qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

helper.c (24750B)


      1 /*
      2  *  SH4 emulation
      3  *
      4  *  Copyright (c) 2005 Samuel Tardieu
      5  *
      6  * This library is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU Lesser General Public
      8  * License as published by the Free Software Foundation; either
      9  * version 2.1 of the License, or (at your option) any later version.
     10  *
     11  * This library is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14  * Lesser General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU Lesser General Public
     17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18  */
     19 
     20 #include "qemu/osdep.h"
     21 
     22 #include "cpu.h"
     23 #include "exec/exec-all.h"
     24 #include "exec/log.h"
     25 
     26 #if !defined(CONFIG_USER_ONLY)
     27 #include "hw/sh4/sh_intc.h"
     28 #include "sysemu/runstate.h"
     29 #endif
     30 
     31 #define MMU_OK                   0
     32 #define MMU_ITLB_MISS            (-1)
     33 #define MMU_ITLB_MULTIPLE        (-2)
     34 #define MMU_ITLB_VIOLATION       (-3)
     35 #define MMU_DTLB_MISS_READ       (-4)
     36 #define MMU_DTLB_MISS_WRITE      (-5)
     37 #define MMU_DTLB_INITIAL_WRITE   (-6)
     38 #define MMU_DTLB_VIOLATION_READ  (-7)
     39 #define MMU_DTLB_VIOLATION_WRITE (-8)
     40 #define MMU_DTLB_MULTIPLE        (-9)
     41 #define MMU_DTLB_MISS            (-10)
     42 #define MMU_IADDR_ERROR          (-11)
     43 #define MMU_DADDR_ERROR_READ     (-12)
     44 #define MMU_DADDR_ERROR_WRITE    (-13)
     45 
     46 #if defined(CONFIG_USER_ONLY)
     47 
     48 int cpu_sh4_is_cached(CPUSH4State *env, target_ulong addr)
     49 {
     50     /* For user mode, only U0 area is cacheable. */
     51     return !(addr & 0x80000000);
     52 }
     53 
     54 #else /* !CONFIG_USER_ONLY */
     55 
     56 void superh_cpu_do_interrupt(CPUState *cs)
     57 {
     58     SuperHCPU *cpu = SUPERH_CPU(cs);
     59     CPUSH4State *env = &cpu->env;
     60     int do_irq = cs->interrupt_request & CPU_INTERRUPT_HARD;
     61     int do_exp, irq_vector = cs->exception_index;
     62 
     63     /* prioritize exceptions over interrupts */
     64 
     65     do_exp = cs->exception_index != -1;
     66     do_irq = do_irq && (cs->exception_index == -1);
     67 
     68     if (env->sr & (1u << SR_BL)) {
     69         if (do_exp && cs->exception_index != 0x1e0) {
     70             /* In theory a masked exception generates a reset exception,
     71                which in turn jumps to the reset vector. However this only
     72                works when using a bootloader. When using a kernel and an
     73                initrd, they need to be reloaded and the program counter
     74                should be loaded with the kernel entry point.
