qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

mmu_helper.c (38381B)


      1 /*
      2  * Copyright (c) 2011 - 2019, Max Filippov, Open Source and Linux Lab.
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions are met:
      7  *     * Redistributions of source code must retain the above copyright
      8  *       notice, this list of conditions and the following disclaimer.
      9  *     * Redistributions in binary form must reproduce the above copyright
     10  *       notice, this list of conditions and the following disclaimer in the
     11  *       documentation and/or other materials provided with the distribution.
     12  *     * Neither the name of the Open Source and Linux Lab nor the
     13  *       names of its contributors may be used to endorse or promote products
     14  *       derived from this software without specific prior written permission.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
     20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 
     28 #include "qemu/osdep.h"
     29 #include "qemu/log.h"
     30 #include "qemu/main-loop.h"
     31 #include "qemu/qemu-print.h"
     32 #include "qemu/units.h"
     33 #include "cpu.h"
     34 #include "exec/helper-proto.h"
     35 #include "qemu/host-utils.h"
     36 #include "exec/exec-all.h"
     37 #include "exec/cpu_ldst.h"
     38 
     39 #define XTENSA_MPU_SEGMENT_MASK 0x0000001f
     40 #define XTENSA_MPU_ACC_RIGHTS_MASK 0x00000f00
     41 #define XTENSA_MPU_ACC_RIGHTS_SHIFT 8
     42 #define XTENSA_MPU_MEM_TYPE_MASK 0x001ff000
     43 #define XTENSA_MPU_MEM_TYPE_SHIFT 12
     44 #define XTENSA_MPU_ATTR_MASK 0x001fff00
     45 
     46 #define XTENSA_MPU_PROBE_B 0x40000000
     47 #define XTENSA_MPU_PROBE_V 0x80000000
     48 
     49 #define XTENSA_MPU_SYSTEM_TYPE_DEVICE 0x0001
     50 #define XTENSA_MPU_SYSTEM_TYPE_NC     0x0002
     51 #define XTENSA_MPU_SYSTEM_TYPE_C      0x0003
     52 #define XTENSA_MPU_SYSTEM_TYPE_MASK   0x0003
     53 
     54 #define XTENSA_MPU_TYPE_SYS_C     0x0010
     55 #define XTENSA_MPU_TYPE_SYS_W     0x0020
     56 #define XTENSA_MPU_TYPE_SYS_R     0x0040
     57 #define XTENSA_MPU_TYPE_CPU_C     0x0100
     58 #define XTENSA_MPU_TYPE_CPU_W     0x0200
     59 #define XTENSA_MPU_TYPE_CPU_R     0x0400
     60 #define XTENSA_MPU_TYPE_CPU_CACHE 0x0800
     61 #define XTENSA_MPU_TYPE_B         0x1000
     62 #define XTENSA_MPU_TYPE_INT       0x2000
     63 
     64 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
     65 {
     66     /*
     67      * Probe the memory; we don't care about the result but
     68      * only the side-effects (ie any MMU or other exception)
     69      */
     70     probe_access(env, vaddr, 1, MMU_INST_FETCH,
     71                  cpu_mmu_index(env, true), GETPC());
     72 }
     73 
     74 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
     75 {
     76     v = (v & 0xffffff00) | 0x1;
     77     if (v != env->sregs[RASID]) {
     78         env->sregs[RASID] = v;
     79         tlb_flush(env_cpu(env));
     80     }
     81 }
     82 
     83 static uint32_t get_page_size(const CPUXtensaState *env,
     84                               bool dtlb, uint32_t way)
     85 {
     86     uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
     87 
     88     switch (way) {
     89     case 4:
     90         return (tlbcfg >> 16) & 0x3;
     91 
     92     case 5:
     93         return (tlbcfg >> 20) & 0x1;
     94 
     95     case 6:
     96         return (tlbcfg >> 24) & 0x1;
     97 
     98     default:
     99         return 0;
    100     }
    101 }
    102 
    103 /*!
    104  * Get bit mask for the virtual address bits translated by the TLB way
    105  */
    106 static uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env,
    107                                          bool dtlb, uint32_t way)
    108 {
    109     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
    110         bool varway56 = dtlb ?
    111             env->config->dtlb.varway56 :
    112             env->config->itlb.varway56;
    113 
    114         switch (way) {
    115         case 4:
    116             return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
    117 
    118         case 5:
    119             if (varway56) {
    120                 return 0xf8000000 << get_page_size(env, dtlb, way);
    121             } else {
    122                 return 0xf8000000;
    123             }
    124 
    125         case 6:
    126             if (varway56) {
    127                 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
    128             } else {
    129                 return 0xf0000000;
    130             }
    131 
    132         default:
    133             return 0xfffff000;
    134         }
    135     } else {
    136         return REGION_PAGE_MASK;
    137     }
    138 }
    139 
    140 /*!
    141  * Get bit mask for the 'VPN without index' field.
    142  * See ISA, 4.6.5.6, data format for RxTLB0
    143  */
    144 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
    145 {
    146     if (way < 4) {
    147         bool is32 = (dtlb ?
