qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

bufferiszero.c (10311B)


      1 /*
      2  * Simple C functions to supplement the C library
      3  *
      4  * Copyright (c) 2006 Fabrice Bellard
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a copy
      7  * of this software and associated documentation files (the "Software"), to deal
      8  * in the Software without restriction, including without limitation the rights
      9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     10  * copies of the Software, and to permit persons to whom the Software is
     11  * furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     22  * THE SOFTWARE.
     23  */
     24 #include "qemu/osdep.h"
     25 #include "qemu/cutils.h"
     26 #include "qemu/bswap.h"
     27 
     28 static bool
     29 buffer_zero_int(const void *buf, size_t len)
     30 {
     31     if (unlikely(len < 8)) {
     32         /* For a very small buffer, simply accumulate all the bytes.  */
     33         const unsigned char *p = buf;
     34         const unsigned char *e = buf + len;
     35         unsigned char t = 0;
     36 
     37         do {
     38             t |= *p++;
     39         } while (p < e);
     40 
     41         return t == 0;
     42     } else {
     43         /* Otherwise, use the unaligned memory access functions to
     44            handle the beginning and end of the buffer, with a couple
     45            of loops handling the middle aligned section.  */
     46         uint64_t t = ldq_he_p(buf);
     47         const uint64_t *p = (uint64_t *)(((uintptr_t)buf + 8) & -8);
     48         const uint64_t *e = (uint64_t *)(((uintptr_t)buf + len) & -8);
     49 
     50         for (; p + 8 <= e; p += 8) {
     51             __builtin_prefetch(p + 8);
     52             if (t) {
     53                 return false;
     54             }
     55             t = p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7];
     56         }
     57         while (p < e) {
     58             t |= *p++;
     59         }
     60         t |= ldq_he_p(buf + len - 8);
     61 
     62         return t == 0;
     63     }
     64 }
     65 
     66 #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT) || defined(__SSE2__)
     67 /* Do not use push_options pragmas unnecessarily, because clang
     68  * does not support them.
     69  */
     70 #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
     71 #pragma GCC push_options
     72 #pragma GCC target("sse2")
     73 #endif
     74 #include <emmintrin.h>
     75 
     76 /* Note that each of these vectorized functions require len >= 64.  */
     77 
     78 static bool
     79 buffer_zero_sse2(const void *buf, size_t len)
     80 {
     81     __m128i t = _mm_loadu_si128(buf);
     82     __m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16);
     83     __m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16);
     84     __m128i zero = _mm_setzero_si128();
     85 
     86     /* Loop over 16-byte aligned blocks of 64.  */
     87     while (likely(p <= e)) {
     88         __builtin_prefetch(p);
     89         t = _mm_cmpeq_epi8(t, zero);
     90         if (unlikely(_mm_movemask_epi8(t) != 0xFFFF)) {
     91             return false;
     92         }
     93         t = p[-4] | p[-3] | p[-2] | p[-1];
     94         p += 4;
     95     }
     96 
     97     /* Finish the aligned tail.  */
     98     t |= e[-3];
     99     t |= e[-2];
    100     t |= e[-1];
    101 
    102     /* Finish the unaligned tail.  */
    103     t |= _mm_loadu_si128(buf + len - 16);
    104 
    105     return _mm_movemask_epi8(_mm_cmpeq_epi8(t, zero)) == 0xFFFF;
    106 }
    107 #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
    108 #pragma GCC pop_options
    109 #endif
    110 
    111 #ifdef CONFIG_AVX2_OPT
    112 /* Note that due to restrictions/bugs wrt __builtin functions in gcc <= 4.8,
    113  * the includes have to be within the corresponding push_options region, and
    114  * therefore the regions themselves have to be ordered with increasing ISA.