     75                qemu_system_reset_request takes care of that.  */
     76             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
     77             return;
     78         }
     79         if (do_irq && !env->in_sleep) {
     80             return; /* masked */
     81         }
     82     }
     83     env->in_sleep = 0;
     84 
     85     if (do_irq) {
     86         irq_vector = sh_intc_get_pending_vector(env->intc_handle,
     87 						(env->sr >> 4) & 0xf);
     88         if (irq_vector == -1) {
     89             return; /* masked */
     90 	}
     91     }
     92 
     93     if (qemu_loglevel_mask(CPU_LOG_INT)) {
     94 	const char *expname;
     95         switch (cs->exception_index) {
     96 	case 0x0e0:
     97 	    expname = "addr_error";
     98 	    break;
     99 	case 0x040:
    100 	    expname = "tlb_miss";
    101 	    break;
    102 	case 0x0a0:
    103 	    expname = "tlb_violation";
    104 	    break;
    105 	case 0x180:
    106 	    expname = "illegal_instruction";
    107 	    break;
    108 	case 0x1a0:
    109 	    expname = "slot_illegal_instruction";
    110 	    break;
    111 	case 0x800:
    112 	    expname = "fpu_disable";
    113 	    break;
    114 	case 0x820:
    115 	    expname = "slot_fpu";
    116 	    break;
    117 	case 0x100:
    118 	    expname = "data_write";
    119 	    break;
    120 	case 0x060:
    121 	    expname = "dtlb_miss_write";
    122 	    break;
    123 	case 0x0c0:
    124 	    expname = "dtlb_violation_write";
    125 	    break;
    126 	case 0x120:
    127 	    expname = "fpu_exception";
    128 	    break;
    129 	case 0x080:
    130 	    expname = "initial_page_write";
    131 	    break;
    132 	case 0x160:
    133 	    expname = "trapa";
    134 	    break;
    135 	default:
    136             expname = do_irq ? "interrupt" : "???";
    137             break;
    138 	}
    139 	qemu_log("exception 0x%03x [%s] raised\n",
    140 		  irq_vector, expname);
    141         log_cpu_state(cs, 0);
    142     }
    143 
    144     env->ssr = cpu_read_sr(env);
    145     env->spc = env->pc;
    146     env->sgr = env->gregs[15];
    147     env->sr |= (1u << SR_BL) | (1u << SR_MD) | (1u << SR_RB);
    148     env->lock_addr = -1;
    149 
    150     if (env->flags & TB_FLAG_DELAY_SLOT_MASK) {
    151         /* Branch instruction should be executed again before delay slot. */
    152 	env->spc -= 2;
    153 	/* Clear flags for exception/interrupt routine. */
    154         env->flags &= ~TB_FLAG_DELAY_SLOT_MASK;
    155     }
    156 
    157     if (do_exp) {
    158         env->expevt = cs->exception_index;
    159         switch (cs->exception_index) {
    160         case 0x000:
    161         case 0x020:
    162         case 0x140:
    163             env->sr &= ~(1u << SR_FD);
    164             env->sr |= 0xf << 4; /* IMASK */
    165             env->pc = 0xa0000000;
    166             break;
    167         case 0x040:
    168         case 0x060:
    169             env->pc = env->vbr + 0x400;
    170             break;
    171         case 0x160:
    172             env->spc += 2; /* special case for TRAPA */
    173             /* fall through */
    174         default:
    175             env->pc = env->vbr + 0x100;
    176             break;
    177         }
    178         return;
    179     }
    180 
    181     if (do_irq) {
    182         env->intevt = irq_vector;
    183         env->pc = env->vbr + 0x600;
    184         return;
    185     }
    186 }
    187 
    188 static void update_itlb_use(CPUSH4State * env, int itlbnb)
    189 {
    190     uint8_t or_mask = 0, and_mask = (uint8_t) - 1;
    191 
    192     switch (itlbnb) {
    193     case 0:
    194 	and_mask = 0x1f;
    195 	break;
    196     case 1:
    197 	and_mask = 0xe7;
