
   1425         while ((cur[0] == '/') && (cur[1] == '/')) {
   1426             cur++;
   1427         }
   1428 
   1429         (out++)[0] = (cur++)[0];
   1430     }
   1431 done_cd:
   1432     out[0] = '\0';
   1433 
   1434     /* Reset to the beginning of the first segment for the next sequence.  */
   1435     cur = path;
   1436     while (cur[0] == '/') {
   1437         ++cur;
   1438     }
   1439     if (cur[0] == '\0') {
   1440         return 0;
   1441     }
   1442 
   1443     /*
   1444      * Analyze each segment in sequence for cases (e) and (f).
   1445      *
   1446      * e) All occurrences of "<segment>/../", where <segment> is a
   1447      *    complete path segment not equal to "..", are removed from the
   1448      *    buffer string.  Removal of these path segments is performed
   1449      *    iteratively, removing the leftmost matching pattern on each
   1450      *    iteration, until no matching pattern remains.
   1451      *
   1452      * f) If the buffer string ends with "<segment>/..", where <segment>
   1453      *    is a complete path segment not equal to "..", that
   1454      *    "<segment>/.." is removed.
   1455      *
   1456      * To satisfy the "iterative" clause in (e), we need to collapse the
   1457      * string every time we find something that needs to be removed.  Thus,
   1458      * we don't need to keep two pointers into the string: we only need a
   1459      * "current position" pointer.
   1460      */
   1461     while (1) {
   1462         char *segp, *tmp;
   1463 
   1464         /* At the beginning of each iteration of this loop, "cur" points to
   1465          * the first character of the segment we want to examine.
   1466          */
   1467 
   1468         /* Find the end of the current segment.  */
   1469         segp = cur;
   1470         while ((segp[0] != '/') && (segp[0] != '\0')) {
   1471             ++segp;
   1472         }
   1473 
   1474         /* If this is the last segment, we're done (we need at least two
   1475          * segments to meet the criteria for the (e) and (f) cases).
   1476          */
   1477         if (segp[0] == '\0') {
   1478             break;
   1479         }
   1480 
   1481         /* If the first segment is "..", or if the next segment _isn't_ "..",
   1482          * keep this segment and try the next one.
   1483          */
   1484         ++segp;
   1485         if (((cur[0] == '.') && (cur[1] == '.') && (segp == cur + 3)) ||
   1486             ((segp[0] != '.') || (segp[1] != '.') ||
   1487              ((segp[2] != '/') && (segp[2] != '\0')))) {
   1488             cur = segp;
   1489             continue;
   1490         }
   1491 
   1492         /* If we get here, remove this segment and the next one and back up
   1493          * to the previous segment (if there is one), to implement the
   1494          * "iteratively" clause.  It's pretty much impossible to back up
   1495          * while maintaining two pointers into the buffer, so just compact
   1496          * the whole buffer now.
   1497          */
   1498 
   1499         /* If this is the end of the buffer, we're done.  */
   1500         if (segp[2] == '\0') {
   1501             cur[0] = '\0';
   1502             break;
   1503         }
   1504         /* Valgrind complained, strcpy(cur, segp + 3); */
   1505         /* string will overlap, do not use strcpy */
   1506         tmp = cur;
   1507         segp += 3;
   1508         while ((*tmp++ = *segp++) != 0) {
   1509             /* No further work */
   1510         }
   1511 
   1512         /* If there are no previous segments, then keep going from here.  */
   1513         segp = cur;
   1514         while ((segp > path) && ((--segp)[0] == '/')) {
   1515             /* No further work */
   1516         }
   1517         if (segp == path) {
   1518             continue;
   1519         }
   1520 
   1521         /* "segp" is pointing to the end of a previous segment; find it's
   1522          * start.  We need to back up to the previous segment and start
   1523          * over with that to handle things like "foo/bar/../..".  If we
   1524          * don't do this, then on the first pass we'll remove the "bar/..",
   1525          * but be pointing at the second ".." so we won't realize we can also
   1526          * remove the "foo/..".
