qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

mmu_helper.c (19607B)


      1 /*
      2  * S390x MMU related functions
      3  *
      4  * Copyright (c) 2011 Alexander Graf
      5  * Copyright (c) 2015 Thomas Huth, IBM Corporation
      6  *
      7  * This program is free software; you can redistribute it and/or modify
      8  * it under the terms of the GNU General Public License as published by
      9  * the Free Software Foundation; either version 2 of the License, or
     10  * (at your option) any later version.
     11  *
     12  * This program is distributed in the hope that it will be useful,
     13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15  * GNU General Public License for more details.
     16  */
     17 
     18 #include "qemu/osdep.h"
     19 #include "qemu/error-report.h"
     20 #include "exec/address-spaces.h"
     21 #include "cpu.h"
     22 #include "s390x-internal.h"
     23 #include "kvm/kvm_s390x.h"
     24 #include "sysemu/kvm.h"
     25 #include "sysemu/tcg.h"
     26 #include "exec/exec-all.h"
     27 #include "trace.h"
     28 #include "hw/hw.h"
     29 #include "hw/s390x/storage-keys.h"
     30 #include "hw/boards.h"
     31 
     32 /* Fetch/store bits in the translation exception code: */
     33 #define FS_READ  0x800
     34 #define FS_WRITE 0x400
     35 
     36 static void trigger_access_exception(CPUS390XState *env, uint32_t type,
     37                                      uint64_t tec)
     38 {
     39     S390CPU *cpu = env_archcpu(env);
     40 
     41     if (kvm_enabled()) {
     42         kvm_s390_access_exception(cpu, type, tec);
     43     } else {
     44         CPUState *cs = env_cpu(env);
     45         if (type != PGM_ADDRESSING) {
     46             stq_phys(cs->as, env->psa + offsetof(LowCore, trans_exc_code), tec);
     47         }
     48         trigger_pgm_exception(env, type);
     49     }
     50 }
     51 
     52 /* check whether the address would be proteted by Low-Address Protection */
     53 static bool is_low_address(uint64_t addr)
     54 {
     55     return addr <= 511 || (addr >= 4096 && addr <= 4607);
     56 }
     57 
     58 /* check whether Low-Address Protection is enabled for mmu_translate() */
     59 static bool lowprot_enabled(const CPUS390XState *env, uint64_t asc)
     60 {
     61     if (!(env->cregs[0] & CR0_LOWPROT)) {
     62         return false;
     63     }
     64     if (!(env->psw.mask & PSW_MASK_DAT)) {
     65         return true;
     66     }
     67 
     68     /* Check the private-space control bit */
     69     switch (asc) {
     70     case PSW_ASC_PRIMARY:
     71         return !(env->cregs[1] & ASCE_PRIVATE_SPACE);
     72     case PSW_ASC_SECONDARY:
     73         return !(env->cregs[7] & ASCE_PRIVATE_SPACE);
     74     case PSW_ASC_HOME:
     75         return !(env->cregs[13] & ASCE_PRIVATE_SPACE);
     76     default:
     77         /* We don't support access register mode */
     78         error_report("unsupported addressing mode");
     79         exit(1);
     80     }
     81 }
     82 
     83 /**
     84  * Translate real address to absolute (= physical)
     85  * address by taking care of the prefix mapping.
     86  */
     87 target_ulong mmu_real2abs(CPUS390XState *env, target_ulong raddr)
     88 {
     89     if (raddr < 0x2000) {
     90         return raddr + env->psa;    /* Map the lowcore. */
     91     } else if (raddr >= env->psa && raddr < env->psa + 0x2000) {
     92         return raddr - env->psa;    /* Map the 0 page. */
     93     }
     94     return raddr;
     95 }
     96 
     97 bool mmu_absolute_addr_valid(target_ulong addr, bool is_write)
     98 {
     99     return address_space_access_valid(&address_space_memory,
    100                                       addr & TARGET_PAGE_MASK,
    101                                       TARGET_PAGE_SIZE, is_write,
    102                                       MEMTXATTRS_UNSPECIFIED);
    103 }
    104 
    105 static inline bool read_table_entry(CPUS390XState *env, hwaddr gaddr,
    106                                     uint64_t *entry)
    107 {
    108     CPUState *cs = env_cpu(env);
    109 
    110     /*
    111      * According to the PoP, these table addresses are "unpredictably real
    112      * or absolute". Also, "it is unpredictable whether the address wraps
    113      * or an addressing exception is recognized".
