trans_rvv.c.inc (143368B)
1 /* 2 * 3 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2 or later, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 #include "tcg/tcg-op-gvec.h" 18 #include "tcg/tcg-gvec-desc.h" 19 #include "internals.h" 20 21 static inline bool is_overlapped(const int8_t astart, int8_t asize, 22 const int8_t bstart, int8_t bsize) 23 { 24 const int8_t aend = astart + asize; 25 const int8_t bend = bstart + bsize; 26 27 return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize; 28 } 29 30 static bool require_rvv(DisasContext *s) 31 { 32 return s->mstatus_vs != 0; 33 } 34 35 static bool require_rvf(DisasContext *s) 36 { 37 if (s->mstatus_fs == 0) { 38 return false; 39 } 40 41 switch (s->sew) { 42 case MO_16: 43 case MO_32: 44 return has_ext(s, RVF); 45 case MO_64: 46 return has_ext(s, RVD); 47 default: 48 return false; 49 } 50 } 51 52 static bool require_scale_rvf(DisasContext *s) 53 { 54 if (s->mstatus_fs == 0) { 55 return false; 56 } 57 58 switch (s->sew) { 59 case MO_8: 60 case MO_16: 61 return has_ext(s, RVF); 62 case MO_32: 63 return has_ext(s, RVD); 64 default: 65 return false; 66 } 67 } 68 69 static bool require_zve32f(DisasContext *s) 70 { 71 /* RVV + Zve32f = RVV. */ 72 if (has_ext(s, RVV)) { 73 return true; 74 } 75 76 /* Zve32f doesn't support FP64. (Section 18.2) */ 77 return s->cfg_ptr->ext_zve32f ? s->sew <= MO_32 : true; 78 } 79 80 static bool require_scale_zve32f(DisasContext *s) 81 { 82 /* RVV + Zve32f = RVV. */ 83 if (has_ext(s, RVV)) { 84 return true; 85 } 86 87 /* Zve32f doesn't support FP64. (Section 18.2) */ 88 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 89 } 90 91 static bool require_zve64f(DisasContext *s) 92 { 93 /* RVV + Zve64f = RVV. */ 94 if (has_ext(s, RVV)) { 95 return true; 96 } 97 98 /* Zve64f doesn't support FP64. (Section 18.2) */ 99 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_32 : true; 100 } 101 102 static bool require_scale_zve64f(DisasContext *s) 103 { 104 /* RVV + Zve64f = RVV. */ 105 if (has_ext(s, RVV)) { 106 return true; 107 } 108 109 /* Zve64f doesn't support FP64. (Section 18.2) */ 110 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 111 } 112 113 /* Destination vector register group cannot overlap source mask register. */ 114 static bool require_vm(int vm, int vd) 115 { 116 return (vm != 0 || vd != 0); 117 } 118 119 static bool require_nf(int vd, int nf, int lmul) 120 { 121 int size = nf << MAX(lmul, 0); 122 return size <= 8 && vd + size <= 32; 123 } 124 125 /* 126 * Vector register should aligned with the passed-in LMUL (EMUL). 127 * If LMUL < 0, i.e. fractional LMUL, any vector register is allowed. 128 */ 129 static bool require_align(const int8_t val, const int8_t lmul) 130 { 131 return lmul <= 0 || extract32(val, 0, lmul) == 0; 132 } 133 134 /* 135 * A destination vector register group can overlap a source vector 136 * register group only if one of the following holds: 137 * 1. The destination EEW equals the source EEW. 138 * 2. The destination EEW is smaller than the source EEW and the overlap 139 * is in the lowest-numbered part of the source register group. 140 * 3. The destination EEW is greater than the source EEW, the source EMUL 141 * is at least 1, and the overlap is in the highest-numbered part of 142 * the destination register group. 143 * (Section 5.2) 144 * 145 * This function returns true if one of the following holds: 146 * * Destination vector register group does not overlap a source vector 147 * register group. 148 * * Rule 3 met. 149 * For rule 1, overlap is allowed so this function doesn't need to be called. 150 * For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before 151 * calling this function. 152 */ 153 static bool require_noover(const int8_t dst, const int8_t dst_lmul, 154 const int8_t src, const int8_t src_lmul) 155 { 156 int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul; 157 int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul; 158 159 /* Destination EEW is greater than the source EEW, check rule 3. */ 160 if (dst_size > src_size) { 161 if (dst < src && 162 src_lmul >= 0 && 163 is_overlapped(dst, dst_size, src, src_size) && 164 !is_overlapped(dst, dst_size, src + src_size, src_size)) { 165 return true; 166 } 167 } 168 169 return !is_overlapped(dst, dst_size, src, src_size); 170 } 171 172 static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2) 