qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

bitmap.c (13870B)


      1 /*
      2  * Bitmap Module
      3  *
      4  * Stolen from linux/src/lib/bitmap.c
      5  *
      6  * Copyright (C) 2010 Corentin Chary
      7  *
      8  * This source code is licensed under the GNU General Public License,
      9  * Version 2.
     10  */
     11 
     12 #include "qemu/osdep.h"
     13 #include "qemu/bitops.h"
     14 #include "qemu/bitmap.h"
     15 #include "qemu/atomic.h"
     16 
     17 /*
     18  * bitmaps provide an array of bits, implemented using an
     19  * array of unsigned longs.  The number of valid bits in a
     20  * given bitmap does _not_ need to be an exact multiple of
     21  * BITS_PER_LONG.
     22  *
     23  * The possible unused bits in the last, partially used word
     24  * of a bitmap are 'don't care'.  The implementation makes
     25  * no particular effort to keep them zero.  It ensures that
     26  * their value will not affect the results of any operation.
     27  * The bitmap operations that return Boolean (bitmap_empty,
     28  * for example) or scalar (bitmap_weight, for example) results
     29  * carefully filter out these unused bits from impacting their
     30  * results.
     31  *
     32  * These operations actually hold to a slightly stronger rule:
     33  * if you don't input any bitmaps to these ops that have some
     34  * unused bits set, then they won't output any set unused bits
     35  * in output bitmaps.
     36  *
     37  * The byte ordering of bitmaps is more natural on little
     38  * endian architectures.
     39  */
     40 
     41 int slow_bitmap_empty(const unsigned long *bitmap, long bits)
     42 {
     43     long k, lim = bits/BITS_PER_LONG;
     44 
     45     for (k = 0; k < lim; ++k) {
     46         if (bitmap[k]) {
     47             return 0;
     48         }
     49     }
     50     if (bits % BITS_PER_LONG) {
     51         if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
     52             return 0;
     53         }
     54     }
     55 
     56     return 1;
     57 }
     58 
     59 int slow_bitmap_full(const unsigned long *bitmap, long bits)
     60 {
     61     long k, lim = bits/BITS_PER_LONG;
     62 
     63     for (k = 0; k < lim; ++k) {
     64         if (~bitmap[k]) {
     65             return 0;
     66         }
     67     }
     68 
     69     if (bits % BITS_PER_LONG) {
     70         if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
     71             return 0;
     72         }
     73     }
     74 
     75     return 1;
     76 }
     77 
     78 int slow_bitmap_equal(const unsigned long *bitmap1,
     79                       const unsigned long *bitmap2, long bits)
     80 {
     81     long k, lim = bits/BITS_PER_LONG;
     82 
     83     for (k = 0; k < lim; ++k) {
     84         if (bitmap1[k] != bitmap2[k]) {
     85             return 0;
     86         }
     87     }
     88 
     89     if (bits % BITS_PER_LONG) {
     90         if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
     91             return 0;
     92         }
     93     }
     94 
     95     return 1;
     96 }
     97 
     98 void slow_bitmap_complement(unsigned long *dst, const unsigned long *src,
     99                             long bits)
    100 {
    101     long k, lim = bits/BITS_PER_LONG;
    102 
    103     for (k = 0; k < lim; ++k) {
    104         dst[k] = ~src[k];
    105     }
    106 
    107     if (bits % BITS_PER_LONG) {
    108         dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
    109     }
    110 }
    111 
    112 int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
    113                     const unsigned long *bitmap2, long bits)
    114 {
    115     long k;
    116     long nr = BITS_TO_LONGS(bits);
    117     unsigned long result = 0;
    118 
    119     for (k = 0; k < nr; k++) {
    120         result |= (dst[k] = bitmap1[k] & bitmap2[k]);
    121     }
    122     return result != 0;
    123 }
    124 
    125 void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
    126                     const unsigned long *bitmap2, long bits)
    127 {
    128     long k;
    129     long nr = BITS_TO_LONGS(bits);
    130 
    131     for (k = 0; k < nr; k++) {
    132         dst[k] = bitmap1[k] | bitmap2[k];
    133     }
    134 }
    135 
    136 void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
    137                      const unsigned long *bitmap2, long bits)
    138 {
    139     long k;
    140     long nr = BITS_TO_LONGS(bits);
    141 
    142     for (k = 0; k < nr; k++) {
    143         dst[k] = bitmap1[k] ^ bitmap2[k];
    144     }
    145 }
    146 
    147 int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
    148                        const unsigned long *bitmap2, long bits)
    149 {
    150     long k;
    151     long nr = BITS_TO_LONGS(bits);
    152     unsigned long result = 0;
    153 
    154     for (k = 0; k < nr; k++) {