    148                 env->config->dtlb.nrefillentries :
    149                 env->config->itlb.nrefillentries) == 32;
    150         return is32 ? 0xffff8000 : 0xffffc000;
    151     } else if (way == 4) {
    152         return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
    153     } else if (way <= 6) {
    154         uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
    155         bool varway56 = dtlb ?
    156             env->config->dtlb.varway56 :
    157             env->config->itlb.varway56;
    158 
    159         if (varway56) {
    160             return mask << (way == 5 ? 2 : 3);
    161         } else {
    162             return mask << 1;
    163         }
    164     } else {
    165         return 0xfffff000;
    166     }
    167 }
    168 
    169 /*!
    170  * Split virtual address into VPN (with index) and entry index
    171  * for the given TLB way
    172  */
    173 static void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v,
    174                                      bool dtlb, uint32_t *vpn,
    175                                      uint32_t wi, uint32_t *ei)
    176 {
    177     bool varway56 = dtlb ?
    178         env->config->dtlb.varway56 :
    179         env->config->itlb.varway56;
    180 
    181     if (!dtlb) {
    182         wi &= 7;
    183     }
    184 
    185     if (wi < 4) {
    186         bool is32 = (dtlb ?
    187                 env->config->dtlb.nrefillentries :
    188                 env->config->itlb.nrefillentries) == 32;
    189         *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
    190     } else {
    191         switch (wi) {
    192         case 4:
    193             {
    194                 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
    195                 *ei = (v >> eibase) & 0x3;
    196             }
    197             break;
    198 
    199         case 5:
    200             if (varway56) {
    201                 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
    202                 *ei = (v >> eibase) & 0x3;
    203             } else {
    204                 *ei = (v >> 27) & 0x1;
    205             }
    206             break;
    207 
    208         case 6:
    209             if (varway56) {
    210                 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
    211                 *ei = (v >> eibase) & 0x7;
    212             } else {
    213                 *ei = (v >> 28) & 0x1;
    214             }
    215             break;
    216 
    217         default:
    218             *ei = 0;
    219             break;
    220         }
    221     }
    222     *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
    223 }
    224 
    225 /*!
    226  * Split TLB address into TLB way, entry index and VPN (with index).
    227  * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
    228  */
    229 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
    230         uint32_t *vpn, uint32_t *wi, uint32_t *ei)
    231 {
    232     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
    233         *wi = v & (dtlb ? 0xf : 0x7);
    234         split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
    235     } else {
    236         *vpn = v & REGION_PAGE_MASK;
    237         *wi = 0;
    238         *ei = (v >> 29) & 0x7;
    239     }
    240 }
    241 
    242 static xtensa_tlb_entry *xtensa_tlb_get_entry(CPUXtensaState *env, bool dtlb,
    243                                               unsigned wi, unsigned ei)
    244 {
    245     return dtlb ?
    246         env->dtlb[wi] + ei :
    247         env->itlb[wi] + ei;
    248 }
    249 
    250 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
    251         uint32_t v, bool dtlb, uint32_t *pwi)
    252 {
    253     uint32_t vpn;
    254     uint32_t wi;
    255     uint32_t ei;
    256 
    257     split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
    258     if (pwi) {
    259         *pwi = wi;
    260     }
    261     return xtensa_tlb_get_entry(env, dtlb, wi, ei);
    262 }
    263 
    264 static void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
    265                                      xtensa_tlb_entry *entry, bool dtlb,
    266                                      unsigned wi, unsigned ei, uint32_t vpn,
    267                                      uint32_t pte)
    268 {
    269     entry->vaddr = vpn;
    270     entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
    271     entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
    272     entry->attr = pte & 0xf;
    273 }
    274 
    275 static void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
    276                                  unsigned wi, unsigned ei,
    277                                  uint32_t vpn, uint32_t pte)
    278 {
    279     CPUState *cs = env_cpu(env);
    280     xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
    281 
    282     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
    283         if (entry->variable) {
    284             if (entry->asid) {
    285                 tlb_flush_page(cs, entry->vaddr);
    286             }
    287             xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
    288             tlb_flush_page(cs, entry->vaddr);
    289         } else {
    290             qemu_log_mask(LOG_GUEST_ERROR,
    291                           "%s %d, %d, %d trying to set immutable entry\n",
    292                           __func__, dtlb, wi, ei);
    293         }
    294     } else {
    295         tlb_flush_page(cs, entry->vaddr);
    296         if (xtensa_option_enabled(env->config,
    297                     XTENSA_OPTION_REGION_TRANSLATION)) {
    298             entry->paddr = pte & REGION_PAGE_MASK;
    299         }
    300         entry->attr = pte & 0xf;
    301     }
    302 }
    303 
    304 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
    305 {
    306     XtensaCPU *cpu = XTENSA_CPU(cs);
    307     uint32_t paddr;
    308     uint32_t page_size;
    309     unsigned access;
    310 