173 { 174 TCGv s1, dst; 175 176 if (!require_rvv(s) || 177 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 178 s->cfg_ptr->ext_zve64f)) { 179 return false; 180 } 181 182 dst = dest_gpr(s, rd); 183 184 if (rd == 0 && rs1 == 0) { 185 s1 = tcg_temp_new(); 186 tcg_gen_mov_tl(s1, cpu_vl); 187 } else if (rs1 == 0) { 188 /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ 189 s1 = tcg_constant_tl(RV_VLEN_MAX); 190 } else { 191 s1 = get_gpr(s, rs1, EXT_ZERO); 192 } 193 194 gen_helper_vsetvl(dst, cpu_env, s1, s2); 195 gen_set_gpr(s, rd, dst); 196 mark_vs_dirty(s); 197 198 gen_set_pc_imm(s, s->pc_succ_insn); 199 tcg_gen_lookup_and_goto_ptr(); 200 s->base.is_jmp = DISAS_NORETURN; 201 202 if (rd == 0 && rs1 == 0) { 203 tcg_temp_free(s1); 204 } 205 206 return true; 207 } 208 209 static bool do_vsetivli(DisasContext *s, int rd, TCGv s1, TCGv s2) 210 { 211 TCGv dst; 212 213 if (!require_rvv(s) || 214 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 215 s->cfg_ptr->ext_zve64f)) { 216 return false; 217 } 218 219 dst = dest_gpr(s, rd); 220 221 gen_helper_vsetvl(dst, cpu_env, s1, s2); 222 gen_set_gpr(s, rd, dst); 223 mark_vs_dirty(s); 224 gen_set_pc_imm(s, s->pc_succ_insn); 225 tcg_gen_lookup_and_goto_ptr(); 226 s->base.is_jmp = DISAS_NORETURN; 227 228 return true; 229 } 230 231 static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a) 232 { 233 TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO); 234 return do_vsetvl(s, a->rd, a->rs1, s2); 235 } 236 237 static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a) 238 { 239 TCGv s2 = tcg_constant_tl(a->zimm); 240 return do_vsetvl(s, a->rd, a->rs1, s2); 241 } 242 243 static bool trans_vsetivli(DisasContext *s, arg_vsetivli *a) 244 { 245 TCGv s1 = tcg_const_tl(a->rs1); 246 TCGv s2 = tcg_const_tl(a->zimm); 247 return do_vsetivli(s, a->rd, s1, s2); 248 } 249 250 /* vector register offset from env */ 251 static uint32_t vreg_ofs(DisasContext *s, int reg) 252 { 253 return offsetof(CPURISCVState, vreg) + reg * s->cfg_ptr->vlen / 8; 254 } 255 256 /* check functions */ 257 258 /* 259 * Vector unit-stride, strided, unit-stride segment, strided segment 260 * store check function. 261 * 262 * Rules to be checked here: 263 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 264 * 2. Destination vector register number is multiples of EMUL. 265 * (Section 3.4.2, 7.3) 266 * 3. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 267 * 4. Vector register numbers accessed by the segment load or store 268 * cannot increment past 31. (Section 7.8) 269 */ 270 static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew) 271 { 272 int8_t emul = eew - s->sew + s->lmul; 273 return (emul >= -3 && emul <= 3) && 274 require_align(vd, emul) && 275 require_nf(vd, nf, emul); 276 } 277 278 /* 279 * Vector unit-stride, strided, unit-stride segment, strided segment 280 * load check function. 281 * 282 * Rules to be checked here: 283 * 1. All rules applies to store instructions are applies 284 * to load instructions. 285 * 2. Destination vector register group for a masked vector 286 * instruction cannot overlap the source mask register (v0). 287 * (Section 5.3) 288 */ 289 static bool vext_check_load(DisasContext *s, int vd, int nf, int vm, 290 uint8_t eew) 291 { 292 return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd); 293 } 294 295 /* 296 * Vector indexed, indexed segment store check function. 297 * 298 * Rules to be checked here: 299 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 300 * 2. Index vector register number is multiples of EMUL. 301 * (Section 3.4.2, 7.3) 302 * 3. Destination vector register number is multiples of LMUL. 303 * (Section 3.4.2, 7.3) 304 * 4. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 305 * 5. Vector register numbers accessed by the segment load or store 306 * cannot increment past 31. (Section 7.8) 307 */ 308 static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf, 309 uint8_t eew) 310 { 311 int8_t emul = eew - s->sew + s->lmul; 312 bool ret = (emul >= -3 && emul <= 3) && 313 require_align(vs2, emul) && 314 require_align(vd, s->lmul) && 315 require_nf(vd, nf, s->lmul); 316 317 /* 318 * All Zve* extensions support all vector load and store instructions, 319 * except Zve64* extensions do not support EEW=64 for index values 320 * when XLEN=32. (Section 18.2) 321 */ 322 if (get_xl(s) == MXL_RV32) { 323 ret &= (!has_ext(s, RVV) && 324 s->cfg_ptr->ext_zve64f ? eew != MO_64 : true); 325 } 326 327 return ret; 328 } 329 330 /* 331 * Vector indexed, indexed segment load check function. 