    114      *
    115      * We treat them as absolute addresses and don't wrap them.
    116      */
    117     if (unlikely(address_space_read(cs->as, gaddr, MEMTXATTRS_UNSPECIFIED,
    118                                     entry, sizeof(*entry)) !=
    119                  MEMTX_OK)) {
    120         return false;
    121     }
    122     *entry = be64_to_cpu(*entry);
    123     return true;
    124 }
    125 
    126 static int mmu_translate_asce(CPUS390XState *env, target_ulong vaddr,
    127                               uint64_t asc, uint64_t asce, target_ulong *raddr,
    128                               int *flags)
    129 {
    130     const bool edat1 = (env->cregs[0] & CR0_EDAT) &&
    131                        s390_has_feat(S390_FEAT_EDAT);
    132     const bool edat2 = edat1 && s390_has_feat(S390_FEAT_EDAT_2);
    133     const bool iep = (env->cregs[0] & CR0_IEP) &&
    134                      s390_has_feat(S390_FEAT_INSTRUCTION_EXEC_PROT);
    135     const int asce_tl = asce & ASCE_TABLE_LENGTH;
    136     const int asce_p = asce & ASCE_PRIVATE_SPACE;
    137     hwaddr gaddr = asce & ASCE_ORIGIN;
    138     uint64_t entry;
    139 
    140     if (asce & ASCE_REAL_SPACE) {
    141         /* direct mapping */
    142         *raddr = vaddr;
    143         return 0;
    144     }
    145 
    146     switch (asce & ASCE_TYPE_MASK) {
    147     case ASCE_TYPE_REGION1:
    148         if (VADDR_REGION1_TL(vaddr) > asce_tl) {
    149             return PGM_REG_FIRST_TRANS;
    150         }
    151         gaddr += VADDR_REGION1_TX(vaddr) * 8;
    152         break;
    153     case ASCE_TYPE_REGION2:
    154         if (VADDR_REGION1_TX(vaddr)) {
    155             return PGM_ASCE_TYPE;
    156         }
    157         if (VADDR_REGION2_TL(vaddr) > asce_tl) {
    158             return PGM_REG_SEC_TRANS;
    159         }
    160         gaddr += VADDR_REGION2_TX(vaddr) * 8;
    161         break;
    162     case ASCE_TYPE_REGION3:
    163         if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr)) {
    164             return PGM_ASCE_TYPE;
    165         }
    166         if (VADDR_REGION3_TL(vaddr) > asce_tl) {
    167             return PGM_REG_THIRD_TRANS;
    168         }
    169         gaddr += VADDR_REGION3_TX(vaddr) * 8;
    170         break;
    171     case ASCE_TYPE_SEGMENT:
    172         if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr) ||
    173             VADDR_REGION3_TX(vaddr)) {
    174             return PGM_ASCE_TYPE;
    175         }
    176         if (VADDR_SEGMENT_TL(vaddr) > asce_tl) {
    177             return PGM_SEGMENT_TRANS;
    178         }
    179         gaddr += VADDR_SEGMENT_TX(vaddr) * 8;
    180         break;
    181     }
    182 
    183     switch (asce & ASCE_TYPE_MASK) {
    184     case ASCE_TYPE_REGION1:
    185         if (!read_table_entry(env, gaddr, &entry)) {
    186             return PGM_ADDRESSING;
    187         }
    188         if (entry & REGION_ENTRY_I) {
    189             return PGM_REG_FIRST_TRANS;
    190         }
    191         if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION1) {
    192             return PGM_TRANS_SPEC;
    193         }
    194         if (VADDR_REGION2_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
    195             VADDR_REGION2_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
    196             return PGM_REG_SEC_TRANS;
    197         }
    198         if (edat1 && (entry & REGION_ENTRY_P)) {
    199             *flags &= ~PAGE_WRITE;
    200         }
    201         gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION2_TX(vaddr) * 8;
    202         /* fall through */
    203     case ASCE_TYPE_REGION2:
    204         if (!read_table_entry(env, gaddr, &entry)) {
    205             return PGM_ADDRESSING;
    206         }
    207         if (entry & REGION_ENTRY_I) {
    208             return PGM_REG_SEC_TRANS;
    209         }
    210         if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION2) {