    311     if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
    312                 &paddr, &page_size, &access) == 0) {
    313         return paddr;
    314     }
    315     if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
    316                 &paddr, &page_size, &access) == 0) {
    317         return paddr;
    318     }
    319     return ~0;
    320 }
    321 
    322 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
    323                                    const xtensa_tlb *tlb,
    324                                    xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
    325 {
    326     unsigned wi, ei;
    327 
    328     for (wi = 0; wi < tlb->nways; ++wi) {
    329         for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
    330             entry[wi][ei].asid = 0;
    331             entry[wi][ei].variable = true;
    332         }
    333     }
    334 }
    335 
    336 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
    337                                  const xtensa_tlb *tlb,
    338                                  xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
    339 {
    340     if (!tlb->varway56) {
    341         static const xtensa_tlb_entry way5[] = {
    342             {
    343                 .vaddr = 0xd0000000,
    344                 .paddr = 0,
    345                 .asid = 1,
    346                 .attr = 7,
    347                 .variable = false,
    348             }, {
    349                 .vaddr = 0xd8000000,
    350                 .paddr = 0,
    351                 .asid = 1,
    352                 .attr = 3,
    353                 .variable = false,
    354             }
    355         };
    356         static const xtensa_tlb_entry way6[] = {
    357             {
    358                 .vaddr = 0xe0000000,
    359                 .paddr = 0xf0000000,
    360                 .asid = 1,
    361                 .attr = 7,
    362                 .variable = false,
    363             }, {
    364                 .vaddr = 0xf0000000,
    365                 .paddr = 0xf0000000,
    366                 .asid = 1,
    367                 .attr = 3,
    368                 .variable = false,
    369             }
    370         };
    371         memcpy(entry[5], way5, sizeof(way5));
    372         memcpy(entry[6], way6, sizeof(way6));
    373     } else {
    374         uint32_t ei;
    375         for (ei = 0; ei < 8; ++ei) {
    376             entry[6][ei].vaddr = ei << 29;
    377             entry[6][ei].paddr = ei << 29;
    378             entry[6][ei].asid = 1;
    379             entry[6][ei].attr = 3;
    380         }
    381     }
    382 }
    383 
    384 static void reset_tlb_region_way0(CPUXtensaState *env,
    385                                   xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
    386 {
    387     unsigned ei;
    388 
    389     for (ei = 0; ei < 8; ++ei) {
    390         entry[0][ei].vaddr = ei << 29;
    391         entry[0][ei].paddr = ei << 29;
    392         entry[0][ei].asid = 1;
    393         entry[0][ei].attr = 2;
    394         entry[0][ei].variable = true;
    395     }
    396 }
    397 
    398 void reset_mmu(CPUXtensaState *env)
    399 {
    400     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
    401         env->sregs[RASID] = 0x04030201;
    402         env->sregs[ITLBCFG] = 0;
    403         env->sregs[DTLBCFG] = 0;
    404         env->autorefill_idx = 0;
    405         reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
    406         reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
    407         reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
    408         reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
    409     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
    410         unsigned i;
    411 
    412         env->sregs[MPUENB] = 0;
    413         env->sregs[MPUCFG] = env->config->n_mpu_fg_segments;
    414         env->sregs[CACHEADRDIS] = 0;
    415         assert(env->config->n_mpu_bg_segments > 0 &&
    416                env->config->mpu_bg[0].vaddr == 0);
    417         for (i = 1; i < env->config->n_mpu_bg_segments; ++i) {
    418             assert(env->config->mpu_bg[i].vaddr >=
    419                    env->config->mpu_bg[i - 1].vaddr);
    420         }
    421     } else {
    422         env->sregs[CACHEATTR] = 0x22222222;
    423         reset_tlb_region_way0(env, env->itlb);
    424         reset_tlb_region_way0(env, env->dtlb);
    425     }
    426 }
    427 
    428 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
    429 {
    430     unsigned i;
    431     for (i = 0; i < 4; ++i) {
    432         if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
    433             return i;
    434         }
    435     }
    436     return 0xff;
    437 }
    438 
    439 /*!
    440  * Lookup xtensa TLB for the given virtual address.
    441  * See ISA, 4.6.2.2
    442  *
    443  * \param pwi: [out] way index
    444  * \param pei: [out] entry index
    445  * \param pring: [out] access ring
    446  * \return 0 if ok, exception cause code otherwise
    447  */
    448 static int xtensa_tlb_lookup(const CPUXtensaState *env,
    449                              uint32_t addr, bool dtlb,
    450                              uint32_t *pwi, uint32_t *pei, uint8_t *pring)
    451 {
    452     const xtensa_tlb *tlb = dtlb ?
    453         &env->config->dtlb : &env->config->itlb;
    454     const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
    455         env->dtlb : env->itlb;
    456 
    457     int nhits = 0;
    458     unsigned wi;
    459 
    460     for (wi = 0; wi < tlb->nways; ++wi) {
    461         uint32_t vpn;
    462         uint32_t ei;
    463         split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
    464         if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
    465             unsigned ring = get_ring(env, entry[wi][ei].asid);
    466             if (ring < 4) {
    467                 if (++nhits > 1) {
    468                     return dtlb ?