   1527          */
   1528         cur = segp;
   1529         while ((cur > path) && (cur[-1] != '/')) {
   1530             --cur;
   1531         }
   1532     }
   1533     out[0] = '\0';
   1534 
   1535     /*
   1536      * g) If the resulting buffer string still begins with one or more
   1537      *    complete path segments of "..", then the reference is
   1538      *    considered to be in error. Implementations may handle this
   1539      *    error by retaining these components in the resolved path (i.e.,
   1540      *    treating them as part of the final URI), by removing them from
   1541      *    the resolved path (i.e., discarding relative levels above the
   1542      *    root), or by avoiding traversal of the reference.
   1543      *
   1544      * We discard them from the final path.
   1545      */
   1546     if (path[0] == '/') {
   1547         cur = path;
   1548         while ((cur[0] == '/') && (cur[1] == '.') && (cur[2] == '.') &&
   1549                ((cur[3] == '/') || (cur[3] == '\0'))) {
   1550             cur += 3;
   1551         }
   1552 
   1553         if (cur != path) {
   1554             out = path;
   1555             while (cur[0] != '\0') {
   1556                 (out++)[0] = (cur++)[0];
   1557             }
   1558             out[0] = 0;
   1559         }
   1560     }
   1561 
   1562     return 0;
   1563 }
   1564 
   1565 static int is_hex(char c)
   1566 {
   1567     if (((c >= '0') && (c <= '9')) || ((c >= 'a') && (c <= 'f')) ||
   1568         ((c >= 'A') && (c <= 'F'))) {
   1569         return 1;
   1570     }
   1571     return 0;
   1572 }
   1573 
   1574 /**
   1575  * uri_string_unescape:
   1576  * @str:  the string to unescape
   1577  * @len:   the length in bytes to unescape (or <= 0 to indicate full string)
   1578  * @target:  optional destination buffer
   1579  *
   1580  * Unescaping routine, but does not check that the string is an URI. The
   1581  * output is a direct unsigned char translation of %XX values (no encoding)
   1582  * Note that the length of the result can only be smaller or same size as
   1583  * the input string.
   1584  *
   1585  * Returns a copy of the string, but unescaped, will return NULL only in case
   1586  * of error
   1587  */
   1588 char *uri_string_unescape(const char *str, int len, char *target)
   1589 {
   1590     char *ret, *out;
   1591     const char *in;
   1592 
   1593     if (str == NULL) {
   1594         return NULL;
   1595     }
   1596     if (len <= 0) {
   1597         len = strlen(str);
   1598     }
   1599     if (len < 0) {
   1600         return NULL;
   1601     }
   1602 
   1603     if (target == NULL) {
   1604         ret = g_malloc(len + 1);
   1605     } else {
   1606         ret = target;
   1607     }
   1608     in = str;
   1609     out = ret;
   1610     while (len > 0) {
   1611         if ((len > 2) && (*in == '%') && (is_hex(in[1])) && (is_hex(in[2]))) {
   1612             in++;
   1613             if ((*in >= '0') && (*in <= '9')) {
   1614                 *out = (*in - '0');
   1615             } else if ((*in >= 'a') && (*in <= 'f')) {
   1616                 *out = (*in - 'a') + 10;
   1617             } else if ((*in >= 'A') && (*in <= 'F')) {
   1618                 *out = (*in - 'A') + 10;
   1619             }
   1620             in++;
   1621             if ((*in >= '0') && (*in <= '9')) {
   1622                 *out = *out * 16 + (*in - '0');
   1623             } else if ((*in >= 'a') && (*in <= 'f')) {
   1624                 *out = *out * 16 + (*in - 'a') + 10;
   1625             } else if ((*in >= 'A') && (*in <= 'F')) {
   1626                 *out = *out * 16 + (*in - 'A') + 10;
   1627             }
   1628             in++;
   1629             len -= 3;
   1630             out++;
   1631         } else {
   1632             *out++ = *in++;
   1633             len--;
   1634         }
   1635     }
   1636     *out = 0;
   1637     return ret;
   1638 }
   1639 
   1640 /**
   1641  * uri_string_escape:
   1642  * @str:  string to escape
   1643  * @list: exception list string of chars not to escape
   1644  *
   1645  * This routine escapes a string to hex, ignoring reserved characters (a-z)
   1646  * and the characters in the exception list.