    198 	or_mask = 0x80;
    199 	break;
    200     case 2:
    201 	and_mask = 0xfb;
    202 	or_mask = 0x50;
    203 	break;
    204     case 3:
    205 	or_mask = 0x2c;
    206 	break;
    207     }
    208 
    209     env->mmucr &= (and_mask << 24) | 0x00ffffff;
    210     env->mmucr |= (or_mask << 24);
    211 }
    212 
    213 static int itlb_replacement(CPUSH4State * env)
    214 {
    215     if ((env->mmucr & 0xe0000000) == 0xe0000000) {
    216 	return 0;
    217     }
    218     if ((env->mmucr & 0x98000000) == 0x18000000) {
    219 	return 1;
    220     }
    221     if ((env->mmucr & 0x54000000) == 0x04000000) {
    222 	return 2;
    223     }
    224     if ((env->mmucr & 0x2c000000) == 0x00000000) {
    225 	return 3;
    226     }
    227     cpu_abort(env_cpu(env), "Unhandled itlb_replacement");
    228 }
    229 
    230 /* Find the corresponding entry in the right TLB
    231    Return entry, MMU_DTLB_MISS or MMU_DTLB_MULTIPLE
    232 */
    233 static int find_tlb_entry(CPUSH4State * env, target_ulong address,
    234 			  tlb_t * entries, uint8_t nbtlb, int use_asid)
    235 {
    236     int match = MMU_DTLB_MISS;
    237     uint32_t start, end;
    238     uint8_t asid;
    239     int i;
    240 
    241     asid = env->pteh & 0xff;
    242 
    243     for (i = 0; i < nbtlb; i++) {
    244 	if (!entries[i].v)
    245 	    continue;		/* Invalid entry */
    246 	if (!entries[i].sh && use_asid && entries[i].asid != asid)
    247 	    continue;		/* Bad ASID */
    248 	start = (entries[i].vpn << 10) & ~(entries[i].size - 1);
    249 	end = start + entries[i].size - 1;
    250 	if (address >= start && address <= end) {	/* Match */
    251 	    if (match != MMU_DTLB_MISS)
    252 		return MMU_DTLB_MULTIPLE;	/* Multiple match */
    253 	    match = i;
    254 	}
    255     }
    256     return match;
    257 }
    258 
    259 static void increment_urc(CPUSH4State * env)
    260 {
    261     uint8_t urb, urc;
    262 
    263     /* Increment URC */
    264     urb = ((env->mmucr) >> 18) & 0x3f;
    265     urc = ((env->mmucr) >> 10) & 0x3f;
    266     urc++;
    267     if ((urb > 0 && urc > urb) || urc > (UTLB_SIZE - 1))
    268 	urc = 0;
    269     env->mmucr = (env->mmucr & 0xffff03ff) | (urc << 10);
    270 }
    271 
    272 /* Copy and utlb entry into itlb
    273    Return entry
    274 */
    275 static int copy_utlb_entry_itlb(CPUSH4State *env, int utlb)
    276 {
    277     int itlb;
    278 
    279     tlb_t * ientry;
    280     itlb = itlb_replacement(env);
    281     ientry = &env->itlb[itlb];
    282     if (ientry->v) {
    283         tlb_flush_page(env_cpu(env), ientry->vpn << 10);
    284     }
    285     *ientry = env->utlb[utlb];
    286     update_itlb_use(env, itlb);
    287     return itlb;
    288 }
    289 
    290 /* Find itlb entry
    291    Return entry, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE or MMU_DTLB_MULTIPLE
    292 */
    293 static int find_itlb_entry(CPUSH4State * env, target_ulong address,
    294                            int use_asid)
    295 {
    296     int e;
    297 
    298     e = find_tlb_entry(env, address, env->itlb, ITLB_SIZE, use_asid);
    299     if (e == MMU_DTLB_MULTIPLE) {
    300 	e = MMU_ITLB_MULTIPLE;
    301     } else if (e == MMU_DTLB_MISS) {
    302 	e = MMU_ITLB_MISS;
    303     } else if (e >= 0) {
    304 	update_itlb_use(env, e);
    305     }
    306     return e;
    307 }
    308 
    309 /* Find utlb entry
    310    Return entry, MMU_DTLB_MISS, MMU_DTLB_MULTIPLE */
    311 static int find_utlb_entry(CPUSH4State * env, target_ulong address, int use_asid)
    312 {
    313     /* per utlb access */
    314     increment_urc(env);
    315 
    316     /* Return entry */
    317     return find_tlb_entry(env, address, env->utlb, UTLB_SIZE, use_asid);