    469                         LOAD_STORE_TLB_MULTI_HIT_CAUSE :
    470                         INST_TLB_MULTI_HIT_CAUSE;
    471                 }
    472                 *pwi = wi;
    473                 *pei = ei;
    474                 *pring = ring;
    475             }
    476         }
    477     }
    478     return nhits ? 0 :
    479         (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
    480 }
    481 
    482 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
    483 {
    484     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
    485         uint32_t wi;
    486         const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
    487         return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
    488     } else {
    489         return v & REGION_PAGE_MASK;
    490     }
    491 }
    492 
    493 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
    494 {
    495     const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
    496     return entry->paddr | entry->attr;
    497 }
    498 
    499 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
    500 {
    501     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
    502         uint32_t wi;
    503         xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
    504         if (entry->variable && entry->asid) {
    505             tlb_flush_page(env_cpu(env), entry->vaddr);
    506             entry->asid = 0;
    507         }
    508     }
    509 }
    510 
    511 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
    512 {
    513     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
    514         uint32_t wi;
    515         uint32_t ei;
    516         uint8_t ring;
    517         int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
    518 
    519         switch (res) {
    520         case 0:
    521             if (ring >= xtensa_get_ring(env)) {
    522                 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
    523             }
    524             break;
    525 
    526         case INST_TLB_MULTI_HIT_CAUSE:
    527         case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
    528             HELPER(exception_cause_vaddr)(env, env->pc, res, v);
    529             break;
    530         }
    531         return 0;
    532     } else {
    533         return (v & REGION_PAGE_MASK) | 0x1;
    534     }
    535 }
    536 
    537 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
    538 {
    539     uint32_t vpn;
    540     uint32_t wi;
    541     uint32_t ei;
    542     split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
    543     xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
    544 }
    545 
    546 /*!
    547  * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
    548  * See ISA, 4.6.5.10
    549  */
    550 static unsigned mmu_attr_to_access(uint32_t attr)
    551 {
    552     unsigned access = 0;
    553 
    554     if (attr < 12) {
    555         access |= PAGE_READ;
    556         if (attr & 0x1) {
    557             access |= PAGE_EXEC;
    558         }
    559         if (attr & 0x2) {
    560             access |= PAGE_WRITE;
    561         }
    562 
    563         switch (attr & 0xc) {
    564         case 0:
    565             access |= PAGE_CACHE_BYPASS;
    566             break;
    567 
    568         case 4:
    569             access |= PAGE_CACHE_WB;
    570             break;
    571 
    572         case 8:
    573             access |= PAGE_CACHE_WT;
    574             break;
    575         }
    576     } else if (attr == 13) {
    577         access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
    578     }
    579     return access;
    580 }
    581 
    582 /*!
    583  * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
    584  * See ISA, 4.6.3.3
    585  */
    586 static unsigned region_attr_to_access(uint32_t attr)
    587 {
    588     static const unsigned access[16] = {
    589          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
    590          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
    591          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
    592          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
    593          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
    594          [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
    595         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
    596     };
    597 
    598     return access[attr & 0xf];
    599 }
    600 
    601 /*!
    602  * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
    603  * See ISA, A.2.14 The Cache Attribute Register
    604  */
    605 static unsigned cacheattr_attr_to_access(uint32_t attr)
    606 {
    607     static const unsigned access[16] = {
    608          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
    609          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
    610          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
    611          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
    612          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
    613         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
    614     };
    615 
    616     return access[attr & 0xf];
    617 }
    618 
    619 struct attr_pattern {
    620     uint32_t mask;
    621     uint32_t value;
    622 };
    623 
    624 static int attr_pattern_match(uint32_t attr,
    625                               const struct attr_pattern *pattern,
    626                               size_t n)
    627 {
    628     size_t i;
    629 
    630     for (i = 0; i < n; ++i) {
    631         if ((attr & pattern[i].mask) == pattern[i].value) {
    632             return 1;
    633         }
    634     }
    635     return 0;
    636 }
    637 
    638 static unsigned mpu_attr_to_cpu_cache(uint32_t attr)
    639 {
    640     static const struct attr_pattern cpu_c[] = {
    641         { .mask = 0x18f, .value = 0x089 },
    642         { .mask = 0x188, .value = 0x080 },
    643         { .mask = 0x180, .value = 0x180 },
    644     };
    645 
    646     unsigned type = 0;
    647 
    648     if (attr_pattern_match(attr, cpu_c, ARRAY_SIZE(cpu_c))) {
    649         type |= XTENSA_MPU_TYPE_CPU_CACHE;
    650         if (attr & 0x10) {
    651             type |= XTENSA_MPU_TYPE_CPU_C;
    652         }
    653         if (attr & 0x20) {
    654             type |= XTENSA_MPU_TYPE_CPU_W;