   1647  *
   1648  * Returns a new escaped string or NULL in case of error.
   1649  */
   1650 char *uri_string_escape(const char *str, const char *list)
   1651 {
   1652     char *ret, ch;
   1653     char *temp;
   1654     const char *in;
   1655     int len, out;
   1656 
   1657     if (str == NULL) {
   1658         return NULL;
   1659     }
   1660     if (str[0] == 0) {
   1661         return g_strdup(str);
   1662     }
   1663     len = strlen(str);
   1664     if (!(len > 0)) {
   1665         return NULL;
   1666     }
   1667 
   1668     len += 20;
   1669     ret = g_malloc(len);
   1670     in = str;
   1671     out = 0;
   1672     while (*in != 0) {
   1673         if (len - out <= 3) {
   1674             temp = realloc2n(ret, &len);
   1675             ret = temp;
   1676         }
   1677 
   1678         ch = *in;
   1679 
   1680         if ((ch != '@') && (!IS_UNRESERVED(ch)) && (!strchr(list, ch))) {
   1681             unsigned char val;
   1682             ret[out++] = '%';
   1683             val = ch >> 4;
   1684             if (val <= 9) {
   1685                 ret[out++] = '0' + val;
   1686             } else {
   1687                 ret[out++] = 'A' + val - 0xA;
   1688             }
   1689             val = ch & 0xF;
   1690             if (val <= 9) {
   1691                 ret[out++] = '0' + val;
   1692             } else {
   1693                 ret[out++] = 'A' + val - 0xA;
   1694             }
   1695             in++;
   1696         } else {
   1697             ret[out++] = *in++;
   1698         }
   1699     }
   1700     ret[out] = 0;
   1701     return ret;
   1702 }
   1703 
   1704 /************************************************************************
   1705  *                                                                      *
   1706  *                           Public functions                           *
   1707  *                                                                      *
   1708  ************************************************************************/
   1709 
   1710 /**
   1711  * uri_resolve:
   1712  * @URI:  the URI instance found in the document
   1713  * @base:  the base value
   1714  *
   1715  * Computes he final URI of the reference done by checking that
   1716  * the given URI is valid, and building the final URI using the
   1717  * base URI. This is processed according to section 5.2 of the
   1718  * RFC 2396
   1719  *
   1720  * 5.2. Resolving Relative References to Absolute Form
   1721  *
   1722  * Returns a new URI string (to be freed by the caller) or NULL in case
   1723  *         of error.
   1724  */
   1725 char *uri_resolve(const char *uri, const char *base)
   1726 {
   1727     char *val = NULL;
   1728     int ret, len, indx, cur, out;
   1729     URI *ref = NULL;
   1730     URI *bas = NULL;
   1731     URI *res = NULL;
   1732 
   1733     /*
   1734      * 1) The URI reference is parsed into the potential four components and
   1735      *    fragment identifier, as described in Section 4.3.
   1736      *
   1737      *    NOTE that a completely empty URI is treated by modern browsers
   1738      *    as a reference to "." rather than as a synonym for the current
   1739      *    URI.  Should we do that here?
   1740      */
   1741     if (uri == NULL) {
   1742         ret = -1;
   1743     } else {
   1744         if (*uri) {
   1745             ref = uri_new();
   1746             ret = uri_parse_into(ref, uri);
   1747         } else {
   1748             ret = 0;
   1749         }
   1750     }
   1751     if (ret != 0) {
   1752         goto done;
   1753     }
   1754     if ((ref != NULL) && (ref->scheme != NULL)) {
   1755         /*
   1756          * The URI is absolute don't modify.