    318 }
    319 
    320 /* Match address against MMU
    321    Return MMU_OK, MMU_DTLB_MISS_READ, MMU_DTLB_MISS_WRITE,
    322    MMU_DTLB_INITIAL_WRITE, MMU_DTLB_VIOLATION_READ,
    323    MMU_DTLB_VIOLATION_WRITE, MMU_ITLB_MISS,
    324    MMU_ITLB_MULTIPLE, MMU_ITLB_VIOLATION,
    325    MMU_IADDR_ERROR, MMU_DADDR_ERROR_READ, MMU_DADDR_ERROR_WRITE.
    326 */
    327 static int get_mmu_address(CPUSH4State * env, target_ulong * physical,
    328                            int *prot, target_ulong address,
    329                            MMUAccessType access_type)
    330 {
    331     int use_asid, n;
    332     tlb_t *matching = NULL;
    333 
    334     use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
    335 
    336     if (access_type == MMU_INST_FETCH) {
    337         n = find_itlb_entry(env, address, use_asid);
    338         if (n >= 0) {
    339             matching = &env->itlb[n];
    340             if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
    341                 n = MMU_ITLB_VIOLATION;
    342             } else {
    343                 *prot = PAGE_EXEC;
    344             }
    345         } else {
    346             n = find_utlb_entry(env, address, use_asid);
    347             if (n >= 0) {
    348                 n = copy_utlb_entry_itlb(env, n);
    349                 matching = &env->itlb[n];
    350                 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
    351                     n = MMU_ITLB_VIOLATION;
    352                 } else {
    353                     *prot = PAGE_READ | PAGE_EXEC;
    354                     if ((matching->pr & 1) && matching->d) {
    355                         *prot |= PAGE_WRITE;
    356                     }
    357                 }
    358             } else if (n == MMU_DTLB_MULTIPLE) {
    359                 n = MMU_ITLB_MULTIPLE;
    360             } else if (n == MMU_DTLB_MISS) {
    361                 n = MMU_ITLB_MISS;
    362             }
    363         }
    364     } else {
    365         n = find_utlb_entry(env, address, use_asid);
    366         if (n >= 0) {
    367             matching = &env->utlb[n];
    368             if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
    369                 n = (access_type == MMU_DATA_STORE)
    370                     ? MMU_DTLB_VIOLATION_WRITE : MMU_DTLB_VIOLATION_READ;
    371             } else if ((access_type == MMU_DATA_STORE) && !(matching->pr & 1)) {
    372                 n = MMU_DTLB_VIOLATION_WRITE;
    373             } else if ((access_type == MMU_DATA_STORE) && !matching->d) {
    374                 n = MMU_DTLB_INITIAL_WRITE;
    375             } else {
    376                 *prot = PAGE_READ;
    377                 if ((matching->pr & 1) && matching->d) {
    378                     *prot |= PAGE_WRITE;
    379                 }
    380             }
    381         } else if (n == MMU_DTLB_MISS) {
    382             n = (access_type == MMU_DATA_STORE)
    383                 ? MMU_DTLB_MISS_WRITE : MMU_DTLB_MISS_READ;
    384         }
    385     }
    386     if (n >= 0) {
    387         n = MMU_OK;
    388         *physical = ((matching->ppn << 10) & ~(matching->size - 1))
    389                     | (address & (matching->size - 1));
    390     }
    391     return n;
    392 }
    393 
    394 static int get_physical_address(CPUSH4State * env, target_ulong * physical,
    395                                 int *prot, target_ulong address,
    396                                 MMUAccessType access_type)
    397 {
    398     /* P1, P2 and P4 areas do not use translation */
    399     if ((address >= 0x80000000 && address < 0xc0000000) || address >= 0xe0000000) {
    400         if (!(env->sr & (1u << SR_MD))
    401                 && (address < 0xe0000000 || address >= 0xe4000000)) {
    402             /* Unauthorized access in user mode (only store queues are available) */
    403             qemu_log_mask(LOG_GUEST_ERROR, "Unauthorized access\n");
    404             if (access_type == MMU_DATA_LOAD) {
    405                 return MMU_DADDR_ERROR_READ;
    406             } else if (access_type == MMU_DATA_STORE) {
    407                 return MMU_DADDR_ERROR_WRITE;
    408             } else {