    155         result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
    156     }
    157     return result != 0;
    158 }
    159 
    160 void bitmap_set(unsigned long *map, long start, long nr)
    161 {
    162     unsigned long *p = map + BIT_WORD(start);
    163     const long size = start + nr;
    164     int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
    165     unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
    166 
    167     assert(start >= 0 && nr >= 0);
    168 
    169     while (nr - bits_to_set >= 0) {
    170         *p |= mask_to_set;
    171         nr -= bits_to_set;
    172         bits_to_set = BITS_PER_LONG;
    173         mask_to_set = ~0UL;
    174         p++;
    175     }
    176     if (nr) {
    177         mask_to_set &= BITMAP_LAST_WORD_MASK(size);
    178         *p |= mask_to_set;
    179     }
    180 }
    181 
    182 void bitmap_set_atomic(unsigned long *map, long start, long nr)
    183 {
    184     unsigned long *p = map + BIT_WORD(start);
    185     const long size = start + nr;
    186     int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
    187     unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
    188 
    189     assert(start >= 0 && nr >= 0);
    190 
    191     /* First word */
    192     if (nr - bits_to_set > 0) {
    193         qatomic_or(p, mask_to_set);
    194         nr -= bits_to_set;
    195         bits_to_set = BITS_PER_LONG;
    196         mask_to_set = ~0UL;
    197         p++;
    198     }
    199 
    200     /* Full words */
    201     if (bits_to_set == BITS_PER_LONG) {
    202         while (nr >= BITS_PER_LONG) {
    203             *p = ~0UL;
    204             nr -= BITS_PER_LONG;
    205             p++;
    206         }
    207     }
    208 
    209     /* Last word */
    210     if (nr) {
    211         mask_to_set &= BITMAP_LAST_WORD_MASK(size);
    212         qatomic_or(p, mask_to_set);
    213     } else {
    214         /* If we avoided the full barrier in qatomic_or(), issue a
    215          * barrier to account for the assignments in the while loop.
    216          */
    217         smp_mb();
    218     }
    219 }
    220 
    221 void bitmap_clear(unsigned long *map, long start, long nr)
    222 {
    223     unsigned long *p = map + BIT_WORD(start);
    224     const long size = start + nr;
    225     int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
    226     unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
    227 
    228     assert(start >= 0 && nr >= 0);
    229 
    230     while (nr - bits_to_clear >= 0) {
    231         *p &= ~mask_to_clear;
    232         nr -= bits_to_clear;
    233         bits_to_clear = BITS_PER_LONG;
    234         mask_to_clear = ~0UL;
    235         p++;
    236     }
    237     if (nr) {
    238         mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
    239         *p &= ~mask_to_clear;
    240     }
    241 }
    242 
    243 bool bitmap_test_and_clear(unsigned long *map, long start, long nr)
    244 {
    245     unsigned long *p = map + BIT_WORD(start);
    246     const long size = start + nr;
    247     int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
    248     unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
    249     bool dirty = false;
    250 
    251     assert(start >= 0 && nr >= 0);
    252 
    253     /* First word */
    254     if (nr - bits_to_clear > 0) {
    255         if ((*p) & mask_to_clear) {
    256             dirty = true;
    257         }
    258         *p &= ~mask_to_clear;
    259         nr -= bits_to_clear;
    260         bits_to_clear = BITS_PER_LONG;
    261         p++;
    262     }
    263 
    264     /* Full words */
    265     if (bits_to_clear == BITS_PER_LONG) {
    266         while (nr >= BITS_PER_LONG) {
    267             if (*p) {
    268                 dirty = true;
    269                 *p = 0;
    270             }
    271             nr -= BITS_PER_LONG;
    272             p++;
    273         }
    274     }
    275 
    276     /* Last word */
    277     if (nr) {
    278         mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
    279         if ((*p) & mask_to_clear) {
    280             dirty = true;
    281         }
    282         *p &= ~mask_to_clear;
    283     }
    284 
    285     return dirty;
    286 }
    287 
    288 bool bitmap_test_and_clear_atomic(unsigned long *map, long start, long nr)
    289 {
    290     unsigned long *p = map + BIT_WORD(start);
    291     const long size = start + nr;
    292     int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
    293     unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
    294     unsigned long dirty = 0;
    295     unsigned long old_bits;
    296 
    297     assert(start >= 0 && nr >= 0);
    298 
    299     /* First word */
    300     if (nr - bits_to_clear > 0) {
    301         old_bits = qatomic_fetch_and(p, ~mask_to_clear);
    302         dirty |= old_bits & mask_to_clear;