    211             return PGM_TRANS_SPEC;
    212         }
    213         if (VADDR_REGION3_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
    214             VADDR_REGION3_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
    215             return PGM_REG_THIRD_TRANS;
    216         }
    217         if (edat1 && (entry & REGION_ENTRY_P)) {
    218             *flags &= ~PAGE_WRITE;
    219         }
    220         gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION3_TX(vaddr) * 8;
    221         /* fall through */
    222     case ASCE_TYPE_REGION3:
    223         if (!read_table_entry(env, gaddr, &entry)) {
    224             return PGM_ADDRESSING;
    225         }
    226         if (entry & REGION_ENTRY_I) {
    227             return PGM_REG_THIRD_TRANS;
    228         }
    229         if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION3) {
    230             return PGM_TRANS_SPEC;
    231         }
    232         if (edat2 && (entry & REGION3_ENTRY_CR) && asce_p) {
    233             return PGM_TRANS_SPEC;
    234         }
    235         if (edat1 && (entry & REGION_ENTRY_P)) {
    236             *flags &= ~PAGE_WRITE;
    237         }
    238         if (edat2 && (entry & REGION3_ENTRY_FC)) {
    239             if (iep && (entry & REGION3_ENTRY_IEP)) {
    240                 *flags &= ~PAGE_EXEC;
    241             }
    242             *raddr = (entry & REGION3_ENTRY_RFAA) |
    243                      (vaddr & ~REGION3_ENTRY_RFAA);
    244             return 0;
    245         }
    246         if (VADDR_SEGMENT_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
    247             VADDR_SEGMENT_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
    248             return PGM_SEGMENT_TRANS;
    249         }
    250         gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_SEGMENT_TX(vaddr) * 8;
    251         /* fall through */
    252     case ASCE_TYPE_SEGMENT:
    253         if (!read_table_entry(env, gaddr, &entry)) {
    254             return PGM_ADDRESSING;
    255         }
    256         if (entry & SEGMENT_ENTRY_I) {
    257             return PGM_SEGMENT_TRANS;
    258         }
    259         if ((entry & SEGMENT_ENTRY_TT) != SEGMENT_ENTRY_TT_SEGMENT) {
    260             return PGM_TRANS_SPEC;
    261         }
    262         if ((entry & SEGMENT_ENTRY_CS) && asce_p) {
    263             return PGM_TRANS_SPEC;
    264         }
    265         if (entry & SEGMENT_ENTRY_P) {
    266             *flags &= ~PAGE_WRITE;
    267         }
    268         if (edat1 && (entry & SEGMENT_ENTRY_FC)) {
    269             if (iep && (entry & SEGMENT_ENTRY_IEP)) {
    270                 *flags &= ~PAGE_EXEC;
    271             }
    272             *raddr = (entry & SEGMENT_ENTRY_SFAA) |
    273                      (vaddr & ~SEGMENT_ENTRY_SFAA);
    274             return 0;
    275         }
    276         gaddr = (entry & SEGMENT_ENTRY_ORIGIN) + VADDR_PAGE_TX(vaddr) * 8;
    277         break;
    278     }
    279 
    280     if (!read_table_entry(env, gaddr, &entry)) {
    281         return PGM_ADDRESSING;
    282     }
    283     if (entry & PAGE_ENTRY_I) {
    284         return PGM_PAGE_TRANS;
    285     }
    286     if (entry & PAGE_ENTRY_0) {
    287         return PGM_TRANS_SPEC;
    288     }
    289     if (entry & PAGE_ENTRY_P) {
    290         *flags &= ~PAGE_WRITE;
    291     }
    292     if (iep && (entry & PAGE_ENTRY_IEP)) {
    293         *flags &= ~PAGE_EXEC;
    294     }
    295 
    296     *raddr = entry & TARGET_PAGE_MASK;
    297     return 0;
    298 }
    299 
    300 static void mmu_handle_skey(target_ulong addr, int rw, int *flags)
    301 {
    302     static S390SKeysClass *skeyclass;
    303     static S390SKeysState *ss;
    304     uint8_t key, old_key;
    305     int rc;
    306 
    307     /*
    308      * We expect to be called with an absolute address that has already been
    309      * validated, such that we can reliably use it to lookup the storage key.
