qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

qht-bench.c (14073B)


      1 /*
      2  * Copyright (C) 2016, Emilio G. Cota <cota@braap.org>
      3  *
      4  * License: GNU GPL, version 2 or later.
      5  *   See the COPYING file in the top-level directory.
      6  */
      7 #include "qemu/osdep.h"
      8 #include "qemu/processor.h"
      9 #include "qemu/atomic.h"
     10 #include "qemu/qht.h"
     11 #include "qemu/rcu.h"
     12 #include "qemu/xxhash.h"
     13 #include "qemu/memalign.h"
     14 
     15 struct thread_stats {
     16     size_t rd;
     17     size_t not_rd;
     18     size_t in;
     19     size_t not_in;
     20     size_t rm;
     21     size_t not_rm;
     22     size_t rz;
     23     size_t not_rz;
     24 };
     25 
     26 struct thread_info {
     27     void (*func)(struct thread_info *);
     28     struct thread_stats stats;
     29     /*
     30      * Seed is in the range [1..UINT64_MAX], because the RNG requires
     31      * a non-zero seed.  To use, subtract 1 and compare against the
     32      * threshold with </>=.  This lets threshold = 0 never match (0% hit),
     33      * and threshold = UINT64_MAX always match (100% hit).
     34      */
     35     uint64_t seed;
     36     bool write_op; /* writes alternate between insertions and removals */
     37     bool resize_down;
     38 } QEMU_ALIGNED(64); /* avoid false sharing among threads */
     39 
     40 static struct qht ht;
     41 static QemuThread *rw_threads;
     42 
     43 #define DEFAULT_RANGE (4096)
     44 #define DEFAULT_QHT_N_ELEMS DEFAULT_RANGE
     45 
     46 static unsigned int duration = 1;
     47 static unsigned int n_rw_threads = 1;
     48 static unsigned long lookup_range = DEFAULT_RANGE;
     49 static unsigned long update_range = DEFAULT_RANGE;
     50 static size_t init_range = DEFAULT_RANGE;
     51 static size_t init_size = DEFAULT_RANGE;
     52 static size_t n_ready_threads;
     53 static long populate_offset;
     54 static long *keys;
     55 
     56 static size_t resize_min;
     57 static size_t resize_max;
     58 static struct thread_info *rz_info;
     59 static unsigned long resize_delay = 1000;
     60 static double resize_rate; /* 0.0 to 1.0 */
     61 static unsigned int n_rz_threads = 1;
     62 static QemuThread *rz_threads;
     63 static bool precompute_hash;
     64 
     65 static double update_rate; /* 0.0 to 1.0 */
     66 static uint64_t update_threshold;
     67 static uint64_t resize_threshold;
     68 
     69 static size_t qht_n_elems = DEFAULT_QHT_N_ELEMS;
     70 static int qht_mode;
     71 
     72 static bool test_start;
     73 static bool test_stop;
     74 
     75 static struct thread_info *rw_info;
     76 
     77 static const char commands_string[] =
     78     " -d = duration, in seconds\n"
     79     " -n = number of threads\n"
     80     "\n"
     81     " -o = offset at which keys start\n"
     82     " -p = precompute hashes\n"
     83     "\n"
     84     " -g = set -s,-k,-K,-l,-r to the same value\n"
     85     " -s = initial size hint\n"
     86     " -k = initial number of keys\n"
     87     " -K = initial range of keys (will be rounded up to pow2)\n"
     88     " -l = lookup range of keys (will be rounded up to pow2)\n"
     89     " -r = update range of keys (will be rounded up to pow2)\n"
     90     "\n"
     91     " -u = update rate (0.0 to 100.0), 50/50 split of insertions/removals\n"
     92     "\n"
     93     " -R = enable auto-resize\n"
     94     " -S = resize rate (0.0 to 100.0)\n"
     95     " -D = delay (in us) between potential resizes\n"
     96     " -N = number of resize threads";
     97 
     98 static void usage_complete(int argc, char *argv[])
     99 {
    100     fprintf(stderr, "Usage: %s [options]\n", argv[0]);
    101     fprintf(stderr, "options:\n%s\n", commands_string);
    102     exit(-1);
    103 }
    104 
    105 static bool is_equal(const void *ap, const void *bp)
    106 {
    107     const long *a = ap;
    108     const long *b = bp;
    109 
    110     return *a == *b;
    111 }
    112 
    113 static uint32_t h(unsigned long v)
    114 {
    115     return qemu_xxhash2(v);
    116 }
    117 
    118 static uint32_t hval(unsigned long v)
    119 {
    120     return v;
    121 }
    122 
    123 static uint32_t (*hfunc)(unsigned long v) = h;
    124 
    125 /*
    126  * From: https://en.wikipedia.org/wiki/Xorshift
    127  * This is faster than rand_r(), and gives us a wider range (RAND_MAX is only
    128  * guaranteed to be >= INT_MAX).