    655         }
    656         if (attr & 0x40) {
    657             type |= XTENSA_MPU_TYPE_CPU_R;
    658         }
    659     }
    660     return type;
    661 }
    662 
    663 static unsigned mpu_attr_to_type(uint32_t attr)
    664 {
    665     static const struct attr_pattern device_type[] = {
    666         { .mask = 0x1f6, .value = 0x000 },
    667         { .mask = 0x1f6, .value = 0x006 },
    668     };
    669     static const struct attr_pattern sys_nc_type[] = {
    670         { .mask = 0x1fe, .value = 0x018 },
    671         { .mask = 0x1fe, .value = 0x01e },
    672         { .mask = 0x18f, .value = 0x089 },
    673     };
    674     static const struct attr_pattern sys_c_type[] = {
    675         { .mask = 0x1f8, .value = 0x010 },
    676         { .mask = 0x188, .value = 0x080 },
    677         { .mask = 0x1f0, .value = 0x030 },
    678         { .mask = 0x180, .value = 0x180 },
    679     };
    680     static const struct attr_pattern b[] = {
    681         { .mask = 0x1f7, .value = 0x001 },
    682         { .mask = 0x1f7, .value = 0x007 },
    683         { .mask = 0x1ff, .value = 0x019 },
    684         { .mask = 0x1ff, .value = 0x01f },
    685     };
    686 
    687     unsigned type = 0;
    688 
    689     attr = (attr & XTENSA_MPU_MEM_TYPE_MASK) >> XTENSA_MPU_MEM_TYPE_SHIFT;
    690     if (attr_pattern_match(attr, device_type, ARRAY_SIZE(device_type))) {
    691         type |= XTENSA_MPU_SYSTEM_TYPE_DEVICE;
    692         if (attr & 0x80) {
    693             type |= XTENSA_MPU_TYPE_INT;
    694         }
    695     }
    696     if (attr_pattern_match(attr, sys_nc_type, ARRAY_SIZE(sys_nc_type))) {
    697         type |= XTENSA_MPU_SYSTEM_TYPE_NC;
    698     }
    699     if (attr_pattern_match(attr, sys_c_type, ARRAY_SIZE(sys_c_type))) {
    700         type |= XTENSA_MPU_SYSTEM_TYPE_C;
    701         if (attr & 0x1) {
    702             type |= XTENSA_MPU_TYPE_SYS_C;
    703         }
    704         if (attr & 0x2) {
    705             type |= XTENSA_MPU_TYPE_SYS_W;
    706         }
    707         if (attr & 0x4) {
    708             type |= XTENSA_MPU_TYPE_SYS_R;
    709         }
    710     }
    711     if (attr_pattern_match(attr, b, ARRAY_SIZE(b))) {
    712         type |= XTENSA_MPU_TYPE_B;
    713     }
    714     type |= mpu_attr_to_cpu_cache(attr);
    715 
    716     return type;
    717 }
    718 
    719 static unsigned mpu_attr_to_access(uint32_t attr, unsigned ring)
    720 {
    721     static const unsigned access[2][16] = {
    722         [0] = {
    723              [4] = PAGE_READ,
    724              [5] = PAGE_READ              | PAGE_EXEC,
    725              [6] = PAGE_READ | PAGE_WRITE,
    726              [7] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
    727              [8] =             PAGE_WRITE,
    728              [9] = PAGE_READ | PAGE_WRITE,
    729             [10] = PAGE_READ | PAGE_WRITE,
    730             [11] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
    731             [12] = PAGE_READ,
    732             [13] = PAGE_READ              | PAGE_EXEC,
    733             [14] = PAGE_READ | PAGE_WRITE,
    734             [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
    735         },
    736         [1] = {
    737              [8] =             PAGE_WRITE,
    738              [9] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
    739             [10] = PAGE_READ,
    740             [11] = PAGE_READ              | PAGE_EXEC,
    741             [12] = PAGE_READ,
    742             [13] = PAGE_READ              | PAGE_EXEC,
    743             [14] = PAGE_READ | PAGE_WRITE,
    744             [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
    745         },
    746     };
    747     unsigned rv;
    748     unsigned type;
    749 
    750     type = mpu_attr_to_cpu_cache(attr);
    751     rv = access[ring != 0][(attr & XTENSA_MPU_ACC_RIGHTS_MASK) >>
    752         XTENSA_MPU_ACC_RIGHTS_SHIFT];
    753 
    754     if (type & XTENSA_MPU_TYPE_CPU_CACHE) {
    755         rv |= (type & XTENSA_MPU_TYPE_CPU_C) ? PAGE_CACHE_WB : PAGE_CACHE_WT;
    756     } else {
    757         rv |= PAGE_CACHE_BYPASS;
    758     }
    759     return rv;
    760 }
    761 
    762 static bool is_access_granted(unsigned access, int is_write)
    763 {
    764     switch (is_write) {
    765     case 0:
    766         return access & PAGE_READ;
    767 
    768     case 1:
    769         return access & PAGE_WRITE;
    770 
    771     case 2:
    772         return access & PAGE_EXEC;
    773 
    774     default:
    775         return 0;
    776     }
    777 }
    778 
    779 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
    780 
    781 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
    782                                  uint32_t vaddr, int is_write, int mmu_idx,
    783                                  uint32_t *paddr, uint32_t *page_size,
    784                                  unsigned *access, bool may_lookup_pt)
    785 {
    786     bool dtlb = is_write != 2;
    787     uint32_t wi;
    788     uint32_t ei;
    789     uint8_t ring;
    790     uint32_t vpn;
    791     uint32_t pte;
    792     const xtensa_tlb_entry *entry = NULL;
    793     xtensa_tlb_entry tmp_entry;
    794     int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
    795 
    796     if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
    797         may_lookup_pt && get_pte(env, vaddr, &pte)) {
    798         ring = (pte >> 4) & 0x3;
    799         wi = 0;
    800         split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
    801 
    802         if (update_tlb) {
    803             wi = ++env->autorefill_idx & 0x3;
    804             xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
    805             env->sregs[EXCVADDR] = vaddr;
    806             qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
    807                           __func__, vaddr, vpn, pte);
    808         } else {
    809             xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
    810             entry = &tmp_entry;
    811         }
    812         ret = 0;
    813     }
    814     if (ret != 0) {
    815         return ret;
    816     }
    817 
    818     if (entry == NULL) {
    819         entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
    820     }
    821 
    822     if (ring < mmu_idx) {
    823         return dtlb ?