332 * 333 * Rules to be checked here: 334 * 1. All rules applies to store instructions are applies 335 * to load instructions. 336 * 2. Destination vector register group for a masked vector 337 * instruction cannot overlap the source mask register (v0). 338 * (Section 5.3) 339 * 3. Destination vector register cannot overlap a source vector 340 * register (vs2) group. 341 * (Section 5.2) 342 * 4. Destination vector register groups cannot overlap 343 * the source vector register (vs2) group for 344 * indexed segment load instructions. (Section 7.8.3) 345 */ 346 static bool vext_check_ld_index(DisasContext *s, int vd, int vs2, 347 int nf, int vm, uint8_t eew) 348 { 349 int8_t seg_vd; 350 int8_t emul = eew - s->sew + s->lmul; 351 bool ret = vext_check_st_index(s, vd, vs2, nf, eew) && 352 require_vm(vm, vd); 353 354 /* Each segment register group has to follow overlap rules. */ 355 for (int i = 0; i < nf; ++i) { 356 seg_vd = vd + (1 << MAX(s->lmul, 0)) * i; 357 358 if (eew > s->sew) { 359 if (seg_vd != vs2) { 360 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 361 } 362 } else if (eew < s->sew) { 363 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 364 } 365 366 /* 367 * Destination vector register groups cannot overlap 368 * the source vector register (vs2) group for 369 * indexed segment load instructions. 370 */ 371 if (nf > 1) { 372 ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0), 373 vs2, 1 << MAX(emul, 0)); 374 } 375 } 376 return ret; 377 } 378 379 static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm) 380 { 381 return require_vm(vm, vd) && 382 require_align(vd, s->lmul) && 383 require_align(vs, s->lmul); 384 } 385 386 /* 387 * Check function for vector instruction with format: 388 * single-width result and single-width sources (SEW = SEW op SEW) 389 * 390 * Rules to be checked here: 391 * 1. Destination vector register group for a masked vector 392 * instruction cannot overlap the source mask register (v0). 393 * (Section 5.3) 394 * 2. Destination vector register number is multiples of LMUL. 395 * (Section 3.4.2) 396 * 3. Source (vs2, vs1) vector register number are multiples of LMUL. 397 * (Section 3.4.2) 398 */ 399 static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm) 400 { 401 return vext_check_ss(s, vd, vs2, vm) && 402 require_align(vs1, s->lmul); 403 } 404 405 static bool vext_check_ms(DisasContext *s, int vd, int vs) 406 { 407 bool ret = require_align(vs, s->lmul); 408 if (vd != vs) { 409 ret &= require_noover(vd, 0, vs, s->lmul); 410 } 411 return ret; 412 } 413 414 /* 415 * Check function for maskable vector instruction with format: 416 * single-width result and single-width sources (SEW = SEW op SEW) 417 * 418 * Rules to be checked here: 419 * 1. Source (vs2, vs1) vector register number are multiples of LMUL. 420 * (Section 3.4.2) 421 * 2. Destination vector register cannot overlap a source vector 422 * register (vs2, vs1) group. 423 * (Section 5.2) 424 * 3. The destination vector register group for a masked vector 425 * instruction cannot overlap the source mask register (v0), 426 * unless the destination vector register is being written 427 * with a mask value (e.g., comparisons) or the scalar result 428 * of a reduction. (Section 5.3) 429 */ 430 static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2) 431 { 432 bool ret = vext_check_ms(s, vd, vs2) && 433 require_align(vs1, s->lmul); 434 if (vd != vs1) { 435 ret &= require_noover(vd, 0, vs1, s->lmul); 436 } 437 return ret; 438 } 439 440 /* 441 * Common check function for vector widening instructions 442 * of double-width result (2*SEW). 443 * 444 * Rules to be checked here: 445 * 1. The largest vector register group used by an instruction 446 * can not be greater than 8 vector registers (Section 5.2): 447 * => LMUL < 8. 448 * => SEW < 64. 449 * 2. Double-width SEW cannot greater than ELEN. 450 * 3. Destination vector register number is multiples of 2 * LMUL. 451 * (Section 3.4.2) 452 * 4. Destination vector register group for a masked vector 453 * instruction cannot overlap the source mask register (v0). 