    129  */
    130 static uint64_t xorshift64star(uint64_t x)
    131 {
    132     x ^= x >> 12; /* a */
    133     x ^= x << 25; /* b */
    134     x ^= x >> 27; /* c */
    135     return x * UINT64_C(2685821657736338717);
    136 }
    137 
    138 static void do_rz(struct thread_info *info)
    139 {
    140     struct thread_stats *stats = &info->stats;
    141     uint64_t r = info->seed - 1;
    142 
    143     if (r < resize_threshold) {
    144         size_t size = info->resize_down ? resize_min : resize_max;
    145         bool resized;
    146 
    147         resized = qht_resize(&ht, size);
    148         info->resize_down = !info->resize_down;
    149 
    150         if (resized) {
    151             stats->rz++;
    152         } else {
    153             stats->not_rz++;
    154         }
    155     }
    156     g_usleep(resize_delay);
    157 }
    158 
    159 static void do_rw(struct thread_info *info)
    160 {
    161     struct thread_stats *stats = &info->stats;
    162     uint64_t r = info->seed - 1;
    163     uint32_t hash;
    164     long *p;
    165 
    166     if (r >= update_threshold) {
    167         bool read;
    168 
    169         p = &keys[r & (lookup_range - 1)];
    170         hash = hfunc(*p);
    171         read = qht_lookup(&ht, p, hash);
    172         if (read) {
    173             stats->rd++;
    174         } else {
    175             stats->not_rd++;
    176         }
    177     } else {
    178         p = &keys[r & (update_range - 1)];
    179         hash = hfunc(*p);
    180         if (info->write_op) {
    181             bool written = false;
    182 
    183             if (qht_lookup(&ht, p, hash) == NULL) {
    184                 written = qht_insert(&ht, p, hash, NULL);
    185             }
    186             if (written) {
    187                 stats->in++;
    188             } else {
    189                 stats->not_in++;
    190             }
    191         } else {
    192             bool removed = false;
    193 
    194             if (qht_lookup(&ht, p, hash)) {
    195                 removed = qht_remove(&ht, p, hash);
    196             }
    197             if (removed) {
    198                 stats->rm++;
    199             } else {
    200                 stats->not_rm++;
    201             }
    202         }
    203         info->write_op = !info->write_op;
    204     }
    205 }
    206 
    207 static void *thread_func(void *p)
    208 {
    209     struct thread_info *info = p;
    210 
    211     rcu_register_thread();
    212 
    213     qatomic_inc(&n_ready_threads);
    214     while (!qatomic_read(&test_start)) {
    215         cpu_relax();
    216     }
    217 
    218     rcu_read_lock();
    219     while (!qatomic_read(&test_stop)) {
    220         info->seed = xorshift64star(info->seed);
    221         info->func(info);
    222     }
    223     rcu_read_unlock();
    224 
    225     rcu_unregister_thread();
    226     return NULL;
    227 }
    228 
    229 /* sets everything except info->func */
    230 static void prepare_thread_info(struct thread_info *info, int i)
    231 {
    232     /* seed for the RNG; each thread should have a different one */
    233     info->seed = (i + 1) ^ time(NULL);
    234     /* the first update will be a write */
    235     info->write_op = true;
    236     /* the first resize will be down */
    237     info->resize_down = true;
    238 
    239     memset(&info->stats, 0, sizeof(info->stats));
    240 }
    241 
    242 static void
    243 th_create_n(QemuThread **threads, struct thread_info **infos, const char *name,
    244             void (*func)(struct thread_info *), int offset, int n)
    245 {
    246     struct thread_info *info;
    247     QemuThread *th;
    248     int i;
    249 
    250     th = g_malloc(sizeof(*th) * n);
    251     *threads = th;
    252 
    253     info = qemu_memalign(64, sizeof(*info) * n);
    254     *infos = info;
    255 
    256     for (i = 0; i < n; i++) {
    257         prepare_thread_info(&info[i], offset + i);
    258         info[i].func = func;
    259         qemu_thread_create(&th[i], name, thread_func, &info[i],
    260                            QEMU_THREAD_JOINABLE);
    261     }
    262 }
    263 
    264 static void create_threads(void)
    265 {
    266     th_create_n(&rw_threads, &rw_info, "rw", do_rw, 0, n_rw_threads);
    267     th_create_n(&rz_threads, &rz_info, "rz", do_rz, n_rw_threads, n_rz_threads);
    268 }
    269 
    270 static void pr_params(void)
    271 {
    272     printf("Parameters:\n");
    273     printf(" duration:          %d s\n", duration);
    274     printf(" # of threads:      %u\n", n_rw_threads);
    275     printf(" initial # of keys: %zu\n", init_size);
    276     printf(" initial size hint: %zu\n", qht_n_elems);
    277     printf(" auto-resize:       %s\n",
    278            qht_mode & QHT_MODE_AUTO_RESIZE ? "on" : "off");
    279     if (resize_rate) {
    280         printf(" resize_rate:       %f%%\n", resize_rate * 100.0);
    281         printf(" resize range:      %zu-%zu\n", resize_min, resize_max);
    282         printf(" # resize threads   %u\n", n_rz_threads);
    283     }
    284     printf(" update rate:       %f%%\n", update_rate * 100.0);
    285     printf(" offset:            %ld\n", populate_offset);
    286     printf(" initial key range: %zu\n", init_range);
    287     printf(" lookup range:      %lu\n", lookup_range);
    288     printf(" update range:      %lu\n", update_range);
    289 }
    290 
    291 static void do_threshold(double rate, uint64_t *threshold)
    292 {
    293     /*
    294      * For 0 <= rate <= 1, scale to fit in a uint64_t.
