qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

pmp.c (18779B)


      1 /*
      2  * QEMU RISC-V PMP (Physical Memory Protection)
      3  *
      4  * Author: Daire McNamara, daire.mcnamara@emdalo.com
      5  *         Ivan Griffin, ivan.griffin@emdalo.com
      6  *
      7  * This provides a RISC-V Physical Memory Protection implementation
      8  *
      9  * This program is free software; you can redistribute it and/or modify it
     10  * under the terms and conditions of the GNU General Public License,
     11  * version 2 or later, as published by the Free Software Foundation.
     12  *
     13  * This program is distributed in the hope it will be useful, but WITHOUT
     14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
     16  * more details.
     17  *
     18  * You should have received a copy of the GNU General Public License along with
     19  * this program.  If not, see <http://www.gnu.org/licenses/>.
     20  */
     21 
     22 #include "qemu/osdep.h"
     23 #include "qemu/log.h"
     24 #include "qapi/error.h"
     25 #include "cpu.h"
     26 #include "trace.h"
     27 #include "exec/exec-all.h"
     28 
     29 static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index,
     30     uint8_t val);
     31 static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index);
     32 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index);
     33 
     34 /*
     35  * Accessor method to extract address matching type 'a field' from cfg reg
     36  */
     37 static inline uint8_t pmp_get_a_field(uint8_t cfg)
     38 {
     39     uint8_t a = cfg >> 3;
     40     return a & 0x3;
     41 }
     42 
     43 /*
     44  * Check whether a PMP is locked or not.
     45  */
     46 static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index)
     47 {
     48 
     49     if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) {
     50         return 1;
     51     }
     52 
     53     /* Top PMP has no 'next' to check */
     54     if ((pmp_index + 1u) >= MAX_RISCV_PMPS) {
     55         return 0;
     56     }
     57 
     58     return 0;
     59 }
     60 
     61 /*
     62  * Count the number of active rules.
     63  */
     64 uint32_t pmp_get_num_rules(CPURISCVState *env)
     65 {
     66      return env->pmp_state.num_rules;
     67 }
     68 
     69 /*
     70  * Accessor to get the cfg reg for a specific PMP/HART
     71  */
     72 static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index)
     73 {
     74     if (pmp_index < MAX_RISCV_PMPS) {
     75         return env->pmp_state.pmp[pmp_index].cfg_reg;
     76     }
     77 
     78     return 0;
     79 }
     80 
     81 
     82 /*
     83  * Accessor to set the cfg reg for a specific PMP/HART
     84  * Bounds checks and relevant lock bit.
     85  */
     86 static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val)
     87 {
     88     if (pmp_index < MAX_RISCV_PMPS) {
     89         bool locked = true;
     90 
     91         if (riscv_feature(env, RISCV_FEATURE_EPMP)) {
     92             /* mseccfg.RLB is set */
     93             if (MSECCFG_RLB_ISSET(env)) {
     94                 locked = false;
     95             }
     96 
     97             /* mseccfg.MML is not set */
     98             if (!MSECCFG_MML_ISSET(env) && !pmp_is_locked(env, pmp_index)) {
     99                 locked = false;
    100             }
    101 
    102             /* mseccfg.MML is set */
    103             if (MSECCFG_MML_ISSET(env)) {
    104                 /* not adding execute bit */
    105                 if ((val & PMP_LOCK) != 0 && (val & PMP_EXEC) != PMP_EXEC) {
    106                     locked = false;
    107                 }
    108                 /* shared region and not adding X bit */
    109                 if ((val & PMP_LOCK) != PMP_LOCK &&
    110                     (val & 0x7) != (PMP_WRITE | PMP_EXEC)) {
    111                     locked = false;
    112                 }
    113             }
    114         } else {
    115             if (!pmp_is_locked(env, pmp_index)) {
    116                 locked = false;
    117             }
    118         }
    119 
    120         if (locked) {
    121             qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n");
    122         } else {
    123             env->pmp_state.pmp[pmp_index].cfg_reg = val;
    124             pmp_update_rule(env, pmp_index);
    125         }
    126     } else {
    127         qemu_log_mask(LOG_GUEST_ERROR,
    128                       "ignoring pmpcfg write - out of bounds\n");
    129     }
    130 }
    131 
    132 static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea)
    133 {
    134     /*
    135        aaaa...aaa0   8-byte NAPOT range
    136        aaaa...aa01   16-byte NAPOT range
    137        aaaa...a011   32-byte NAPOT range
    138        ...