454 * (Section 5.3) 455 */ 456 static bool vext_wide_check_common(DisasContext *s, int vd, int vm) 457 { 458 return (s->lmul <= 2) && 459 (s->sew < MO_64) && 460 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 461 require_align(vd, s->lmul + 1) && 462 require_vm(vm, vd); 463 } 464 465 /* 466 * Common check function for vector narrowing instructions 467 * of single-width result (SEW) and double-width source (2*SEW). 468 * 469 * Rules to be checked here: 470 * 1. The largest vector register group used by an instruction 471 * can not be greater than 8 vector registers (Section 5.2): 472 * => LMUL < 8. 473 * => SEW < 64. 474 * 2. Double-width SEW cannot greater than ELEN. 475 * 3. Source vector register number is multiples of 2 * LMUL. 476 * (Section 3.4.2) 477 * 4. Destination vector register number is multiples of LMUL. 478 * (Section 3.4.2) 479 * 5. Destination vector register group for a masked vector 480 * instruction cannot overlap the source mask register (v0). 481 * (Section 5.3) 482 */ 483 static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2, 484 int vm) 485 { 486 return (s->lmul <= 2) && 487 (s->sew < MO_64) && 488 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 489 require_align(vs2, s->lmul + 1) && 490 require_align(vd, s->lmul) && 491 require_vm(vm, vd); 492 } 493 494 static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm) 495 { 496 return vext_wide_check_common(s, vd, vm) && 497 require_align(vs, s->lmul) && 498 require_noover(vd, s->lmul + 1, vs, s->lmul); 499 } 500 501 static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm) 502 { 503 return vext_wide_check_common(s, vd, vm) && 504 require_align(vs, s->lmul + 1); 505 } 506 507 /* 508 * Check function for vector instruction with format: 509 * double-width result and single-width sources (2*SEW = SEW op SEW) 510 * 511 * Rules to be checked here: 512 * 1. All rules in defined in widen common rules are applied. 513 * 2. Source (vs2, vs1) vector register number are multiples of LMUL. 514 * (Section 3.4.2) 515 * 3. Destination vector register cannot overlap a source vector 516 * register (vs2, vs1) group. 517 * (Section 5.2) 518 */ 519 static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm) 520 { 521 return vext_check_ds(s, vd, vs2, vm) && 522 require_align(vs1, s->lmul) && 523 require_noover(vd, s->lmul + 1, vs1, s->lmul); 524 } 525 526 /* 527 * Check function for vector instruction with format: 528 * double-width result and double-width source1 and single-width 529 * source2 (2*SEW = 2*SEW op SEW) 530 * 531 * Rules to be checked here: 532 * 1. All rules in defined in widen common rules are applied. 533 * 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL. 534 * (Section 3.4.2) 535 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 536 * (Section 3.4.2) 537 * 4. Destination vector register cannot overlap a source vector 538 * register (vs1) group. 539 * (Section 5.2) 540 */ 541 static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm) 542 { 543 return vext_check_ds(s, vd, vs1, vm) && 544 require_align(vs2, s->lmul + 1); 545 } 546 547 static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm) 548 { 549 bool ret = vext_narrow_check_common(s, vd, vs, vm); 550 if (vd != vs) { 551 ret &= require_noover(vd, s->lmul, vs, s->lmul + 1); 552 } 553 return ret; 554 } 555 556 /* 557 * Check function for vector instruction with format: 558 * single-width result and double-width source 1 and single-width 559 * source 2 (SEW = 2*SEW op SEW) 560 * 561 * Rules to be checked here: 562 * 1. All rules in defined in narrow common rules are applied. 563 * 2. Destination vector register cannot overlap a source vector 564 * register (vs2) group. 565 * (Section 5.2) 566 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 567 * (Section 3.4.2) 568 */ 569 static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm) 570 { 571 return vext_check_sd(s, vd, vs2, vm) && 572 require_align(vs1, s->lmul); 573 } 574 575 /* 576 * Check function for vector reduction instructions. 577 * 578 * Rules to be checked here: 579 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 580 * (Section 3.4.2) 581 */ 582 static bool vext_check_reduction(DisasContext *s, int vs2) 583 { 584 return require_align(vs2, s->lmul) && (s->vstart == 0); 585 } 586 587 /* 588 * Check function for vector slide instructions. 