    303         nr -= bits_to_clear;
    304         bits_to_clear = BITS_PER_LONG;
    305         mask_to_clear = ~0UL;
    306         p++;
    307     }
    308 
    309     /* Full words */
    310     if (bits_to_clear == BITS_PER_LONG) {
    311         while (nr >= BITS_PER_LONG) {
    312             if (*p) {
    313                 old_bits = qatomic_xchg(p, 0);
    314                 dirty |= old_bits;
    315             }
    316             nr -= BITS_PER_LONG;
    317             p++;
    318         }
    319     }
    320 
    321     /* Last word */
    322     if (nr) {
    323         mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
    324         old_bits = qatomic_fetch_and(p, ~mask_to_clear);
    325         dirty |= old_bits & mask_to_clear;
    326     } else {
    327         if (!dirty) {
    328             smp_mb();
    329         }
    330     }
    331 
    332     return dirty != 0;
    333 }
    334 
    335 void bitmap_copy_and_clear_atomic(unsigned long *dst, unsigned long *src,
    336                                   long nr)
    337 {
    338     while (nr > 0) {
    339         *dst = qatomic_xchg(src, 0);
    340         dst++;
    341         src++;
    342         nr -= BITS_PER_LONG;
    343     }
    344 }
    345 
    346 #define ALIGN_MASK(x,mask)      (((x)+(mask))&~(mask))
    347 
    348 /**
    349  * bitmap_find_next_zero_area - find a contiguous aligned zero area
    350  * @map: The address to base the search on
    351  * @size: The bitmap size in bits
    352  * @start: The bitnumber to start searching at
    353  * @nr: The number of zeroed bits we're looking for
    354  * @align_mask: Alignment mask for zero area
    355  *
    356  * The @align_mask should be one less than a power of 2; the effect is that
    357  * the bit offset of all zero areas this function finds is multiples of that
    358  * power of 2. A @align_mask of 0 means no alignment is required.
    359  */
    360 unsigned long bitmap_find_next_zero_area(unsigned long *map,
    361                                          unsigned long size,
    362                                          unsigned long start,
    363                                          unsigned long nr,
    364                                          unsigned long align_mask)
    365 {
    366     unsigned long index, end, i;
    367 again:
    368     index = find_next_zero_bit(map, size, start);
    369 
    370     /* Align allocation */
    371     index = ALIGN_MASK(index, align_mask);
    372 
    373     end = index + nr;
    374     if (end > size) {
    375         return end;
    376     }
    377     i = find_next_bit(map, end, index);
    378     if (i < end) {
    379         start = i + 1;
    380         goto again;
    381     }
    382     return index;
    383 }
    384 
    385 int slow_bitmap_intersects(const unsigned long *bitmap1,
    386                            const unsigned long *bitmap2, long bits)
    387 {
    388     long k, lim = bits/BITS_PER_LONG;
    389 
    390     for (k = 0; k < lim; ++k) {
    391         if (bitmap1[k] & bitmap2[k]) {
    392             return 1;
    393         }
    394     }
    395 
    396     if (bits % BITS_PER_LONG) {
    397         if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
    398             return 1;
    399         }
    400     }
    401     return 0;
    402 }
    403 
    404 long slow_bitmap_count_one(const unsigned long *bitmap, long nbits)
    405 {
    406     long k, lim = nbits / BITS_PER_LONG, result = 0;
    407 
    408     for (k = 0; k < lim; k++) {
    409         result += ctpopl(bitmap[k]);
    410     }
    411 
    412     if (nbits % BITS_PER_LONG) {
    413         result += ctpopl(bitmap[k] & BITMAP_LAST_WORD_MASK(nbits));
    414     }
    415 
    416     return result;
    417 }
    418 
    419 static void bitmap_to_from_le(unsigned long *dst,
    420                               const unsigned long *src, long nbits)
    421 {
    422     long len = BITS_TO_LONGS(nbits);
    423 
    424 #if HOST_BIG_ENDIAN
    425     long index;
    426 
    427     for (index = 0; index < len; index++) {
    428 # if HOST_LONG_BITS == 64
    429         dst[index] = bswap64(src[index]);
    430 # else
    431         dst[index] = bswap32(src[index]);
    432 # endif
    433     }
    434 #else
    435     memcpy(dst, src, len * sizeof(unsigned long));
    436 #endif
    437 }
    438 
    439 void bitmap_from_le(unsigned long *dst, const unsigned long *src,
    440                     long nbits)
    441 {
    442     bitmap_to_from_le(dst, src, nbits);
    443 }
    444 
    445 void bitmap_to_le(unsigned long *dst, const unsigned long *src,
    446                   long nbits)
    447 {
    448     bitmap_to_from_le(dst, src, nbits);
    449 }
    450 
    451 /*
    452  * Copy "src" bitmap with a positive offset and put it into the "dst"
    453  * bitmap.  The caller needs to make sure the bitmap size of "src"
    454  * is bigger than (shift + nbits).