    139        aa01...1111   2^XLEN-byte NAPOT range
    140        a011...1111   2^(XLEN+1)-byte NAPOT range
    141        0111...1111   2^(XLEN+2)-byte NAPOT range
    142        1111...1111   Reserved
    143     */
    144     a = (a << 2) | 0x3;
    145     *sa = a & (a + 1);
    146     *ea = a | (a + 1);
    147 }
    148 
    149 void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index)
    150 {
    151     uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg;
    152     target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg;
    153     target_ulong prev_addr = 0u;
    154     target_ulong sa = 0u;
    155     target_ulong ea = 0u;
    156 
    157     if (pmp_index >= 1u) {
    158         prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg;
    159     }
    160 
    161     switch (pmp_get_a_field(this_cfg)) {
    162     case PMP_AMATCH_OFF:
    163         sa = 0u;
    164         ea = -1;
    165         break;
    166 
    167     case PMP_AMATCH_TOR:
    168         sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
    169         ea = (this_addr << 2) - 1u;
    170         if (sa > ea) {
    171             sa = ea = 0u;
    172         }
    173         break;
    174 
    175     case PMP_AMATCH_NA4:
    176         sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
    177         ea = (sa + 4u) - 1u;
    178         break;
    179 
    180     case PMP_AMATCH_NAPOT:
    181         pmp_decode_napot(this_addr, &sa, &ea);
    182         break;
    183 
    184     default:
    185         sa = 0u;
    186         ea = 0u;
    187         break;
    188     }
    189 
    190     env->pmp_state.addr[pmp_index].sa = sa;
    191     env->pmp_state.addr[pmp_index].ea = ea;
    192 }
    193 
    194 void pmp_update_rule_nums(CPURISCVState *env)
    195 {
    196     int i;
    197 
    198     env->pmp_state.num_rules = 0;
    199     for (i = 0; i < MAX_RISCV_PMPS; i++) {
    200         const uint8_t a_field =
    201             pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
    202         if (PMP_AMATCH_OFF != a_field) {
    203             env->pmp_state.num_rules++;
    204         }
    205     }
    206 }
    207 
    208 /* Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea'
    209  *   end address values.
    210  *   This function is called relatively infrequently whereas the check that
    211  *   an address is within a pmp rule is called often, so optimise that one
    212  */
    213 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index)
    214 {
    215     pmp_update_rule_addr(env, pmp_index);
    216     pmp_update_rule_nums(env);
    217 }
    218 
    219 static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr)
    220 {
    221     int result = 0;
    222 
    223     if ((addr >= env->pmp_state.addr[pmp_index].sa)
    224         && (addr <= env->pmp_state.addr[pmp_index].ea)) {
    225         result = 1;
    226     } else {
    227         result = 0;
    228     }
    229 
    230     return result;
    231 }
    232 
    233 /*
    234  * Check if the address has required RWX privs when no PMP entry is matched.
    235  */
    236 static bool pmp_hart_has_privs_default(CPURISCVState *env, target_ulong addr,
    237     target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs,
    238     target_ulong mode)
    239 {
    240     bool ret;
    241 
    242     if (riscv_feature(env, RISCV_FEATURE_EPMP)) {
    243         if (MSECCFG_MMWP_ISSET(env)) {
    244             /*
    245              * The Machine Mode Whitelist Policy (mseccfg.MMWP) is set
    246              * so we default to deny all, even for M-mode.
    247              */
    248             *allowed_privs = 0;
    249             return false;
    250         } else if (MSECCFG_MML_ISSET(env)) {
    251             /*
    252              * The Machine Mode Lockdown (mseccfg.MML) bit is set
    253              * so we can only execute code in M-mode with an applicable
    254              * rule. Other modes are disabled.
    255              */
    256             if (mode == PRV_M && !(privs & PMP_EXEC)) {
    257                 ret = true;
    258                 *allowed_privs = PMP_READ | PMP_WRITE;
    259             } else {
    260                 ret = false;
    261                 *allowed_privs = 0;
    262             }
    263 
    264             return ret;
    265         }
    266     }
    267 
    268     if ((!riscv_feature(env, RISCV_FEATURE_PMP)) || (mode == PRV_M)) {
    269         /*
    270          * Privileged spec v1.10 states if HW doesn't implement any PMP entry
    271          * or no PMP entry matches an M-Mode access, the access succeeds.