589 * 590 * Rules to be checked here: 591 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 592 * (Section 3.4.2) 593 * 2. Destination vector register number is multiples of LMUL. 594 * (Section 3.4.2) 595 * 3. Destination vector register group for a masked vector 596 * instruction cannot overlap the source mask register (v0). 597 * (Section 5.3) 598 * 4. The destination vector register group for vslideup, vslide1up, 599 * vfslide1up, cannot overlap the source vector register (vs2) group. 600 * (Section 5.2, 16.3.1, 16.3.3) 601 */ 602 static bool vext_check_slide(DisasContext *s, int vd, int vs2, 603 int vm, bool is_over) 604 { 605 bool ret = require_align(vs2, s->lmul) && 606 require_align(vd, s->lmul) && 607 require_vm(vm, vd); 608 if (is_over) { 609 ret &= (vd != vs2); 610 } 611 return ret; 612 } 613 614 /* 615 * In cpu_get_tb_cpu_state(), set VILL if RVV was not present. 616 * So RVV is also be checked in this function. 617 */ 618 static bool vext_check_isa_ill(DisasContext *s) 619 { 620 return !s->vill; 621 } 622 623 /* common translation macro */ 624 #define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \ 625 static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \ 626 { \ 627 if (CHECK(s, a, EEW)) { \ 628 return OP(s, a, EEW); \ 629 } \ 630 return false; \ 631 } 632 633 static uint8_t vext_get_emul(DisasContext *s, uint8_t eew) 634 { 635 int8_t emul = eew - s->sew + s->lmul; 636 return emul < 0 ? 0 : emul; 637 } 638 639 /* 640 *** unit stride load and store 641 */ 642 typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv, 643 TCGv_env, TCGv_i32); 644 645 static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data, 646 gen_helper_ldst_us *fn, DisasContext *s, 647 bool is_store) 648 { 649 TCGv_ptr dest, mask; 650 TCGv base; 651 TCGv_i32 desc; 652 653 TCGLabel *over = gen_new_label(); 654 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 655 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 656 657 dest = tcg_temp_new_ptr(); 658 mask = tcg_temp_new_ptr(); 659 base = get_gpr(s, rs1, EXT_NONE); 660 661 /* 662 * As simd_desc supports at most 2048 bytes, and in this implementation, 663 * the max vector group length is 4096 bytes. So split it into two parts. 664 * 665 * The first part is vlen in bytes, encoded in maxsz of simd_desc. 666 * The second part is lmul, encoded in data of simd_desc. 667 */ 668 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 669 s->cfg_ptr->vlen / 8, data)); 670 671 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 672 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 673 674 fn(dest, mask, base, cpu_env, desc); 675 676 tcg_temp_free_ptr(dest); 677 tcg_temp_free_ptr(mask); 678 679 if (!is_store) { 680 mark_vs_dirty(s); 681 } 682 683 gen_set_label(over); 684 return true; 685 } 686 687 static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 688 { 689 uint32_t data = 0; 690 gen_helper_ldst_us *fn; 691 static gen_helper_ldst_us * const fns[2][4] = { 692 /* masked unit stride load */ 693 { gen_helper_vle8_v_mask, gen_helper_vle16_v_mask, 694 gen_helper_vle32_v_mask, gen_helper_vle64_v_mask }, 695 /* unmasked unit stride load */ 696 { gen_helper_vle8_v, gen_helper_vle16_v, 697 gen_helper_vle32_v, gen_helper_vle64_v } 698 }; 699 700 fn = fns[a->vm][eew]; 701 if (fn == NULL) { 702 return false; 703 } 704 705 /* 706 * Vector load/store instructions have the EEW encoded 707 * directly in the instructions. The maximum vector size is 708 * calculated with EMUL rather than LMUL. 709 */ 710 uint8_t emul = vext_get_emul(s, eew); 711 data = FIELD_DP32(data, VDATA, VM, a->vm); 712 data = FIELD_DP32(data, VDATA, LMUL, emul); 713 data = FIELD_DP32(data, VDATA, NF, a->nf); 714 data = FIELD_DP32(data, VDATA, VTA, s->vta); 715 data = FIELD_DP32(data, VDATA, VMA, s->vma); 716 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 717 } 718 719 static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 720 { 721 return require_rvv(s) && 722 vext_check_isa_ill(s) && 723 vext_check_load(s, a->rd, a->nf, a->vm, eew); 724 } 725 726 GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check) 727 GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check) 728 GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check) 729 GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check) 730 731 static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 732 { 733 uint32_t data = 0; 734 gen_helper_ldst_us *fn; 735 static gen_helper_ldst_us * const fns[2][4] = { 736 /* masked unit stride store */ 737 { gen_helper_vse8_v_mask, gen_helper_vse16_v_mask, 738 gen_helper_vse32_v_mask, gen_helper_vse64_v_mask }, 739 /* unmasked unit stride store */ 740 { gen_helper_vse8_v, gen_helper_vse16_v, 741 gen_helper_vse32_v, gen_helper_vse64_v } 742 }; 743 744 fn = fns[a->vm][eew]; 745 if (fn == NULL) { 746 return false; 747 } 748 749 uint8_t emul = vext_get_emul(s, eew); 750 data = FIELD_DP32(data, VDATA, VM, a->vm); 751 data = FIELD_DP32(data, VDATA, LMUL, emul); 752 data = FIELD_DP32(data, VDATA, NF, a->nf); 753 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 754 } 755 756 static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 757 { 758 return require_rvv(s) && 759 vext_check_isa_ill(s) && 760 vext_check_store(s, a->rd, a->nf, eew); 761 } 762 763 GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check) 764 GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check) 765 GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check) 766 GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check) 767 768 /* 769 *** unit stride mask load and store 770 */ 771 static bool ld_us_mask_op(DisasContext *s, arg_vlm_v *a, uint8_t eew) 772 { 773 uint32_t data = 0; 774 gen_helper_ldst_us *fn = gen_helper_vlm_v; 775 776 /* EMUL = 1, NFIELDS = 1 */ 777 data = FIELD_DP32(data, VDATA, LMUL, 0); 778 data = FIELD_DP32(data, VDATA, NF, 1); 779 /* Mask destination register are always tail-agnostic */ 780 data = FIELD_DP32(data, VDATA, VTA, s->cfg_vta_all_1s); 781 data = FIELD_DP32(data, VDATA, VMA, s->vma); 782 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 783 } 784 785 static bool ld_us_mask_check(DisasContext *s, arg_vlm_v *a, uint8_t eew) 786 { 787 /* EMUL = 1, NFIELDS = 1 */ 788 return require_rvv(s) && vext_check_isa_ill(s); 789 } 790 791 static bool st_us_mask_op(DisasContext *s, arg_vsm_v *a, uint8_t eew) 792 { 793 uint32_t data = 0; 794 gen_helper_ldst_us *fn = gen_helper_vsm_v; 795 796 /* EMUL = 1, NFIELDS = 1 */ 797 data = FIELD_DP32(data, VDATA, LMUL, 0); 798 data = FIELD_DP32(data, VDATA, NF, 1); 799 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 800 } 801 802 static bool st_us_mask_check(DisasContext *s, arg_vsm_v *a, uint8_t eew) 803 { 804 /* EMUL = 1, NFIELDS = 1 */ 805 return require_rvv(s) && vext_check_isa_ill(s); 806 } 807 808 GEN_VEXT_TRANS(vlm_v, MO_8, vlm_v, ld_us_mask_op, ld_us_mask_check) 809 GEN_VEXT_TRANS(vsm_v, MO_8, vsm_v, st_us_mask_op, st_us_mask_check) 810 811 /* 812 *** stride load and store 813 */ 814 typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv, 815 TCGv, TCGv_env, TCGv_i32); 816 817 static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2, 818 uint32_t data, gen_helper_ldst_stride *fn, 819 DisasContext *s, bool is_store) 820 { 821 TCGv_ptr dest, mask; 822 TCGv base, stride; 823 TCGv_i32 desc; 824 825 TCGLabel *over = gen_new_label(); 826 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 827 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 828 829 dest = tcg_temp_new_ptr(); 830 mask = tcg_temp_new_ptr(); 831 base = get_gpr(s, rs1, EXT_NONE); 832 stride = get_gpr(s, rs2, EXT_NONE); 833 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 834 s->cfg_ptr->vlen / 8, data)); 835 836 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 837 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 838 839 fn(dest, mask, base, stride, cpu_env, desc); 840 841 tcg_temp_free_ptr(dest); 842 tcg_temp_free_ptr(mask); 843 844 if (!is_store) { 845 mark_vs_dirty(s); 846 } 847 848 gen_set_label(over); 849 return true; 850 } 851 852 static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 853 { 854 uint32_t data = 0; 855 gen_helper_ldst_stride *fn; 856 static gen_helper_ldst_stride * const fns[4] = { 857 gen_helper_vlse8_v, gen_helper_vlse16_v, 858 gen_helper_vlse32_v, gen_helper_vlse64_v 859 }; 860 861 fn = fns[eew]; 862 if (fn == NULL) { 863 return false; 864 } 865 866 uint8_t emul = vext_get_emul(s, eew); 867 data = FIELD_DP32(data, VDATA, VM, a->vm); 868 data = FIELD_DP32(data, VDATA, LMUL, emul); 869 data = FIELD_DP32(data, VDATA, NF, a->nf); 870 data = FIELD_DP32(data, VDATA, VTA, s->vta); 871 data = FIELD_DP32(data, VDATA, VMA, s->vma); 872 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 873 } 874 875 static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 876 { 877 return require_rvv(s) && 878 