    455  */
    456 void bitmap_copy_with_src_offset(unsigned long *dst, const unsigned long *src,
    457                                  unsigned long shift, unsigned long nbits)
    458 {
    459     unsigned long left_mask, right_mask, last_mask;
    460 
    461     /* Proper shift src pointer to the first word to copy from */
    462     src += BIT_WORD(shift);
    463     shift %= BITS_PER_LONG;
    464 
    465     if (!shift) {
    466         /* Fast path */
    467         bitmap_copy(dst, src, nbits);
    468         return;
    469     }
    470 
    471     right_mask = (1ul << shift) - 1;
    472     left_mask = ~right_mask;
    473 
    474     while (nbits >= BITS_PER_LONG) {
    475         *dst = (*src & left_mask) >> shift;
    476         *dst |= (src[1] & right_mask) << (BITS_PER_LONG - shift);
    477         dst++;
    478         src++;
    479         nbits -= BITS_PER_LONG;
    480     }
    481 
    482     if (nbits > BITS_PER_LONG - shift) {
    483         *dst = (*src & left_mask) >> shift;
    484         nbits -= BITS_PER_LONG - shift;
    485         last_mask = (1ul << nbits) - 1;
    486         *dst |= (src[1] & last_mask) << (BITS_PER_LONG - shift);
    487     } else if (nbits) {
    488         last_mask = (1ul << nbits) - 1;
    489         *dst = (*src >> shift) & last_mask;
    490     }
    491 }
    492 
    493 /*
    494  * Copy "src" bitmap into the "dst" bitmap with an offset in the
    495  * "dst".  The caller needs to make sure the bitmap size of "dst" is
    496  * bigger than (shift + nbits).
    497  */
    498 void bitmap_copy_with_dst_offset(unsigned long *dst, const unsigned long *src,
    499                                  unsigned long shift, unsigned long nbits)
    500 {
    501     unsigned long left_mask, right_mask, last_mask;
    502 
    503     /* Proper shift dst pointer to the first word to copy from */
    504     dst += BIT_WORD(shift);
    505     shift %= BITS_PER_LONG;
    506 
    507     if (!shift) {
    508         /* Fast path */
    509         bitmap_copy(dst, src, nbits);
    510         return;
    511     }
    512 
    513     right_mask = (1ul << (BITS_PER_LONG - shift)) - 1;
    514     left_mask = ~right_mask;
    515 
    516     *dst &= (1ul << shift) - 1;
    517     while (nbits >= BITS_PER_LONG) {
    518         *dst |= (*src & right_mask) << shift;
    519         dst[1] = (*src & left_mask) >> (BITS_PER_LONG - shift);
    520         dst++;
    521         src++;
    522         nbits -= BITS_PER_LONG;
    523     }
    524 
    525     if (nbits > BITS_PER_LONG - shift) {
    526         *dst |= (*src & right_mask) << shift;
    527         nbits -= BITS_PER_LONG - shift;
    528         last_mask = ((1ul << nbits) - 1) << (BITS_PER_LONG - shift);
    529         dst[1] = (*src & last_mask) >> (BITS_PER_LONG - shift);
    530     } else if (nbits) {
    531         last_mask = (1ul << nbits) - 1;
    532         *dst |= (*src & last_mask) << shift;
    533     }
    534 }