    272          */
    273         ret = true;
    274         *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
    275     } else {
    276         /*
    277          * Other modes are not allowed to succeed if they don't * match a rule,
    278          * but there are rules. We've checked for no rule earlier in this
    279          * function.
    280          */
    281         ret = false;
    282         *allowed_privs = 0;
    283     }
    284 
    285     return ret;
    286 }
    287 
    288 
    289 /*
    290  * Public Interface
    291  */
    292 
    293 /*
    294  * Check if the address has required RWX privs to complete desired operation
    295  */
    296 bool pmp_hart_has_privs(CPURISCVState *env, target_ulong addr,
    297     target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs,
    298     target_ulong mode)
    299 {
    300     int i = 0;
    301     int ret = -1;
    302     int pmp_size = 0;
    303     target_ulong s = 0;
    304     target_ulong e = 0;
    305 
    306     /* Short cut if no rules */
    307     if (0 == pmp_get_num_rules(env)) {
    308         return pmp_hart_has_privs_default(env, addr, size, privs,
    309                                           allowed_privs, mode);
    310     }
    311 
    312     if (size == 0) {
    313         if (riscv_feature(env, RISCV_FEATURE_MMU)) {
    314             /*
    315              * If size is unknown (0), assume that all bytes
    316              * from addr to the end of the page will be accessed.
    317              */
    318             pmp_size = -(addr | TARGET_PAGE_MASK);
    319         } else {
    320             pmp_size = sizeof(target_ulong);
    321         }
    322     } else {
    323         pmp_size = size;
    324     }
    325 
    326     /* 1.10 draft priv spec states there is an implicit order
    327          from low to high */
    328     for (i = 0; i < MAX_RISCV_PMPS; i++) {
    329         s = pmp_is_in_range(env, i, addr);
    330         e = pmp_is_in_range(env, i, addr + pmp_size - 1);
    331 
    332         /* partially inside */
    333         if ((s + e) == 1) {
    334             qemu_log_mask(LOG_GUEST_ERROR,
    335                           "pmp violation - access is partially inside\n");
    336             ret = 0;
    337             break;
    338         }
    339 
    340         /* fully inside */
    341         const uint8_t a_field =
    342             pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
    343 
    344         /*
    345          * Convert the PMP permissions to match the truth table in the
    346          * ePMP spec.
    347          */
    348         const uint8_t epmp_operation =
    349             ((env->pmp_state.pmp[i].cfg_reg & PMP_LOCK) >> 4) |
    350             ((env->pmp_state.pmp[i].cfg_reg & PMP_READ) << 2) |
    351             (env->pmp_state.pmp[i].cfg_reg & PMP_WRITE) |
    352             ((env->pmp_state.pmp[i].cfg_reg & PMP_EXEC) >> 2);
    353 
    354         if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) {
    355             /*
    356              * If the PMP entry is not off and the address is in range,
    357              * do the priv check
    358              */
    359             if (!MSECCFG_MML_ISSET(env)) {
    360                 /*
    361                  * If mseccfg.MML Bit is not set, do pmp priv check
    362                  * This will always apply to regular PMP.