   1757          */
   1758         val = g_strdup(uri);
   1759         goto done;
   1760     }
   1761     if (base == NULL) {
   1762         ret = -1;
   1763     } else {
   1764         bas = uri_new();
   1765         ret = uri_parse_into(bas, base);
   1766     }
   1767     if (ret != 0) {
   1768         if (ref) {
   1769             val = uri_to_string(ref);
   1770         }
   1771         goto done;
   1772     }
   1773     if (ref == NULL) {
   1774         /*
   1775          * the base fragment must be ignored
   1776          */
   1777         g_free(bas->fragment);
   1778         bas->fragment = NULL;
   1779         val = uri_to_string(bas);
   1780         goto done;
   1781     }
   1782 
   1783     /*
   1784      * 2) If the path component is empty and the scheme, authority, and
   1785      *    query components are undefined, then it is a reference to the
   1786      *    current document and we are done.  Otherwise, the reference URI's
   1787      *    query and fragment components are defined as found (or not found)
   1788      *    within the URI reference and not inherited from the base URI.
   1789      *
   1790      *    NOTE that in modern browsers, the parsing differs from the above
   1791      *    in the following aspect:  the query component is allowed to be
   1792      *    defined while still treating this as a reference to the current
   1793      *    document.
   1794      */
   1795     res = uri_new();
   1796     if ((ref->scheme == NULL) && (ref->path == NULL) &&
   1797         ((ref->authority == NULL) && (ref->server == NULL))) {
   1798         res->scheme = g_strdup(bas->scheme);
   1799         if (bas->authority != NULL) {
   1800             res->authority = g_strdup(bas->authority);
   1801         } else if (bas->server != NULL) {
   1802             res->server = g_strdup(bas->server);
   1803             res->user = g_strdup(bas->user);
   1804             res->port = bas->port;
   1805         }
   1806         res->path = g_strdup(bas->path);
   1807         if (ref->query != NULL) {
   1808             res->query = g_strdup(ref->query);
   1809         } else {
   1810             res->query = g_strdup(bas->query);
   1811         }
   1812         res->fragment = g_strdup(ref->fragment);
   1813         goto step_7;
   1814     }
   1815 
   1816     /*
   1817      * 3) If the scheme component is defined, indicating that the reference
   1818      *    starts with a scheme name, then the reference is interpreted as an
   1819      *    absolute URI and we are done.  Otherwise, the reference URI's
   1820      *    scheme is inherited from the base URI's scheme component.
   1821      */
   1822     if (ref->scheme != NULL) {
   1823         val = uri_to_string(ref);
   1824         goto done;
   1825     }
   1826     res->scheme = g_strdup(bas->scheme);
   1827 
   1828     res->query = g_strdup(ref->query);
   1829     res->fragment = g_strdup(ref->fragment);
   1830 
   1831     /*
   1832      * 4) If the authority component is defined, then the reference is a
   1833      *    network-path and we skip to step 7.  Otherwise, the reference
   1834      *    URI's authority is inherited from the base URI's authority
   1835      *    component, which will also be undefined if the URI scheme does not
   1836      *    use an authority component.
   1837      */
   1838     if ((ref->authority != NULL) || (ref->server != NULL)) {
   1839         if (ref->authority != NULL) {
   1840             res->authority = g_strdup(ref->authority);
   1841         } else {
   1842             res->server = g_strdup(ref->server);
   1843             res->user = g_strdup(ref->user);
   1844             res->port = ref->port;
   1845         }
   1846         res->path = g_strdup(ref->path);
   1847         goto step_7;
   1848     }
   1849     if (bas->authority != NULL) {
   1850         res->authority = g_strdup(bas->authority);
   1851     } else if (bas->server != NULL) {
   1852         res->server = g_strdup(bas->server);
   1853         res->user = g_strdup(bas->user);
   1854         res->port = bas->port;
   1855     }
   1856 
   1857     /*
   1858      * 5) If the path component begins with a slash character ("/"), then
   1859      *    the reference is an absolute-path and we skip to step 7.