vext_check_isa_ill(s) && 879 vext_check_load(s, a->rd, a->nf, a->vm, eew); 880 } 881 882 GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check) 883 GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check) 884 GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check) 885 GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check) 886 887 static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 888 { 889 uint32_t data = 0; 890 gen_helper_ldst_stride *fn; 891 static gen_helper_ldst_stride * const fns[4] = { 892 /* masked stride store */ 893 gen_helper_vsse8_v, gen_helper_vsse16_v, 894 gen_helper_vsse32_v, gen_helper_vsse64_v 895 }; 896 897 uint8_t emul = vext_get_emul(s, eew); 898 data = FIELD_DP32(data, VDATA, VM, a->vm); 899 data = FIELD_DP32(data, VDATA, LMUL, emul); 900 data = FIELD_DP32(data, VDATA, NF, a->nf); 901 fn = fns[eew]; 902 if (fn == NULL) { 903 return false; 904 } 905 906 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 907 } 908 909 static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 910 { 911 return require_rvv(s) && 912 vext_check_isa_ill(s) && 913 vext_check_store(s, a->rd, a->nf, eew); 914 } 915 916 GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check) 917 GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check) 918 GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check) 919 GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check) 920 921 /* 922 *** index load and store 923 */ 924 typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv, 925 TCGv_ptr, TCGv_env, TCGv_i32); 926 927 static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 928 uint32_t data, gen_helper_ldst_index *fn, 929 DisasContext *s, bool is_store) 930 { 931 TCGv_ptr dest, mask, index; 932 TCGv base; 933 TCGv_i32 desc; 934 935 TCGLabel *over = gen_new_label(); 936 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 937 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 938 939 dest = tcg_temp_new_ptr(); 940 mask = tcg_temp_new_ptr(); 941 index = tcg_temp_new_ptr(); 942 base = get_gpr(s, rs1, EXT_NONE); 943 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 944 s->cfg_ptr->vlen / 8, data)); 945 946 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 947 tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2)); 948 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 949 950 fn(dest, mask, base, index, cpu_env, desc); 951 952 tcg_temp_free_ptr(dest); 953 tcg_temp_free_ptr(mask); 954 tcg_temp_free_ptr(index); 955 956 if (!is_store) { 957 mark_vs_dirty(s); 958 } 959 960 gen_set_label(over); 961 return true; 962 } 963 964 static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 965 { 966 uint32_t data = 0; 967 gen_helper_ldst_index *fn; 968 static gen_helper_ldst_index * const fns[4][4] = { 969 /* 970 * offset vector register group EEW = 8, 971 * data vector register group EEW = SEW 972 */ 973 { gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v, 974 gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v }, 975 /* 976 * offset vector register group EEW = 16, 977 * data vector register group EEW = SEW 978 */ 979 { gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v, 980 gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v }, 981 /* 982 * offset vector register group EEW = 32, 983 * data vector register group EEW = SEW 984 */ 985 { gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v, 986 gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v }, 987 /* 988 * offset vector register group EEW = 64, 989 * data vector register group EEW = SEW 990 */ 991 { gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v, 992 gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v } 993 }; 994 995 fn = fns[eew][s->sew]; 996 997 uint8_t emul = vext_get_emul(s, s->sew); 998 data = FIELD_DP32(data, VDATA, VM, a->vm); 999 data = FIELD_DP32(data, VDATA, LMUL, emul); 1000 data = FIELD_DP32(data, VDATA, NF, a->nf); 1001 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1002 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1003 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 1004 } 1005 1006 static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1007 { 1008 return require_rvv(s) && 1009 vext_check_isa_ill(s) && 1010 vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew); 1011 } 1012 1013 GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check) 