    115  */
    116 #pragma GCC push_options
    117 #pragma GCC target("sse4")
    118 #include <smmintrin.h>
    119 
    120 static bool
    121 buffer_zero_sse4(const void *buf, size_t len)
    122 {
    123     __m128i t = _mm_loadu_si128(buf);
    124     __m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16);
    125     __m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16);
    126 
    127     /* Loop over 16-byte aligned blocks of 64.  */
    128     while (likely(p <= e)) {
    129         __builtin_prefetch(p);
    130         if (unlikely(!_mm_testz_si128(t, t))) {
    131             return false;
    132         }
    133         t = p[-4] | p[-3] | p[-2] | p[-1];
    134         p += 4;
    135     }
    136 
    137     /* Finish the aligned tail.  */
    138     t |= e[-3];
    139     t |= e[-2];
    140     t |= e[-1];
    141 
    142     /* Finish the unaligned tail.  */
    143     t |= _mm_loadu_si128(buf + len - 16);
    144 
    145     return _mm_testz_si128(t, t);
    146 }
    147 
    148 #pragma GCC pop_options
    149 #pragma GCC push_options
    150 #pragma GCC target("avx2")
    151 #include <immintrin.h>
    152 
    153 static bool
    154 buffer_zero_avx2(const void *buf, size_t len)
    155 {
    156     /* Begin with an unaligned head of 32 bytes.  */
    157     __m256i t = _mm256_loadu_si256(buf);
    158     __m256i *p = (__m256i *)(((uintptr_t)buf + 5 * 32) & -32);
    159     __m256i *e = (__m256i *)(((uintptr_t)buf + len) & -32);
    160 
    161     /* Loop over 32-byte aligned blocks of 128.  */
    162     while (p <= e) {
    163         __builtin_prefetch(p);
    164         if (unlikely(!_mm256_testz_si256(t, t))) {
    165             return false;
    166         }
    167         t = p[-4] | p[-3] | p[-2] | p[-1];
    168         p += 4;
    169     } ;
    170 
    171     /* Finish the last block of 128 unaligned.  */
    172     t |= _mm256_loadu_si256(buf + len - 4 * 32);
    173     t |= _mm256_loadu_si256(buf + len - 3 * 32);
    174     t |= _mm256_loadu_si256(buf + len - 2 * 32);
    175     t |= _mm256_loadu_si256(buf + len - 1 * 32);
    176 
    177     return _mm256_testz_si256(t, t);
    178 }
    179 #pragma GCC pop_options
    180 #endif /* CONFIG_AVX2_OPT */
    181 
    182 #ifdef CONFIG_AVX512F_OPT
    183 #pragma GCC push_options
    184 #pragma GCC target("avx512f")
    185 #include <immintrin.h>
    186 
    187 static bool
    188 buffer_zero_avx512(const void *buf, size_t len)
    189 {
    190     /* Begin with an unaligned head of 64 bytes.  */
    191     __m512i t = _mm512_loadu_si512(buf);
    192     __m512i *p = (__m512i *)(((uintptr_t)buf + 5 * 64) & -64);
    193     __m512i *e = (__m512i *)(((uintptr_t)buf + len) & -64);
    194 
    195     /* Loop over 64-byte aligned blocks of 256.  */
    196     while (p <= e) {
    197         __builtin_prefetch(p);
    198         if (unlikely(_mm512_test_epi64_mask(t, t))) {
    199             return false;
    200         }
    201         t = p[-4] | p[-3] | p[-2] | p[-1];
    202         p += 4;
    203     }
    204 
    205     t |= _mm512_loadu_si512(buf + len - 4 * 64);
    206     t |= _mm512_loadu_si512(buf + len - 3 * 64);
    207     t |= _mm512_loadu_si512(buf + len - 2 * 64);
    208     t |= _mm512_loadu_si512(buf + len - 1 * 64);
    209 
    210     return !_mm512_test_epi64_mask(t, t);
    211 
    212 }
    213 #pragma GCC pop_options
    214 #endif
    215 
    216 
    217 /* Note that for test_buffer_is_zero_next_accel, the most preferred
    218  * ISA must have the least significant bit.
    219  */
    220 #define CACHE_AVX512F 1
    221 #define CACHE_AVX2    2
    222 #define CACHE_SSE4    4
    223 #define CACHE_SSE2    8
    224 
    225 /* Make sure that these variables are appropriately initialized when
    226  * SSE2 is enabled on the compiler command-line, but the compiler is
    227  * too old to support CONFIG_AVX2_OPT.