    363                  */
    364                 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
    365                 if ((mode != PRV_M) || pmp_is_locked(env, i)) {
    366                     *allowed_privs &= env->pmp_state.pmp[i].cfg_reg;
    367                 }
    368             } else {
    369                 /*
    370                  * If mseccfg.MML Bit set, do the enhanced pmp priv check
    371                  */
    372                 if (mode == PRV_M) {
    373                     switch (epmp_operation) {
    374                     case 0:
    375                     case 1:
    376                     case 4:
    377                     case 5:
    378                     case 6:
    379                     case 7:
    380                     case 8:
    381                         *allowed_privs = 0;
    382                         break;
    383                     case 2:
    384                     case 3:
    385                     case 14:
    386                         *allowed_privs = PMP_READ | PMP_WRITE;
    387                         break;
    388                     case 9:
    389                     case 10:
    390                         *allowed_privs = PMP_EXEC;
    391                         break;
    392                     case 11:
    393                     case 13:
    394                         *allowed_privs = PMP_READ | PMP_EXEC;
    395                         break;
    396                     case 12:
    397                     case 15:
    398                         *allowed_privs = PMP_READ;
    399                         break;
    400                     default:
    401                         g_assert_not_reached();
    402                     }
    403                 } else {
    404                     switch (epmp_operation) {
    405                     case 0:
    406                     case 8:
    407                     case 9:
    408                     case 12:
    409                     case 13:
    410                     case 14:
    411                         *allowed_privs = 0;
    412                         break;
    413                     case 1:
    414                     case 10:
    415                     case 11:
    416                         *allowed_privs = PMP_EXEC;
    417                         break;
    418                     case 2:
    419                     case 4:
    420                     case 15:
    421                         *allowed_privs = PMP_READ;
    422                         break;
    423                     case 3:
    424                     case 6:
    425                         *allowed_privs = PMP_READ | PMP_WRITE;
    426                         break;
    427                     case 5:
    428                         *allowed_privs = PMP_READ | PMP_EXEC;
    429                         break;
    430                     case 7:
    431                         *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
    432                         break;
    433                     default:
    434                         g_assert_not_reached();
    435                     }
    436                 }
    437             }
    438 
    439             ret = ((privs & *allowed_privs) == privs);
    440             break;
    441         }
    442     }
    443 
    444     /* No rule matched */
    445     if (ret == -1) {
    446         return pmp_hart_has_privs_default(env, addr, size, privs,
    447                                           allowed_privs, mode);
    448     }
    449 
    450     return ret == 1 ? true : false;
    451 }
    452 
    453 /*
    454  * Handle a write to a pmpcfg CSR
    455  */
    456 void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index,
    457     target_ulong val)
    458 {
    459     int i;
    460     uint8_t cfg_val;
    461     int pmpcfg_nums = 2 << riscv_cpu_mxl(env);
    462 
    463     trace_pmpcfg_csr_write(env->mhartid, reg_index, val);
    464 
    465     for (i = 0; i < pmpcfg_nums; i++) {
    466         cfg_val = (val >> 8 * i)  & 0xff;
    467         pmp_write_cfg(env, (reg_index * 4) + i, cfg_val);
    468     }
    469 
    470     /* If PMP permission of any addr has been changed, flush TLB pages. */
    471     tlb_flush(env_cpu(env));
    472 }
    473 
    474 
    475 /*
    476  * Handle a read from a pmpcfg CSR
    477  */
    478 target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index)
    479 {
    480     int i;
    481     target_ulong cfg_val = 0;
    482     target_ulong val = 0;
    483     int pmpcfg_nums = 2 << riscv_cpu_mxl(env);
    484 
    485     for (i = 0; i < pmpcfg_nums; i++) {
    486         val = pmp_read_cfg(env, (reg_index * 4) + i);
    487         cfg_val |= (val << (i * 8));
    488     }
    489     trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val);
    490 
    491     return cfg_val;
    492 }
    493 
    494 
    495 /*
    496  * Handle a write to a pmpaddr CSR
    497  */
    498 void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index,
    499     target_ulong val)
    500 {
    501     trace_pmpaddr_csr_write(env->mhartid, addr_index, val);
    502 
    503     if (addr_index < MAX_RISCV_PMPS) {
    504         /*
    505          * In TOR mode, need to check the lock bit of the next pmp
    506          * (if there is a next).
    507          */