    824             LOAD_STORE_PRIVILEGE_CAUSE :
    825             INST_FETCH_PRIVILEGE_CAUSE;
    826     }
    827 
    828     *access = mmu_attr_to_access(entry->attr) &
    829         ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
    830     if (!is_access_granted(*access, is_write)) {
    831         return dtlb ?
    832             (is_write ?
    833              STORE_PROHIBITED_CAUSE :
    834              LOAD_PROHIBITED_CAUSE) :
    835             INST_FETCH_PROHIBITED_CAUSE;
    836     }
    837 
    838     *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
    839     *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
    840 
    841     return 0;
    842 }
    843 
    844 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
    845 {
    846     CPUState *cs = env_cpu(env);
    847     uint32_t paddr;
    848     uint32_t page_size;
    849     unsigned access;
    850     uint32_t pt_vaddr =
    851         (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
    852     int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
    853                                     &paddr, &page_size, &access, false);
    854 
    855     if (ret == 0) {
    856         qemu_log_mask(CPU_LOG_MMU,
    857                       "%s: autorefill(%08x): PTE va = %08x, pa = %08x\n",
    858                       __func__, vaddr, pt_vaddr, paddr);
    859     } else {
    860         qemu_log_mask(CPU_LOG_MMU,
    861                       "%s: autorefill(%08x): PTE va = %08x, failed (%d)\n",
    862                       __func__, vaddr, pt_vaddr, ret);
    863     }
    864 
    865     if (ret == 0) {
    866         MemTxResult result;
    867 
    868         *pte = address_space_ldl(cs->as, paddr, MEMTXATTRS_UNSPECIFIED,
    869                                  &result);
    870         if (result != MEMTX_OK) {
    871             qemu_log_mask(CPU_LOG_MMU,
    872                           "%s: couldn't load PTE: transaction failed (%u)\n",
    873                           __func__, (unsigned)result);
    874             ret = 1;
    875         }
    876     }
    877     return ret == 0;
    878 }
    879 
    880 static int get_physical_addr_region(CPUXtensaState *env,
    881                                     uint32_t vaddr, int is_write, int mmu_idx,
    882                                     uint32_t *paddr, uint32_t *page_size,
    883                                     unsigned *access)
    884 {
    885     bool dtlb = is_write != 2;
    886     uint32_t wi = 0;
    887     uint32_t ei = (vaddr >> 29) & 0x7;
    888     const xtensa_tlb_entry *entry =
    889         xtensa_tlb_get_entry(env, dtlb, wi, ei);
    890 
    891     *access = region_attr_to_access(entry->attr);
    892     if (!is_access_granted(*access, is_write)) {
    893         return dtlb ?
    894             (is_write ?
    895              STORE_PROHIBITED_CAUSE :
    896              LOAD_PROHIBITED_CAUSE) :
    897             INST_FETCH_PROHIBITED_CAUSE;
    898     }
    899 
    900     *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
    901     *page_size = ~REGION_PAGE_MASK + 1;
    902 
    903     return 0;
    904 }
    905 
    906 static int xtensa_mpu_lookup(const xtensa_mpu_entry *entry, unsigned n,
    907                              uint32_t vaddr, unsigned *segment)
    908 {
    909     unsigned nhits = 0;
    910     unsigned i;
    911 
    912     for (i = 0; i < n; ++i) {
    913         if (vaddr >= entry[i].vaddr &&
    914             (i == n - 1 || vaddr < entry[i + 1].vaddr)) {
    915             if (nhits++) {
    916                 break;
    917             }
    918             *segment = i;
    919         }
    920     }
    921     return nhits;
    922 }
    923 
    924 void HELPER(wsr_mpuenb)(CPUXtensaState *env, uint32_t v)
    925 {
    926     v &= (2u << (env->config->n_mpu_fg_segments - 1)) - 1;
    927 
    928     if (v != env->sregs[MPUENB]) {
    929         env->sregs[MPUENB] = v;
    930         tlb_flush(env_cpu(env));
    931     }
    932 }
    933 
    934 void HELPER(wptlb)(CPUXtensaState *env, uint32_t p, uint32_t v)
    935 {
    936     unsigned segment = p & XTENSA_MPU_SEGMENT_MASK;
    937 
    938     if (segment < env->config->n_mpu_fg_segments) {
    939         env->mpu_fg[segment].vaddr = v & -env->config->mpu_align;
    940         env->mpu_fg[segment].attr = p & XTENSA_MPU_ATTR_MASK;
    941         env->sregs[MPUENB] = deposit32(env->sregs[MPUENB], segment, 1, v);
    942         tlb_flush(env_cpu(env));
    943     }
    944 }
    945 
    946 uint32_t HELPER(rptlb0)(CPUXtensaState *env, uint32_t s)
    947 {
    948     unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
    949 
    950     if (segment < env->config->n_mpu_fg_segments) {
    951         return env->mpu_fg[segment].vaddr |
    952             extract32(env->sregs[MPUENB], segment, 1);
    953     } else {
    954         return 0;
    955     }
    956 }
    957 
    958 uint32_t HELPER(rptlb1)(CPUXtensaState *env, uint32_t s)
    959 {
    960     unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
    961 
    962     if (segment < env->config->n_mpu_fg_segments) {
    963         return env->mpu_fg[segment].attr;
    964     } else {
    965         return 0;
    966     }
    967 }
    968 
    969 uint32_t HELPER(pptlb)(CPUXtensaState *env, uint32_t v)
    970 {
    971     unsigned nhits;
    972     unsigned segment = XTENSA_MPU_PROBE_B;
    973     unsigned bg_segment;
    974 
    975     nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
    976                               v, &segment);
    977     if (nhits > 1) {
    978         HELPER(exception_cause_vaddr)(env, env->pc,
    979                                       LOAD_STORE_TLB_MULTI_HIT_CAUSE, v);
    980     } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
    981         return env->mpu_fg[segment].attr | segment | XTENSA_MPU_PROBE_V;
    982     } else {
    983         xtensa_mpu_lookup(env->config->mpu_bg,