    310      */
    311     if (unlikely(!ss)) {
    312         ss = s390_get_skeys_device();
    313         skeyclass = S390_SKEYS_GET_CLASS(ss);
    314     }
    315 
    316     /*
    317      * Don't enable storage keys if they are still disabled, i.e., no actual
    318      * storage key instruction was issued yet.
    319      */
    320     if (!skeyclass->skeys_are_enabled(ss)) {
    321         return;
    322     }
    323 
    324     /*
    325      * Whenever we create a new TLB entry, we set the storage key reference
    326      * bit. In case we allow write accesses, we set the storage key change
    327      * bit. Whenever the guest changes the storage key, we have to flush the
    328      * TLBs of all CPUs (the whole TLB or all affected entries), so that the
    329      * next reference/change will result in an MMU fault and make us properly
    330      * update the storage key here.
    331      *
    332      * Note 1: "record of references ... is not necessarily accurate",
    333      *         "change bit may be set in case no storing has occurred".
    334      *         -> We can set reference/change bits even on exceptions.
    335      * Note 2: certain accesses seem to ignore storage keys. For example,
    336      *         DAT translation does not set reference bits for table accesses.
    337      *
    338      * TODO: key-controlled protection. Only CPU accesses make use of the
    339      *       PSW key. CSS accesses are different - we have to pass in the key.
    340      *
    341      * TODO: we have races between getting and setting the key.
    342      */
    343     rc = skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
    344     if (rc) {
    345         trace_get_skeys_nonzero(rc);
    346         return;
    347     }
    348     old_key = key;
    349 
    350     switch (rw) {
    351     case MMU_DATA_LOAD:
    352     case MMU_INST_FETCH:
    353         /*
    354          * The TLB entry has to remain write-protected on read-faults if
    355          * the storage key does not indicate a change already. Otherwise
    356          * we might miss setting the change bit on write accesses.
    357          */
    358         if (!(key & SK_C)) {
    359             *flags &= ~PAGE_WRITE;
    360         }
    361         break;
    362     case MMU_DATA_STORE:
    363         key |= SK_C;
    364         break;
    365     default:
    366         g_assert_not_reached();
    367     }
    368 
    369     /* Any store/fetch sets the reference bit */
    370     key |= SK_R;
    371 
    372     if (key != old_key) {
    373         rc = skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
    374         if (rc) {
    375             trace_set_skeys_nonzero(rc);
    376         }
    377     }
    378 }
    379 
    380 /**
    381  * Translate a virtual (logical) address into a physical (absolute) address.
    382  * @param vaddr  the virtual address
    383  * @param rw     0 = read, 1 = write, 2 = code fetch, < 0 = load real address
    384  * @param asc    address space control (one of the PSW_ASC_* modes)
    385  * @param raddr  the translated address is stored to this pointer
    386  * @param flags  the PAGE_READ/WRITE/EXEC flags are stored to this pointer
    387  * @param tec    the translation exception code if stored to this pointer if
    388  *               there is an exception to raise
    389  * @return       0 = success, != 0, the exception to raise
    390  */
    391 int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc,
    392                   target_ulong *raddr, int *flags, uint64_t *tec)
    393 {
    394     uint64_t asce;
    395     int r;
    396 
    397     *tec = (vaddr & TARGET_PAGE_MASK) | (asc >> 46) |
    398             (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ);
    399     *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    400 
    401     if (is_low_address(vaddr & TARGET_PAGE_MASK) && lowprot_enabled(env, asc)) {
    402         /*
    403          * If any part of this page is currently protected, make sure the
    404          * TLB entry will not be reused.