   1860      */
   1861     if ((ref->path != NULL) && (ref->path[0] == '/')) {
   1862         res->path = g_strdup(ref->path);
   1863         goto step_7;
   1864     }
   1865 
   1866     /*
   1867      * 6) If this step is reached, then we are resolving a relative-path
   1868      *    reference.  The relative path needs to be merged with the base
   1869      *    URI's path.  Although there are many ways to do this, we will
   1870      *    describe a simple method using a separate string buffer.
   1871      *
   1872      * Allocate a buffer large enough for the result string.
   1873      */
   1874     len = 2; /* extra / and 0 */
   1875     if (ref->path != NULL) {
   1876         len += strlen(ref->path);
   1877     }
   1878     if (bas->path != NULL) {
   1879         len += strlen(bas->path);
   1880     }
   1881     res->path = g_malloc(len);
   1882     res->path[0] = 0;
   1883 
   1884     /*
   1885      * a) All but the last segment of the base URI's path component is
   1886      *    copied to the buffer.  In other words, any characters after the
   1887      *    last (right-most) slash character, if any, are excluded.
   1888      */
   1889     cur = 0;
   1890     out = 0;
   1891     if (bas->path != NULL) {
   1892         while (bas->path[cur] != 0) {
   1893             while ((bas->path[cur] != 0) && (bas->path[cur] != '/')) {
   1894                 cur++;
   1895             }
   1896             if (bas->path[cur] == 0) {
   1897                 break;
   1898             }
   1899 
   1900             cur++;
   1901             while (out < cur) {
   1902                 res->path[out] = bas->path[out];
   1903                 out++;
   1904             }
   1905         }
   1906     }
   1907     res->path[out] = 0;
   1908 
   1909     /*
   1910      * b) The reference's path component is appended to the buffer
   1911      *    string.
   1912      */
   1913     if (ref->path != NULL && ref->path[0] != 0) {
   1914         indx = 0;
   1915         /*
   1916          * Ensure the path includes a '/'
   1917          */
   1918         if ((out == 0) && (bas->server != NULL)) {
   1919             res->path[out++] = '/';
   1920         }
   1921         while (ref->path[indx] != 0) {
   1922             res->path[out++] = ref->path[indx++];
   1923         }
   1924     }
   1925     res->path[out] = 0;
   1926 
   1927     /*
   1928      * Steps c) to h) are really path normalization steps
   1929      */
   1930     normalize_uri_path(res->path);
   1931 
   1932 step_7:
   1933 
   1934     /*
   1935      * 7) The resulting URI components, including any inherited from the
   1936      *    base URI, are recombined to give the absolute form of the URI
   1937      *    reference.
   1938      */
   1939     val = uri_to_string(res);
   1940 
   1941 done:
   1942     uri_free(ref);
   1943     uri_free(bas);
   1944     uri_free(res);
   1945     return val;
   1946 }
   1947 
   1948 /**
   1949  * uri_resolve_relative:
   1950  * @URI:  the URI reference under consideration
   1951  * @base:  the base value
   1952  *
   1953  * Expresses the URI of the reference in terms relative to the
   1954  * base.  Some examples of this operation include:
   1955  *     base = "http://site1.com/docs/book1.html"
   1956  *        URI input                        URI returned
   1957  *     docs/pic1.gif                    pic1.gif
   1958  *     docs/img/pic1.gif                img/pic1.gif
   1959  *     img/pic1.gif                     ../img/pic1.gif
   1960  *     http://site1.com/docs/pic1.gif   pic1.gif
   1961  *     http://site2.com/docs/pic1.gif   http://site2.com/docs/pic1.gif
   1962  *
   1963  *     base = "docs/book1.html"
   1964  *        URI input                        URI returned
   1965  *     docs/pic1.gif                    pic1.gif
   1966  *     docs/img/pic1.gif                img/pic1.gif
   1967  *     img/pic1.gif                     ../img/pic1.gif
   1968  *     http://site1.com/docs/pic1.gif   http://site1.com/docs/pic1.gif
   1969  *
   1970  *
   1971  * Note: if the URI reference is really weird or complicated, it may be
   1972  *       worthwhile to first convert it into a "nice" one by calling
   1973  *       uri_resolve (using 'base') before calling this routine,
   1974  *       since this routine (for reasonable efficiency) assumes URI has
   1975  *       already been through some validation.