    508         if (addr_index + 1 < MAX_RISCV_PMPS) {
    509             uint8_t pmp_cfg = env->pmp_state.pmp[addr_index + 1].cfg_reg;
    510 
    511             if (pmp_cfg & PMP_LOCK &&
    512                 PMP_AMATCH_TOR == pmp_get_a_field(pmp_cfg)) {
    513                 qemu_log_mask(LOG_GUEST_ERROR,
    514                               "ignoring pmpaddr write - pmpcfg + 1 locked\n");
    515                 return;
    516             }
    517         }
    518 
    519         if (!pmp_is_locked(env, addr_index)) {
    520             env->pmp_state.pmp[addr_index].addr_reg = val;
    521             pmp_update_rule(env, addr_index);
    522         } else {
    523             qemu_log_mask(LOG_GUEST_ERROR,
    524                           "ignoring pmpaddr write - locked\n");
    525         }
    526     } else {
    527         qemu_log_mask(LOG_GUEST_ERROR,
    528                       "ignoring pmpaddr write - out of bounds\n");
    529     }
    530 }
    531 
    532 
    533 /*
    534  * Handle a read from a pmpaddr CSR
    535  */
    536 target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index)
    537 {
    538     target_ulong val = 0;
    539 
    540     if (addr_index < MAX_RISCV_PMPS) {
    541         val = env->pmp_state.pmp[addr_index].addr_reg;
    542         trace_pmpaddr_csr_read(env->mhartid, addr_index, val);
    543     } else {
    544         qemu_log_mask(LOG_GUEST_ERROR,
    545                       "ignoring pmpaddr read - out of bounds\n");
    546     }
    547 
    548     return val;
    549 }
    550 
    551 /*
    552  * Handle a write to a mseccfg CSR
    553  */
    554 void mseccfg_csr_write(CPURISCVState *env, target_ulong val)
    555 {
    556     int i;
    557 
    558     trace_mseccfg_csr_write(env->mhartid, val);
    559 
    560     /* RLB cannot be enabled if it's already 0 and if any regions are locked */
    561     if (!MSECCFG_RLB_ISSET(env)) {
    562         for (i = 0; i < MAX_RISCV_PMPS; i++) {
    563             if (pmp_is_locked(env, i)) {
    564                 val &= ~MSECCFG_RLB;
    565                 break;
    566             }
    567         }
    568     }
    569 
    570     /* Sticky bits */
    571     val |= (env->mseccfg & (MSECCFG_MMWP | MSECCFG_MML));
    572 
    573     env->mseccfg = val;
    574 }
    575 
    576 /*
    577  * Handle a read from a mseccfg CSR
    578  */
    579 target_ulong mseccfg_csr_read(CPURISCVState *env)
    580 {
    581     trace_mseccfg_csr_read(env->mhartid, env->mseccfg);
    582     return env->mseccfg;
    583 }
    584 
    585 /*
    586  * Calculate the TLB size if the start address or the end address of
    587  * PMP entry is presented in the TLB page.
    588  */
    589 static target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index,
    590                                      target_ulong tlb_sa, target_ulong tlb_ea)
    591 {
    592     target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa;
    593     target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea;
    594 
    595     if (pmp_sa >= tlb_sa && pmp_ea <= tlb_ea) {
    596         return pmp_ea - pmp_sa + 1;
    597     }
    598 
    599     if (pmp_sa >= tlb_sa && pmp_sa <= tlb_ea && pmp_ea >= tlb_ea) {
    600         return tlb_ea - pmp_sa + 1;
    601     }
    602 
    603     if (pmp_ea <= tlb_ea && pmp_ea >= tlb_sa && pmp_sa <= tlb_sa) {
    604         return pmp_ea - tlb_sa + 1;
    605     }
    606 
    607     return 0;
    608 }
    609 
    610 /*
    611  * Check is there a PMP entry which range covers this page. If so,
    612  * try to find the minimum granularity for the TLB size.
    613  */
    614 bool pmp_is_range_in_tlb(CPURISCVState *env, hwaddr tlb_sa,
    615                          target_ulong *tlb_size)
    616 {
    617     int i;
    618     target_ulong val;
    619     target_ulong tlb_ea = (tlb_sa + TARGET_PAGE_SIZE - 1);
    620 
    621     for (i = 0; i < MAX_RISCV_PMPS; i++) {
    622         val = pmp_get_tlb_size(env, i, tlb_sa, tlb_ea);
    623         if (val) {
    624             if (*tlb_size == 0 || *tlb_size > val) {
    625                 *tlb_size = val;
    626             }
    627         }
    628     }
    629 
    630     if (*tlb_size != 0) {
    631         /*
    632          * At this point we have a tlb_size that is the smallest possible size
    633          * That fits within a TARGET_PAGE_SIZE and the PMP region.
    634          *
    635          * If the size is less then TARGET_PAGE_SIZE we drop the size to 1.
    636          * This means the result isn't cached in the TLB and is only used for
    637          * a single translation.
    638          */
    639         if (*tlb_size < TARGET_PAGE_SIZE) {
    640             *tlb_size = 1;
    641         }
    642 
    643         return true;
    644     }
    645 
    646     return false;
    647 }
    648 
    649 /*
    650  * Convert PMP privilege to TLB page privilege.
    651  */
    652 int pmp_priv_to_page_prot(pmp_priv_t pmp_priv)
    653 {
    654     int prot = 0;
    655 
    656     if (pmp_priv & PMP_READ) {
    657         prot |= PAGE_READ;
    658     }
    659     if (pmp_priv & PMP_WRITE) {
    660         prot |= PAGE_WRITE;
    661     }
    662     if (pmp_priv & PMP_EXEC) {
    663         prot |= PAGE_EXEC;
    664     }
    665 
    666     return prot;
    667 }