    409                 return MMU_IADDR_ERROR;
    410             }
    411         }
    412         if (address >= 0x80000000 && address < 0xc0000000) {
    413             /* Mask upper 3 bits for P1 and P2 areas */
    414             *physical = address & 0x1fffffff;
    415         } else {
    416             *physical = address;
    417         }
    418         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    419         return MMU_OK;
    420     }
    421 
    422     /* If MMU is disabled, return the corresponding physical page */
    423     if (!(env->mmucr & MMUCR_AT)) {
    424         *physical = address & 0x1FFFFFFF;
    425         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    426         return MMU_OK;
    427     }
    428 
    429     /* We need to resort to the MMU */
    430     return get_mmu_address(env, physical, prot, address, access_type);
    431 }
    432 
    433 hwaddr superh_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
    434 {
    435     SuperHCPU *cpu = SUPERH_CPU(cs);
    436     target_ulong physical;
    437     int prot;
    438 
    439     if (get_physical_address(&cpu->env, &physical, &prot, addr, MMU_DATA_LOAD)
    440             == MMU_OK) {
    441         return physical;
    442     }
    443 
    444     return -1;
    445 }
    446 
    447 void cpu_load_tlb(CPUSH4State * env)
    448 {
    449     CPUState *cs = env_cpu(env);
    450     int n = cpu_mmucr_urc(env->mmucr);
    451     tlb_t * entry = &env->utlb[n];
    452 
    453     if (entry->v) {
    454         /* Overwriting valid entry in utlb. */
    455         target_ulong address = entry->vpn << 10;
    456         tlb_flush_page(cs, address);
    457     }
    458 
    459     /* Take values into cpu status from registers. */
    460     entry->asid = (uint8_t)cpu_pteh_asid(env->pteh);
    461     entry->vpn  = cpu_pteh_vpn(env->pteh);
    462     entry->v    = (uint8_t)cpu_ptel_v(env->ptel);
    463     entry->ppn  = cpu_ptel_ppn(env->ptel);
    464     entry->sz   = (uint8_t)cpu_ptel_sz(env->ptel);
    465     switch (entry->sz) {
    466     case 0: /* 00 */
    467         entry->size = 1024; /* 1K */
    468         break;
    469     case 1: /* 01 */
    470         entry->size = 1024 * 4; /* 4K */
    471         break;
    472     case 2: /* 10 */
    473         entry->size = 1024 * 64; /* 64K */
    474         break;
    475     case 3: /* 11 */
    476         entry->size = 1024 * 1024; /* 1M */
    477         break;
    478     default:
    479         cpu_abort(cs, "Unhandled load_tlb");
    480         break;
    481     }
    482     entry->sh   = (uint8_t)cpu_ptel_sh(env->ptel);
    483     entry->c    = (uint8_t)cpu_ptel_c(env->ptel);
    484     entry->pr   = (uint8_t)cpu_ptel_pr(env->ptel);
    485     entry->d    = (uint8_t)cpu_ptel_d(env->ptel);
    486     entry->wt   = (uint8_t)cpu_ptel_wt(env->ptel);
    487     entry->sa   = (uint8_t)cpu_ptea_sa(env->ptea);
    488     entry->tc   = (uint8_t)cpu_ptea_tc(env->ptea);
    489 }
    490 
    491  void cpu_sh4_invalidate_tlb(CPUSH4State *s)
    492 {
    493     int i;
    494 
    495     /* UTLB */
    496     for (i = 0; i < UTLB_SIZE; i++) {
    497         tlb_t * entry = &s->utlb[i];
    498         entry->v = 0;
    499     }
    500     /* ITLB */
    501     for (i = 0; i < ITLB_SIZE; i++) {
    502         tlb_t * entry = &s->itlb[i];
    503         entry->v = 0;
    504     }
    505 
    506     tlb_flush(env_cpu(s));
    507 }
    508 
    509 uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s,
    510                                        hwaddr addr)
    511 {
    512     int index = (addr & 0x00000300) >> 8;
    513     tlb_t * entry = &s->itlb[index];
    514 
    515     return (entry->vpn  << 10) |
    516            (entry->v    <<  8) |
    517            (entry->asid);
    518 }
    519 
    520 void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr,
    521 				    uint32_t mem_value)
    522 {
    523     uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
    524     uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
    525     uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
    526 
    527     int index = (addr & 0x00000300) >> 8;