   1976  *
   1977  * Returns a new URI string (to be freed by the caller) or NULL in case
   1978  * error.
   1979  */
   1980 char *uri_resolve_relative(const char *uri, const char *base)
   1981 {
   1982     char *val = NULL;
   1983     int ret;
   1984     int ix;
   1985     int pos = 0;
   1986     int nbslash = 0;
   1987     int len;
   1988     URI *ref = NULL;
   1989     URI *bas = NULL;
   1990     char *bptr, *uptr, *vptr;
   1991     int remove_path = 0;
   1992 
   1993     if ((uri == NULL) || (*uri == 0)) {
   1994         return NULL;
   1995     }
   1996 
   1997     /*
   1998      * First parse URI into a standard form
   1999      */
   2000     ref = uri_new();
   2001     /* If URI not already in "relative" form */
   2002     if (uri[0] != '.') {
   2003         ret = uri_parse_into(ref, uri);
   2004         if (ret != 0) {
   2005             goto done; /* Error in URI, return NULL */
   2006         }
   2007     } else {
   2008         ref->path = g_strdup(uri);
   2009     }
   2010 
   2011     /*
   2012      * Next parse base into the same standard form
   2013      */
   2014     if ((base == NULL) || (*base == 0)) {
   2015         val = g_strdup(uri);
   2016         goto done;
   2017     }
   2018     bas = uri_new();
   2019     if (base[0] != '.') {
   2020         ret = uri_parse_into(bas, base);
   2021         if (ret != 0) {
   2022             goto done; /* Error in base, return NULL */
   2023         }
   2024     } else {
   2025         bas->path = g_strdup(base);
   2026     }
   2027 
   2028     /*
   2029      * If the scheme / server on the URI differs from the base,
   2030      * just return the URI
   2031      */
   2032     if ((ref->scheme != NULL) &&
   2033         ((bas->scheme == NULL) || (strcmp(bas->scheme, ref->scheme)) ||
   2034          (strcmp(bas->server, ref->server)))) {
   2035         val = g_strdup(uri);
   2036         goto done;
   2037     }
   2038     if (bas->path == ref->path ||
   2039         (bas->path && ref->path && !strcmp(bas->path, ref->path))) {
   2040         val = g_strdup("");
   2041         goto done;
   2042     }
   2043     if (bas->path == NULL) {
   2044         val = g_strdup(ref->path);
   2045         goto done;
   2046     }
   2047     if (ref->path == NULL) {
   2048         ref->path = (char *)"/";
   2049         remove_path = 1;
   2050     }
   2051 
   2052     /*
   2053      * At this point (at last!) we can compare the two paths
   2054      *
   2055      * First we take care of the special case where either of the
   2056      * two path components may be missing (bug 316224)
   2057      */
   2058     if (bas->path == NULL) {
   2059         if (ref->path != NULL) {
   2060             uptr = ref->path;
   2061             if (*uptr == '/') {
   2062                 uptr++;
   2063             }
   2064             /* exception characters from uri_to_string */
   2065             val = uri_string_escape(uptr, "/;&=+$,");
   2066         }
   2067         goto done;
   2068     }
   2069     bptr = bas->path;
   2070     if (ref->path == NULL) {
   2071         for (ix = 0; bptr[ix] != 0; ix++) {
   2072             if (bptr[ix] == '/') {
   2073                 nbslash++;
   2074             }
   2075         }
   2076         uptr = NULL;
   2077         len = 1; /* this is for a string terminator only */
   2078     } else {
   2079         /*
   2080          * Next we compare the two strings and find where they first differ
   2081          */
   2082         if ((ref->path[pos] == '.') && (ref->path[pos + 1] == '/')) {
   2083             pos += 2;
   2084         }