    228  */
    229 #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
    230 # define INIT_CACHE 0
    231 # define INIT_ACCEL buffer_zero_int
    232 #else
    233 # ifndef __SSE2__
    234 #  error "ISA selection confusion"
    235 # endif
    236 # define INIT_CACHE CACHE_SSE2
    237 # define INIT_ACCEL buffer_zero_sse2
    238 #endif
    239 
    240 static unsigned cpuid_cache = INIT_CACHE;
    241 static bool (*buffer_accel)(const void *, size_t) = INIT_ACCEL;
    242 static int length_to_accel = 64;
    243 
    244 static void init_accel(unsigned cache)
    245 {
    246     bool (*fn)(const void *, size_t) = buffer_zero_int;
    247     if (cache & CACHE_SSE2) {
    248         fn = buffer_zero_sse2;
    249         length_to_accel = 64;
    250     }
    251 #ifdef CONFIG_AVX2_OPT
    252     if (cache & CACHE_SSE4) {
    253         fn = buffer_zero_sse4;
    254         length_to_accel = 64;
    255     }
    256     if (cache & CACHE_AVX2) {
    257         fn = buffer_zero_avx2;
    258         length_to_accel = 128;
    259     }
    260 #endif
    261 #ifdef CONFIG_AVX512F_OPT
    262     if (cache & CACHE_AVX512F) {
    263         fn = buffer_zero_avx512;
    264         length_to_accel = 256;
    265     }
    266 #endif
    267     buffer_accel = fn;
    268 }
    269 
    270 #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
    271 #include "qemu/cpuid.h"
    272 
    273 static void __attribute__((constructor)) init_cpuid_cache(void)
    274 {
    275     unsigned max = __get_cpuid_max(0, NULL);
    276     int a, b, c, d;
    277     unsigned cache = 0;
    278 
    279     if (max >= 1) {
    280         __cpuid(1, a, b, c, d);
    281         if (d & bit_SSE2) {
    282             cache |= CACHE_SSE2;
    283         }
    284         if (c & bit_SSE4_1) {
    285             cache |= CACHE_SSE4;
    286         }
    287 
    288         /* We must check that AVX is not just available, but usable.  */
    289         if ((c & bit_OSXSAVE) && (c & bit_AVX) && max >= 7) {
    290             int bv;
    291             __asm("xgetbv" : "=a"(bv), "=d"(d) : "c"(0));
    292             __cpuid_count(7, 0, a, b, c, d);
    293             if ((bv & 0x6) == 0x6 && (b & bit_AVX2)) {
    294                 cache |= CACHE_AVX2;
    295             }
    296             /* 0xe6:
    297             *  XCR0[7:5] = 111b (OPMASK state, upper 256-bit of ZMM0-ZMM15
    298             *                    and ZMM16-ZMM31 state are enabled by OS)
    299             *  XCR0[2:1] = 11b (XMM state and YMM state are enabled by OS)
    300             */
    301             if ((bv & 0xe6) == 0xe6 && (b & bit_AVX512F)) {
    302                 cache |= CACHE_AVX512F;
    303             }
    304         }
    305     }
    306     cpuid_cache = cache;
    307     init_accel(cache);
    308 }
    309 #endif /* CONFIG_AVX2_OPT */
    310 
    311 bool test_buffer_is_zero_next_accel(void)
    312 {
    313     /* If no bits set, we just tested buffer_zero_int, and there
    314        are no more acceleration options to test.  */
    315     if (cpuid_cache == 0) {
    316         return false;
    317     }
    318     /* Disable the accelerator we used before and select a new one.  */
    319     cpuid_cache &= cpuid_cache - 1;
    320     init_accel(cpuid_cache);
    321     return true;
    322 }
    323 
    324 static bool select_accel_fn(const void *buf, size_t len)
    325 {
    326     if (likely(len >= length_to_accel)) {
    327         return buffer_accel(buf, len);
    328     }
    329     return buffer_zero_int(buf, len);
    330 }
    331 
    332 #else
    333 #define select_accel_fn  buffer_zero_int
    334 bool test_buffer_is_zero_next_accel(void)
    335 {
    336     return false;
    337 }
    338 #endif
    339 
    340 /*
    341  * Checks if a buffer is all zeroes
    342  */
    343 bool buffer_is_zero(const void *buf, size_t len)
    344 {
    345     if (unlikely(len == 0)) {
    346         return true;
    347     }
    348 
    349     /* Fetch the beginning of the buffer while we select the accelerator.  */
    350     __builtin_prefetch(buf);
    351 
    352     /* Use an optimized zero check if possible.  Note that this also
    353        includes a check for an unrolled loop over 64-bit integers.  */
    354     return select_accel_fn(buf, len);
    355 }