    295      *
    296      * Scale by 2**64, with a special case for 1.0.
    297      * The remainder of the possible values are scattered between 0
    298      * and 0xfffffffffffff800 (nextafter(0x1p64, 0)).
    299      *
    300      * Note that we cannot simply scale by UINT64_MAX, because that
    301      * value is not representable as an IEEE double value.
    302      *
    303      * If we scale by the next largest value, nextafter(0x1p64, 0),
    304      * then the remainder of the possible values are scattered between
    305      * 0 and 0xfffffffffffff000.  Which leaves us with a gap between
    306      * the final two inputs that is twice as large as any other.
    307      */
    308     if (rate == 1.0) {
    309         *threshold = UINT64_MAX;
    310     } else {
    311         *threshold = rate * 0x1p64;
    312     }
    313 }
    314 
    315 static void htable_init(void)
    316 {
    317     unsigned long n = MAX(init_range, update_range);
    318     uint64_t r = time(NULL);
    319     size_t retries = 0;
    320     size_t i;
    321 
    322     /* avoid allocating memory later by allocating all the keys now */
    323     keys = g_malloc(sizeof(*keys) * n);
    324     for (i = 0; i < n; i++) {
    325         long val = populate_offset + i;
    326 
    327         keys[i] = precompute_hash ? h(val) : hval(val);
    328     }
    329 
    330     /* some sanity checks */
    331     g_assert_cmpuint(lookup_range, <=, n);
    332 
    333     /* compute thresholds */
    334     do_threshold(update_rate, &update_threshold);
    335     do_threshold(resize_rate, &resize_threshold);
    336 
    337     if (resize_rate) {
    338         resize_min = n / 2;
    339         resize_max = n;
    340         assert(resize_min < resize_max);
    341     } else {
    342         n_rz_threads = 0;
    343     }
    344 
    345     /* initialize the hash table */
    346     qht_init(&ht, is_equal, qht_n_elems, qht_mode);
    347     assert(init_size <= init_range);
    348 
    349     pr_params();
    350 
    351     fprintf(stderr, "Initialization: populating %zu items...", init_size);
    352     for (i = 0; i < init_size; i++) {
    353         for (;;) {
    354             uint32_t hash;
    355             long *p;
    356 
    357             r = xorshift64star(r);
    358             p = &keys[r & (init_range - 1)];
    359             hash = hfunc(*p);
    360             if (qht_insert(&ht, p, hash, NULL)) {
    361                 break;
    362             }
    363             retries++;
    364         }
    365     }
    366     fprintf(stderr, " populated after %zu retries\n", retries);
    367 }
    368 
    369 static void add_stats(struct thread_stats *s, struct thread_info *info, int n)
    370 {
    371     int i;
    372 
    373     for (i = 0; i < n; i++) {
    374         struct thread_stats *stats = &info[i].stats;
    375 
    376         s->rd += stats->rd;
    377         s->not_rd += stats->not_rd;
    378 
    379         s->in += stats->in;
    380         s->not_in += stats->not_in;
    381 
    382         s->rm += stats->rm;
    383         s->not_rm += stats->not_rm;
    384 
    385         s->rz += stats->rz;
    386         s->not_rz += stats->not_rz;
    387     }
    388 }
    389 
    390 static void pr_stats(void)
    391 {
    392     struct thread_stats s = {};
    393     double tx;
    394 
    395     add_stats(&s, rw_info, n_rw_threads);
    396     add_stats(&s, rz_info, n_rz_threads);
    397 
    398     printf("Results:\n");
    399 
    400     if (resize_rate) {
    401         printf(" Resizes:           %zu (%.2f%% of %zu)\n",
    402                s.rz, (double)s.rz / (s.rz + s.not_rz) * 100, s.rz + s.not_rz);
    403     }
    404 
    405     printf(" Read:              %.2f M (%.2f%% of %.2fM)\n",
    406            (double)s.rd / 1e6,
    407            (double)s.rd / (s.rd + s.not_rd) * 100,
    408            (double)(s.rd + s.not_rd) / 1e6);