    984                           env->config->n_mpu_bg_segments,
    985                           v, &bg_segment);
    986         return env->config->mpu_bg[bg_segment].attr | segment;
    987     }
    988 }
    989 
    990 static int get_physical_addr_mpu(CPUXtensaState *env,
    991                                  uint32_t vaddr, int is_write, int mmu_idx,
    992                                  uint32_t *paddr, uint32_t *page_size,
    993                                  unsigned *access)
    994 {
    995     unsigned nhits;
    996     unsigned segment;
    997     uint32_t attr;
    998 
    999     nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
   1000                               vaddr, &segment);
   1001     if (nhits > 1) {
   1002         return is_write < 2 ?
   1003             LOAD_STORE_TLB_MULTI_HIT_CAUSE :
   1004             INST_TLB_MULTI_HIT_CAUSE;
   1005     } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
   1006         attr = env->mpu_fg[segment].attr;
   1007     } else {
   1008         xtensa_mpu_lookup(env->config->mpu_bg,
   1009                           env->config->n_mpu_bg_segments,
   1010                           vaddr, &segment);
   1011         attr = env->config->mpu_bg[segment].attr;
   1012     }
   1013 
   1014     *access = mpu_attr_to_access(attr, mmu_idx);
   1015     if (!is_access_granted(*access, is_write)) {
   1016         return is_write < 2 ?
   1017             (is_write ?
   1018              STORE_PROHIBITED_CAUSE :
   1019              LOAD_PROHIBITED_CAUSE) :
   1020             INST_FETCH_PROHIBITED_CAUSE;
   1021     }
   1022     *paddr = vaddr;
   1023     *page_size = env->config->mpu_align;
   1024     return 0;
   1025 }
   1026 
   1027 /*!
   1028  * Convert virtual address to physical addr.
   1029  * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
   1030  *
   1031  * \return 0 if ok, exception cause code otherwise
   1032  */
   1033 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
   1034                              uint32_t vaddr, int is_write, int mmu_idx,
   1035                              uint32_t *paddr, uint32_t *page_size,
   1036                              unsigned *access)
   1037 {
   1038     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
   1039         return get_physical_addr_mmu(env, update_tlb,
   1040                                      vaddr, is_write, mmu_idx, paddr,
   1041                                      page_size, access, true);
   1042     } else if (xtensa_option_bits_enabled(env->config,
   1043                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
   1044                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
   1045         return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
   1046                                         paddr, page_size, access);
   1047     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
   1048         return get_physical_addr_mpu(env, vaddr, is_write, mmu_idx,
   1049                                      paddr, page_size, access);
   1050     } else {
   1051         *paddr = vaddr;
   1052         *page_size = TARGET_PAGE_SIZE;
   1053         *access = cacheattr_attr_to_access(env->sregs[CACHEATTR] >>
   1054                                            ((vaddr & 0xe0000000) >> 27));
   1055         return 0;
   1056     }
   1057 }
   1058 
   1059 static void dump_tlb(CPUXtensaState *env, bool dtlb)
   1060 {
   1061     unsigned wi, ei;
   1062     const xtensa_tlb *conf =
   1063         dtlb ? &env->config->dtlb : &env->config->itlb;
   1064     unsigned (*attr_to_access)(uint32_t) =
   1065         xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
   1066         mmu_attr_to_access : region_attr_to_access;
   1067 
   1068     for (wi = 0; wi < conf->nways; ++wi) {
   1069         uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
   1070         const char *sz_text;
   1071         bool print_header = true;
   1072 
   1073         if (sz >= 0x100000) {
   1074             sz /= MiB;
   1075             sz_text = "MB";
   1076         } else {
   1077             sz /= KiB;
   1078             sz_text = "KB";
   1079         }
   1080 
   1081         for (ei = 0; ei < conf->way_size[wi]; ++ei) {
   1082             const xtensa_tlb_entry *entry =
   1083                 xtensa_tlb_get_entry(env, dtlb, wi, ei);
   1084 
   1085             if (entry->asid) {
   1086                 static const char * const cache_text[8] = {
   1087                     [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
   1088                     [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
   1089                     [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
   1090                     [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
   1091                 };
   1092                 unsigned access = attr_to_access(entry->attr);
   1093                 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
   1094                     PAGE_CACHE_SHIFT;
   1095 
   1096                 if (print_header) {
   1097                     print_header = false;
   1098                     qemu_printf("Way %u (%d %s)\n", wi, sz, sz_text);
   1099                     qemu_printf("\tVaddr       Paddr       ASID  Attr RWX Cache\n"
   1100                                 "\t----------  ----------  ----  ---- --- -------\n");
   1101                 }
   1102                 qemu_printf("\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %s\n",
   1103                             entry->vaddr,
   1104                             entry->paddr,
   1105                             entry->asid,
   1106                             entry->attr,
   1107                             (access & PAGE_READ) ? 'R' : '-',
   1108                             (access & PAGE_WRITE) ? 'W' : '-',
   1109                             (access & PAGE_EXEC) ? 'X' : '-',
   1110                             cache_text[cache_idx] ?