   2085         if ((*bptr == '.') && (bptr[1] == '/')) {
   2086             bptr += 2;
   2087         } else if ((*bptr == '/') && (ref->path[pos] != '/')) {
   2088             bptr++;
   2089         }
   2090         while ((bptr[pos] == ref->path[pos]) && (bptr[pos] != 0)) {
   2091             pos++;
   2092         }
   2093 
   2094         if (bptr[pos] == ref->path[pos]) {
   2095             val = g_strdup("");
   2096             goto done; /* (I can't imagine why anyone would do this) */
   2097         }
   2098 
   2099         /*
   2100          * In URI, "back up" to the last '/' encountered.  This will be the
   2101          * beginning of the "unique" suffix of URI
   2102          */
   2103         ix = pos;
   2104         if ((ref->path[ix] == '/') && (ix > 0)) {
   2105             ix--;
   2106         } else if ((ref->path[ix] == 0) && (ix > 1)
   2107                 && (ref->path[ix - 1] == '/')) {
   2108             ix -= 2;
   2109         }
   2110         for (; ix > 0; ix--) {
   2111             if (ref->path[ix] == '/') {
   2112                 break;
   2113             }
   2114         }
   2115         if (ix == 0) {
   2116             uptr = ref->path;
   2117         } else {
   2118             ix++;
   2119             uptr = &ref->path[ix];
   2120         }
   2121 
   2122         /*
   2123          * In base, count the number of '/' from the differing point
   2124          */
   2125         if (bptr[pos] != ref->path[pos]) { /* check for trivial URI == base */
   2126             for (; bptr[ix] != 0; ix++) {
   2127                 if (bptr[ix] == '/') {
   2128                     nbslash++;
   2129                 }
   2130             }
   2131         }
   2132         len = strlen(uptr) + 1;
   2133     }
   2134 
   2135     if (nbslash == 0) {
   2136         if (uptr != NULL) {
   2137             /* exception characters from uri_to_string */
   2138             val = uri_string_escape(uptr, "/;&=+$,");
   2139         }
   2140         goto done;
   2141     }
   2142 
   2143     /*
   2144      * Allocate just enough space for the returned string -
   2145      * length of the remainder of the URI, plus enough space
   2146      * for the "../" groups, plus one for the terminator
   2147      */
   2148     val = g_malloc(len + 3 * nbslash);
   2149     vptr = val;
   2150     /*
   2151      * Put in as many "../" as needed
   2152      */
   2153     for (; nbslash > 0; nbslash--) {
   2154         *vptr++ = '.';
   2155         *vptr++ = '.';
   2156         *vptr++ = '/';
   2157     }
   2158     /*
   2159      * Finish up with the end of the URI
   2160      */
   2161     if (uptr != NULL) {
   2162         if ((vptr > val) && (len > 0) && (uptr[0] == '/') &&
   2163             (vptr[-1] == '/')) {
   2164             memcpy(vptr, uptr + 1, len - 1);
   2165             vptr[len - 2] = 0;
   2166         } else {
   2167             memcpy(vptr, uptr, len);
   2168             vptr[len - 1] = 0;
   2169         }
   2170     } else {
   2171         vptr[len - 1] = 0;
   2172     }
   2173 
   2174     /* escape the freshly-built path */
   2175     vptr = val;
   2176     /* exception characters from uri_to_string */
   2177     val = uri_string_escape(vptr, "/;&=+$,");
   2178     g_free(vptr);
   2179 
   2180 done:
   2181     /*
   2182      * Free the working variables
   2183      */
   2184     if (remove_path != 0) {
   2185         ref->path = NULL;
   2186     }
   2187     uri_free(ref);
   2188     uri_free(bas);
   2189 
   2190     return val;
   2191 }
   2192 
   2193 /*
   2194  * Utility functions to help parse and assemble query strings.