    405          *
    406          * As the protected range is always the first 512 bytes of the
    407          * two first pages, we are able to catch all writes to these areas
    408          * just by looking at the start address (triggering the tlb miss).
    409          */
    410         *flags |= PAGE_WRITE_INV;
    411         if (is_low_address(vaddr) && rw == MMU_DATA_STORE) {
    412             /* LAP sets bit 56 */
    413             *tec |= 0x80;
    414             return PGM_PROTECTION;
    415         }
    416     }
    417 
    418     vaddr &= TARGET_PAGE_MASK;
    419 
    420     if (!(env->psw.mask & PSW_MASK_DAT)) {
    421         *raddr = vaddr;
    422         goto nodat;
    423     }
    424 
    425     switch (asc) {
    426     case PSW_ASC_PRIMARY:
    427         asce = env->cregs[1];
    428         break;
    429     case PSW_ASC_HOME:
    430         asce = env->cregs[13];
    431         break;
    432     case PSW_ASC_SECONDARY:
    433         asce = env->cregs[7];
    434         break;
    435     case PSW_ASC_ACCREG:
    436     default:
    437         hw_error("guest switched to unknown asc mode\n");
    438         break;
    439     }
    440 
    441     /* perform the DAT translation */
    442     r = mmu_translate_asce(env, vaddr, asc, asce, raddr, flags);
    443     if (unlikely(r)) {
    444         return r;
    445     }
    446 
    447     /* check for DAT protection */
    448     if (unlikely(rw == MMU_DATA_STORE && !(*flags & PAGE_WRITE))) {
    449         /* DAT sets bit 61 only */
    450         *tec |= 0x4;
    451         return PGM_PROTECTION;
    452     }
    453 
    454     /* check for Instruction-Execution-Protection */
    455     if (unlikely(rw == MMU_INST_FETCH && !(*flags & PAGE_EXEC))) {
    456         /* IEP sets bit 56 and 61 */
    457         *tec |= 0x84;
    458         return PGM_PROTECTION;
    459     }
    460 
    461 nodat:
    462     if (rw >= 0) {
    463         /* Convert real address -> absolute address */
    464         *raddr = mmu_real2abs(env, *raddr);
    465 
    466         if (!mmu_absolute_addr_valid(*raddr, rw == MMU_DATA_STORE)) {
    467             *tec = 0; /* unused */
    468             return PGM_ADDRESSING;
    469         }
    470 
    471         mmu_handle_skey(*raddr, rw, flags);
    472     }
    473     return 0;
    474 }
    475 
    476 /**
    477  * translate_pages: Translate a set of consecutive logical page addresses
    478  * to absolute addresses. This function is used for TCG and old KVM without
    479  * the MEMOP interface.
    480  */
    481 static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages,
    482                            target_ulong *pages, bool is_write, uint64_t *tec)
    483 {
    484     uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC;
    485     CPUS390XState *env = &cpu->env;
    486     int ret, i, pflags;
    487 
    488     for (i = 0; i < nr_pages; i++) {
    489         ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, tec);
    490         if (ret) {
    491             return ret;
    492         }
    493         addr += TARGET_PAGE_SIZE;
    494     }
    495 
    496     return 0;
    497 }
    498 
    499 int s390_cpu_pv_mem_rw(S390CPU *cpu, unsigned int offset, void *hostbuf,
    500                        int len, bool is_write)
    501 {
    502     int ret;
    503 
    504     if (kvm_enabled()) {
    505         ret = kvm_s390_mem_op_pv(cpu, offset, hostbuf, len, is_write);
    506     } else {
    507         /* Protected Virtualization is a KVM/Hardware only feature */
    508         g_assert_not_reached();
    509     }
    510     return ret;
    511 }
    512 
    513 /**
    514  * s390_cpu_virt_mem_rw:
    515  * @laddr:     the logical start address
    516  * @ar:        the access register number
    517  * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
    518  * @len:       length that should be transferred
    519  * @is_write:  true = write, false = read
    520  * Returns:    0 on success, non-zero if an exception occurred
    521  *
    522  * Copy from/to guest memory using logical addresses. Note that we inject a
    523  * program interrupt in case there is an error while accessing the memory.