    409     printf(" Inserted:          %.2f M (%.2f%% of %.2fM)\n",
    410            (double)s.in / 1e6,
    411            (double)s.in / (s.in + s.not_in) * 100,
    412            (double)(s.in + s.not_in) / 1e6);
    413     printf(" Removed:           %.2f M (%.2f%% of %.2fM)\n",
    414            (double)s.rm / 1e6,
    415            (double)s.rm / (s.rm + s.not_rm) * 100,
    416            (double)(s.rm + s.not_rm) / 1e6);
    417 
    418     tx = (s.rd + s.not_rd + s.in + s.not_in + s.rm + s.not_rm) / 1e6 / duration;
    419     printf(" Throughput:        %.2f MT/s\n", tx);
    420     printf(" Throughput/thread: %.2f MT/s/thread\n", tx / n_rw_threads);
    421 }
    422 
    423 static void run_test(void)
    424 {
    425     int i;
    426 
    427     while (qatomic_read(&n_ready_threads) != n_rw_threads + n_rz_threads) {
    428         cpu_relax();
    429     }
    430 
    431     qatomic_set(&test_start, true);
    432     g_usleep(duration * G_USEC_PER_SEC);
    433     qatomic_set(&test_stop, true);
    434 
    435     for (i = 0; i < n_rw_threads; i++) {
    436         qemu_thread_join(&rw_threads[i]);
    437     }
    438     for (i = 0; i < n_rz_threads; i++) {
    439         qemu_thread_join(&rz_threads[i]);
    440     }
    441 }
    442 
    443 static void parse_args(int argc, char *argv[])
    444 {
    445     int c;
    446 
    447     for (;;) {
    448         c = getopt(argc, argv, "d:D:g:k:K:l:hn:N:o:pr:Rs:S:u:");
    449         if (c < 0) {
    450             break;
    451         }
    452         switch (c) {
    453         case 'd':
    454             duration = atoi(optarg);
    455             break;
    456         case 'D':
    457             resize_delay = atol(optarg);
    458             break;
    459         case 'g':
    460             init_range = pow2ceil(atol(optarg));
    461             lookup_range = pow2ceil(atol(optarg));
    462             update_range = pow2ceil(atol(optarg));
    463             qht_n_elems = atol(optarg);
    464             init_size = atol(optarg);
    465             break;
    466         case 'h':
    467             usage_complete(argc, argv);
    468             exit(0);
    469         case 'k':
    470             init_size = atol(optarg);
    471             break;
    472         case 'K':
    473             init_range = pow2ceil(atol(optarg));
    474             break;
    475         case 'l':
    476             lookup_range = pow2ceil(atol(optarg));
    477             break;
    478         case 'n':
    479             n_rw_threads = atoi(optarg);
    480             break;
    481         case 'N':
    482             n_rz_threads = atoi(optarg);
    483             break;
    484         case 'o':
    485             populate_offset = atol(optarg);
    486             break;
    487         case 'p':
    488             precompute_hash = true;
    489             hfunc = hval;
    490             break;
    491         case 'r':
    492             update_range = pow2ceil(atol(optarg));
    493             break;
    494         case 'R':
    495             qht_mode |= QHT_MODE_AUTO_RESIZE;
    496             break;
    497         case 's':
    498             qht_n_elems = atol(optarg);
    499             break;
    500         case 'S':
    501             resize_rate = atof(optarg) / 100.0;
    502             if (resize_rate > 1.0) {
    503                 resize_rate = 1.0;
    504             }
    505             break;
    506         case 'u':
    507             update_rate = atof(optarg) / 100.0;
    508             if (update_rate > 1.0) {
    509                 update_rate = 1.0;
    510             }
    511             break;
    512         }
    513     }
    514 }
    515 
    516 int main(int argc, char *argv[])
    517 {
    518     parse_args(argc, argv);
    519     htable_init();
    520     create_threads();
    521     run_test();
    522     pr_stats();
    523     return 0;
    524 }