   2195  */
   2196 
   2197 struct QueryParams *query_params_new(int init_alloc)
   2198 {
   2199     struct QueryParams *ps;
   2200 
   2201     if (init_alloc <= 0) {
   2202         init_alloc = 1;
   2203     }
   2204 
   2205     ps = g_new(QueryParams, 1);
   2206     ps->n = 0;
   2207     ps->alloc = init_alloc;
   2208     ps->p = g_new(QueryParam, ps->alloc);
   2209 
   2210     return ps;
   2211 }
   2212 
   2213 /* Ensure there is space to store at least one more parameter
   2214  * at the end of the set.
   2215  */
   2216 static int query_params_append(struct QueryParams *ps, const char *name,
   2217                                const char *value)
   2218 {
   2219     if (ps->n >= ps->alloc) {
   2220         ps->p = g_renew(QueryParam, ps->p, ps->alloc * 2);
   2221         ps->alloc *= 2;
   2222     }
   2223 
   2224     ps->p[ps->n].name = g_strdup(name);
   2225     ps->p[ps->n].value = g_strdup(value);
   2226     ps->p[ps->n].ignore = 0;
   2227     ps->n++;
   2228 
   2229     return 0;
   2230 }
   2231 
   2232 void query_params_free(struct QueryParams *ps)
   2233 {
   2234     int i;
   2235 
   2236     for (i = 0; i < ps->n; ++i) {
   2237         g_free(ps->p[i].name);
   2238         g_free(ps->p[i].value);
   2239     }
   2240     g_free(ps->p);
   2241     g_free(ps);
   2242 }
   2243 
   2244 struct QueryParams *query_params_parse(const char *query)
   2245 {
   2246     struct QueryParams *ps;
   2247     const char *end, *eq;
   2248 
   2249     ps = query_params_new(0);
   2250     if (!query || query[0] == '\0') {
   2251         return ps;
   2252     }
   2253 
   2254     while (*query) {
   2255         char *name = NULL, *value = NULL;
   2256 
   2257         /* Find the next separator, or end of the string. */
   2258         end = strchr(query, '&');
   2259         if (!end) {
   2260             end = qemu_strchrnul(query, ';');
   2261         }
   2262 
   2263         /* Find the first '=' character between here and end. */
   2264         eq = strchr(query, '=');
   2265         if (eq && eq >= end) {
   2266             eq = NULL;
   2267         }
   2268 
   2269         /* Empty section (eg. "&&"). */
   2270         if (end == query) {
   2271             goto next;
   2272         }
   2273 
   2274         /* If there is no '=' character, then we have just "name"
   2275          * and consistent with CGI.pm we assume value is "".
   2276          */
   2277         else if (!eq) {
   2278             name = uri_string_unescape(query, end - query, NULL);
   2279             value = NULL;
   2280         }
   2281         /* Or if we have "name=" here (works around annoying
   2282          * problem when calling uri_string_unescape with len = 0).
   2283          */
   2284         else if (eq + 1 == end) {
   2285             name = uri_string_unescape(query, eq - query, NULL);
   2286             value = g_new0(char, 1);
   2287         }
   2288         /* If the '=' character is at the beginning then we have
   2289          * "=value" and consistent with CGI.pm we _ignore_ this.
   2290          */
   2291         else if (query == eq) {
   2292             goto next;
   2293         }
   2294 
   2295         /* Otherwise it's "name=value". */
   2296         else {
   2297             name = uri_string_unescape(query, eq - query, NULL);
   2298             value = uri_string_unescape(eq + 1, end - (eq + 1), NULL);
   2299         }
   2300 
   2301         /* Append to the parameter set. */
   2302         query_params_append(ps, name, value);
   2303         g_free(name);
   2304         g_free(value);
   2305 
   2306     next:
   2307         query = end;
   2308         if (*query) {
   2309             query++; /* skip '&' separator */
   2310         }
   2311     }
   2312 
   2313     return ps;
   2314 }