    524  *
    525  * This function will always return (also for TCG), make sure to call
    526  * s390_cpu_virt_mem_handle_exc() to properly exit the CPU loop.
    527  */
    528 int s390_cpu_virt_mem_rw(S390CPU *cpu, vaddr laddr, uint8_t ar, void *hostbuf,
    529                          int len, bool is_write)
    530 {
    531     int currlen, nr_pages, i;
    532     target_ulong *pages;
    533     uint64_t tec;
    534     int ret;
    535 
    536     if (kvm_enabled()) {
    537         ret = kvm_s390_mem_op(cpu, laddr, ar, hostbuf, len, is_write);
    538         if (ret >= 0) {
    539             return ret;
    540         }
    541     }
    542 
    543     nr_pages = (((laddr & ~TARGET_PAGE_MASK) + len - 1) >> TARGET_PAGE_BITS)
    544                + 1;
    545     pages = g_malloc(nr_pages * sizeof(*pages));
    546 
    547     ret = translate_pages(cpu, laddr, nr_pages, pages, is_write, &tec);
    548     if (ret) {
    549         trigger_access_exception(&cpu->env, ret, tec);
    550     } else if (hostbuf != NULL) {
    551         /* Copy data by stepping through the area page by page */
    552         for (i = 0; i < nr_pages; i++) {
    553             currlen = MIN(len, TARGET_PAGE_SIZE - (laddr % TARGET_PAGE_SIZE));
    554             cpu_physical_memory_rw(pages[i] | (laddr & ~TARGET_PAGE_MASK),
    555                                    hostbuf, currlen, is_write);
    556             laddr += currlen;
    557             hostbuf += currlen;
    558             len -= currlen;
    559         }
    560     }
    561 
    562     g_free(pages);
    563     return ret;
    564 }
    565 
    566 void s390_cpu_virt_mem_handle_exc(S390CPU *cpu, uintptr_t ra)
    567 {
    568     /* KVM will handle the interrupt automatically, TCG has to exit the TB */
    569 #ifdef CONFIG_TCG
    570     if (tcg_enabled()) {
    571         cpu_loop_exit_restore(CPU(cpu), ra);
    572     }
    573 #endif
    574 }
    575 
    576 /**
    577  * Translate a real address into a physical (absolute) address.
    578  * @param raddr  the real address
    579  * @param rw     0 = read, 1 = write, 2 = code fetch
    580  * @param addr   the translated address is stored to this pointer
    581  * @param flags  the PAGE_READ/WRITE/EXEC flags are stored to this pointer
    582  * @return       0 = success, != 0, the exception to raise
    583  */
    584 int mmu_translate_real(CPUS390XState *env, target_ulong raddr, int rw,
    585                        target_ulong *addr, int *flags, uint64_t *tec)
    586 {
    587     const bool lowprot_enabled = env->cregs[0] & CR0_LOWPROT;
    588 
    589     *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    590     if (is_low_address(raddr & TARGET_PAGE_MASK) && lowprot_enabled) {
    591         /* see comment in mmu_translate() how this works */
    592         *flags |= PAGE_WRITE_INV;
    593         if (is_low_address(raddr) && rw == MMU_DATA_STORE) {
    594             /* LAP sets bit 56 */
    595             *tec = (raddr & TARGET_PAGE_MASK) | FS_WRITE | 0x80;
    596             return PGM_PROTECTION;
    597         }
    598     }
    599 
    600     *addr = mmu_real2abs(env, raddr & TARGET_PAGE_MASK);
    601 
    602     if (!mmu_absolute_addr_valid(*addr, rw == MMU_DATA_STORE)) {
    603         /* unused */
    604         *tec = 0;
    605         return PGM_ADDRESSING;
    606     }
    607 
    608     mmu_handle_skey(*addr, rw, flags);
    609     return 0;
    610 }