   1111                             cache_text[cache_idx] : "Invalid");
   1112             }
   1113         }
   1114     }
   1115 }
   1116 
   1117 static void dump_mpu(CPUXtensaState *env,
   1118                      const xtensa_mpu_entry *entry, unsigned n)
   1119 {
   1120     unsigned i;
   1121 
   1122     qemu_printf("\t%s  Vaddr       Attr        Ring0  Ring1  System Type    CPU cache\n"
   1123                 "\t%s  ----------  ----------  -----  -----  -------------  ---------\n",
   1124                 env ? "En" : "  ",
   1125                 env ? "--" : "  ");
   1126 
   1127     for (i = 0; i < n; ++i) {
   1128         uint32_t attr = entry[i].attr;
   1129         unsigned access0 = mpu_attr_to_access(attr, 0);
   1130         unsigned access1 = mpu_attr_to_access(attr, 1);
   1131         unsigned type = mpu_attr_to_type(attr);
   1132         char cpu_cache = (type & XTENSA_MPU_TYPE_CPU_CACHE) ? '-' : ' ';
   1133 
   1134         qemu_printf("\t %c  0x%08x  0x%08x   %c%c%c    %c%c%c   ",
   1135                     env ?
   1136                     ((env->sregs[MPUENB] & (1u << i)) ? '+' : '-') : ' ',
   1137                     entry[i].vaddr, attr,
   1138                     (access0 & PAGE_READ) ? 'R' : '-',
   1139                     (access0 & PAGE_WRITE) ? 'W' : '-',
   1140                     (access0 & PAGE_EXEC) ? 'X' : '-',
   1141                     (access1 & PAGE_READ) ? 'R' : '-',
   1142                     (access1 & PAGE_WRITE) ? 'W' : '-',
   1143                     (access1 & PAGE_EXEC) ? 'X' : '-');
   1144 
   1145         switch (type & XTENSA_MPU_SYSTEM_TYPE_MASK) {
   1146         case XTENSA_MPU_SYSTEM_TYPE_DEVICE:
   1147             qemu_printf("Device %cB %3s\n",
   1148                         (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
   1149                         (type & XTENSA_MPU_TYPE_INT) ? "int" : "");
   1150             break;
   1151         case XTENSA_MPU_SYSTEM_TYPE_NC:
   1152             qemu_printf("Sys NC %cB      %c%c%c\n",
   1153                         (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
   1154                         (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
   1155                         (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
   1156                         (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
   1157             break;
   1158         case XTENSA_MPU_SYSTEM_TYPE_C:
   1159             qemu_printf("Sys  C %c%c%c     %c%c%c\n",
   1160                         (type & XTENSA_MPU_TYPE_SYS_R) ? 'R' : '-',
   1161                         (type & XTENSA_MPU_TYPE_SYS_W) ? 'W' : '-',
   1162                         (type & XTENSA_MPU_TYPE_SYS_C) ? 'C' : '-',
   1163                         (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
   1164                         (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
   1165                         (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
   1166             break;
   1167         default:
   1168             qemu_printf("Unknown\n");
   1169             break;
   1170         }
   1171     }
   1172 }
   1173 
   1174 void dump_mmu(CPUXtensaState *env)
   1175 {
   1176     if (xtensa_option_bits_enabled(env->config,
   1177                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
   1178                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
   1179                 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
   1180 
   1181         qemu_printf("ITLB:\n");
   1182         dump_tlb(env, false);
   1183         qemu_printf("\nDTLB:\n");
   1184         dump_tlb(env, true);
   1185     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
   1186         qemu_printf("Foreground map:\n");
   1187         dump_mpu(env, env->mpu_fg, env->config->n_mpu_fg_segments);
   1188         qemu_printf("\nBackground map:\n");
   1189         dump_mpu(NULL, env->config->mpu_bg, env->config->n_mpu_bg_segments);
   1190     } else {
   1191         qemu_printf("No TLB for this CPU core\n");
   1192     }
   1193 }