    528     tlb_t * entry = &s->itlb[index];
    529     if (entry->v) {
    530         /* Overwriting valid entry in itlb. */
    531         target_ulong address = entry->vpn << 10;
    532         tlb_flush_page(env_cpu(s), address);
    533     }
    534     entry->asid = asid;
    535     entry->vpn = vpn;
    536     entry->v = v;
    537 }
    538 
    539 uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s,
    540                                        hwaddr addr)
    541 {
    542     int array = (addr & 0x00800000) >> 23;
    543     int index = (addr & 0x00000300) >> 8;
    544     tlb_t * entry = &s->itlb[index];
    545 
    546     if (array == 0) {
    547         /* ITLB Data Array 1 */
    548         return (entry->ppn << 10) |
    549                (entry->v   <<  8) |
    550                (entry->pr  <<  5) |
    551                ((entry->sz & 1) <<  6) |
    552                ((entry->sz & 2) <<  4) |
    553                (entry->c   <<  3) |
    554                (entry->sh  <<  1);
    555     } else {
    556         /* ITLB Data Array 2 */
    557         return (entry->tc << 1) |
    558                (entry->sa);
    559     }
    560 }
    561 
    562 void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr,
    563                                     uint32_t mem_value)
    564 {
    565     int array = (addr & 0x00800000) >> 23;
    566     int index = (addr & 0x00000300) >> 8;
    567     tlb_t * entry = &s->itlb[index];
    568 
    569     if (array == 0) {
    570         /* ITLB Data Array 1 */
    571         if (entry->v) {
    572             /* Overwriting valid entry in utlb. */
    573             target_ulong address = entry->vpn << 10;
    574             tlb_flush_page(env_cpu(s), address);
    575         }
    576         entry->ppn = (mem_value & 0x1ffffc00) >> 10;
    577         entry->v   = (mem_value & 0x00000100) >> 8;
    578         entry->sz  = (mem_value & 0x00000080) >> 6 |
    579                      (mem_value & 0x00000010) >> 4;
    580         entry->pr  = (mem_value & 0x00000040) >> 5;
    581         entry->c   = (mem_value & 0x00000008) >> 3;
    582         entry->sh  = (mem_value & 0x00000002) >> 1;
    583     } else {
    584         /* ITLB Data Array 2 */
    585         entry->tc  = (mem_value & 0x00000008) >> 3;
    586         entry->sa  = (mem_value & 0x00000007);
    587     }
    588 }
    589 
    590 uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s,
    591                                        hwaddr addr)
    592 {
    593     int index = (addr & 0x00003f00) >> 8;
    594     tlb_t * entry = &s->utlb[index];
    595 
    596     increment_urc(s); /* per utlb access */
    597 
    598     return (entry->vpn  << 10) |
    599            (entry->v    <<  8) |
    600            (entry->asid);
    601 }
    602 
    603 void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr,
    604 				    uint32_t mem_value)
    605 {
    606     int associate = addr & 0x0000080;
    607     uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
    608     uint8_t d = (uint8_t)((mem_value & 0x00000200) >> 9);
    609     uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
    610     uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
    611     int use_asid = !(s->mmucr & MMUCR_SV) || !(s->sr & (1u << SR_MD));
    612 
    613     if (associate) {
    614         int i;
    615 	tlb_t * utlb_match_entry = NULL;
    616 	int needs_tlb_flush = 0;
    617 
    618 	/* search UTLB */
    619 	for (i = 0; i < UTLB_SIZE; i++) {
    620             tlb_t * entry = &s->utlb[i];
    621             if (!entry->v)
    622 	        continue;
    623 
    624             if (entry->vpn == vpn
    625                 && (!use_asid || entry->asid == asid || entry->sh)) {
    626 	        if (utlb_match_entry) {
    627                     CPUState *cs = env_cpu(s);
    628 
    629 		    /* Multiple TLB Exception */
    630                     cs->exception_index = 0x140;
    631 		    s->tea = addr;
    632 		    break;
    633 	        }
    634 		if (entry->v && !v)
    635 		    needs_tlb_flush = 1;
    636 		entry->v = v;
    637 		entry->d = d;
    638 	        utlb_match_entry = entry;
    639 	    }
    640 	    increment_urc(s); /* per utlb access */
    641 	}
    642 
    643 	/* search ITLB */
    644 	for (i = 0; i < ITLB_SIZE; i++) {
    645             tlb_t * entry = &s->itlb[i];
    646             if (entry->vpn == vpn
    647                 && (!use_asid || entry->asid == asid || entry->sh)) {
    648 	        if (entry->v && !v)
    649 		    needs_tlb_flush = 1;
    650 	        if (utlb_match_entry)
    651 		    *entry = *utlb_match_entry;
    652 	        else
    653 		    entry->v = v;
    654 		break;
    655 	    }
    656 	}
    657 
    658         if (needs_tlb_flush) {
    659             tlb_flush_page(env_cpu(s), vpn << 10);
    660         }
    661     } else {
    662         int index = (addr & 0x00003f00) >> 8;
    663         tlb_t * entry = &s->utlb[index];
    664 	if (entry->v) {
    665             CPUState *cs = env_cpu(s);
    666 
    667 	    /* Overwriting valid entry in utlb. */
    668             target_ulong address = entry->vpn << 10;
    669             tlb_flush_page(cs, address);
    670 	}
    671 	entry->asid = asid;
    672 	entry->vpn = vpn;
    673 	entry->d = d;
    674 	entry->v = v;
    675 	increment_urc(s);
    676     }
    677 }
    678 
    679 uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s,
    680                                        hwaddr addr)
    681 {
    682     int array = (addr & 0x00800000) >> 23;
    683     int index = (addr & 0x00003f00) >> 8;
    684     tlb_t * entry = &s->utlb[index];
    685 
    686     increment_urc(s); /* per utlb access */
    687 
    688     if (array == 0) {
    689         /* ITLB Data Array 1 */
    690         return (entry->ppn << 10) |
    691                (entry->v   <<  8) |
    692                (entry->pr  <<  5) |
    693                ((entry->sz & 1) <<  6) |
    694                ((entry->sz & 2) <<  4) |
    695                (entry->c   <<  3) |
    696                (entry->d   <<  2) |
    697                (entry->sh  <<  1) |
    698                (entry->wt);
    699     } else {
    700         /* ITLB Data Array 2 */
    701         return (entry->tc << 1) |
    702                (entry->sa);
    703     }
    704 }
    705 
    706 void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr,
    707                                     uint32_t mem_value)
    708 {
    709     int array = (addr & 0x00800000) >> 23;
    710     int index = (addr & 0x00003f00) >> 8;
    711     tlb_t * entry = &s->utlb[index];
    712 
    713     increment_urc(s); /* per utlb access */
    714 
    715     if (array == 0) {
    716         /* UTLB Data Array 1 */
    717         if (entry->v) {
    718             /* Overwriting valid entry in utlb. */
    719             target_ulong address = entry->vpn << 10;
    720             tlb_flush_page(env_cpu(s), address);
    721         }
    722         entry->ppn = (mem_value & 0x1ffffc00) >> 10;
    723         entry->v   = (mem_value & 0x00000100) >> 8;
    724         entry->sz  = (mem_value & 0x00000080) >> 6 |
    725                      (mem_value & 0x00000010) >> 4;
    726         entry->pr  = (mem_value & 0x00000060) >> 5;
    727         entry->c   = (mem_value & 0x00000008) >> 3;
    728         entry->d   = (mem_value & 0x00000004) >> 2;
    729         entry->sh  = (mem_value & 0x00000002) >> 1;
    730         entry->wt  = (mem_value & 0x00000001);
    731     } else {
    732         /* UTLB Data Array 2 */
    733         entry->tc = (mem_value & 0x00000008) >> 3;
    734         entry->sa = (mem_value & 0x00000007);
    735     }
    736 }
    737 
    738 int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr)
    739 {
    740     int n;
    741     int use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
    742 
    743     /* check area */
    744     if (env->sr & (1u << SR_MD)) {
    745         /* For privileged mode, P2 and P4 area is not cacheable. */
    746         if ((0xA0000000 <= addr && addr < 0xC0000000) || 0xE0000000 <= addr)
    747             return 0;
    748     } else {
    749         /* For user mode, only U0 area is cacheable. */
    750         if (0x80000000 <= addr)
    751             return 0;
    752     }
    753 
    754     /*
    755      * TODO : Evaluate CCR and check if the cache is on or off.
    756      *        Now CCR is not in CPUSH4State, but in SH7750State.
    757      *        When you move the ccr into CPUSH4State, the code will be
    758      *        as follows.
    759      */
    760 #if 0
    761     /* check if operand cache is enabled or not. */
    762     if (!(env->ccr & 1))
    763         return 0;
    764 #endif
    765 
    766     /* if MMU is off, no check for TLB. */
    767     if (env->mmucr & MMUCR_AT)
    768         return 1;
    769 
    770     /* check TLB */
    771     n = find_tlb_entry(env, addr, env->itlb, ITLB_SIZE, use_asid);
    772     if (n >= 0)
    773         return env->itlb[n].c;
    774 
    775     n = find_tlb_entry(env, addr, env->utlb, UTLB_SIZE, use_asid);
    776     if (n >= 0)
    777         return env->utlb[n].c;
    778 
    779     return 0;
    780 }
    781 
    782 bool superh_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
    783 {
    784     if (interrupt_request & CPU_INTERRUPT_HARD) {
    785         SuperHCPU *cpu = SUPERH_CPU(cs);
    786         CPUSH4State *env = &cpu->env;
    787 
    788         /* Delay slots are indivisible, ignore interrupts */
    789         if (env->flags & TB_FLAG_DELAY_SLOT_MASK) {
    790             return false;
    791         } else {
    792             superh_cpu_do_interrupt(cs);
    793             return true;
    794         }
    795     }
    796     return false;
    797 }
    798 
    799 bool superh_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
    800                          MMUAccessType access_type, int mmu_idx,
    801                          bool probe, uintptr_t retaddr)
    802 {
    803     SuperHCPU *cpu = SUPERH_CPU(cs);
    804     CPUSH4State *env = &cpu->env;
    805     int ret;
    806 
    807     target_ulong physical;
    808     int prot;
    809 
    810     ret = get_physical_address(env, &physical, &prot, address, access_type);
    811 
    812     if (ret == MMU_OK) {
    813         address &= TARGET_PAGE_MASK;
    814         physical &= TARGET_PAGE_MASK;
    815         tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE);
    816         return true;
    817     }
    818     if (probe) {
    819         return false;
    820     }
    821 
    822     if (ret != MMU_DTLB_MULTIPLE && ret != MMU_ITLB_MULTIPLE) {
    823         env->pteh = (env->pteh & PTEH_ASID_MASK) | (address & PTEH_VPN_MASK);
    824     }
    825 
    826     env->tea = address;
    827     switch (ret) {
    828     case MMU_ITLB_MISS:
    829     case MMU_DTLB_MISS_READ:
    830         cs->exception_index = 0x040;
    831         break;
    832     case MMU_DTLB_MULTIPLE:
    833     case MMU_ITLB_MULTIPLE:
    834         cs->exception_index = 0x140;
    835         break;
    836     case MMU_ITLB_VIOLATION:
    837         cs->exception_index = 0x0a0;
    838         break;
    839     case MMU_DTLB_MISS_WRITE:
    840         cs->exception_index = 0x060;
    841         break;
    842     case MMU_DTLB_INITIAL_WRITE:
    843         cs->exception_index = 0x080;
    844         break;
    845     case MMU_DTLB_VIOLATION_READ:
    846         cs->exception_index = 0x0a0;
    847         break;
    848     case MMU_DTLB_VIOLATION_WRITE:
    849         cs->exception_index = 0x0c0;
    850         break;
    851     case MMU_IADDR_ERROR:
    852     case MMU_DADDR_ERROR_READ:
    853         cs->exception_index = 0x0e0;
    854         break;
    855     case MMU_DADDR_ERROR_WRITE:
    856         cs->exception_index = 0x100;
    857         break;
    858     default:
    859         cpu_abort(cs, "Unhandled MMU fault");
    860     }
    861     cpu_loop_exit_restore(cs, retaddr);
    862 }
    863 #endif /* !CONFIG_USER_ONLY */