1014 GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check) 1015 GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check) 1016 GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check) 1017 1018 static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 1019 { 1020 uint32_t data = 0; 1021 gen_helper_ldst_index *fn; 1022 static gen_helper_ldst_index * const fns[4][4] = { 1023 /* 1024 * offset vector register group EEW = 8, 1025 * data vector register group EEW = SEW 1026 */ 1027 { gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v, 1028 gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v }, 1029 /* 1030 * offset vector register group EEW = 16, 1031 * data vector register group EEW = SEW 1032 */ 1033 { gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v, 1034 gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v }, 1035 /* 1036 * offset vector register group EEW = 32, 1037 * data vector register group EEW = SEW 1038 */ 1039 { gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v, 1040 gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v }, 1041 /* 1042 * offset vector register group EEW = 64, 1043 * data vector register group EEW = SEW 1044 */ 1045 { gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v, 1046 gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v } 1047 }; 1048 1049 fn = fns[eew][s->sew]; 1050 1051 uint8_t emul = vext_get_emul(s, s->sew); 1052 data = FIELD_DP32(data, VDATA, VM, a->vm); 1053 data = FIELD_DP32(data, VDATA, LMUL, emul); 1054 data = FIELD_DP32(data, VDATA, NF, a->nf); 1055 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 1056 } 1057 1058 static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1059 { 1060 return require_rvv(s) && 1061 vext_check_isa_ill(s) && 1062 vext_check_st_index(s, a->rd, a->rs2, a->nf, eew); 1063 } 1064 1065 GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check) 1066 GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check) 1067 GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check) 1068 GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check) 1069 1070 /* 1071 *** unit stride fault-only-first load 1072 */ 1073 static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data, 1074 gen_helper_ldst_us *fn, DisasContext *s) 1075 { 1076 TCGv_ptr dest, mask; 1077 TCGv base; 1078 TCGv_i32 desc; 1079 1080 TCGLabel *over = gen_new_label(); 1081 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1082 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1083 1084 dest = tcg_temp_new_ptr(); 1085 mask = tcg_temp_new_ptr(); 1086 base = get_gpr(s, rs1, EXT_NONE); 1087 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1088 s->cfg_ptr->vlen / 8, data)); 1089 1090 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1091 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1092 1093 fn(dest, mask, base, cpu_env, desc); 1094 1095 tcg_temp_free_ptr(dest); 1096 tcg_temp_free_ptr(mask); 1097 mark_vs_dirty(s); 1098 gen_set_label(over); 1099 return true; 1100 } 1101 1102 static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 1103 { 1104 uint32_t data = 0; 1105 gen_helper_ldst_us *fn; 1106 static gen_helper_ldst_us * const fns[4] = { 1107 gen_helper_vle8ff_v, gen_helper_vle16ff_v, 1108 gen_helper_vle32ff_v, gen_helper_vle64ff_v 1109 }; 1110 1111 fn = fns[eew]; 1112 if (fn == NULL) { 1113 return false; 1114 } 1115 1116 uint8_t emul = vext_get_emul(s, eew); 1117 data = FIELD_DP32(data, VDATA, VM, a->vm); 1118 data = FIELD_DP32(data, VDATA, LMUL, emul); 1119 data = FIELD_DP32(data, VDATA, NF, a->nf); 1120 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1121 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1122 return ldff_trans(a->rd, a->rs1, data, fn, s); 1123 } 1124 1125 GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check) 1126 GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check) 1127 GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check) 1128 GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check) 1129 1130 /* 1131 * load and store whole register instructions 1132 */ 1133 typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32); 1134 1135 static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf, 1136 uint32_t width, gen_helper_ldst_whole *fn, 1137 DisasContext *s, bool is_store) 1138 { 1139 uint32_t evl = (s->cfg_ptr->vlen / 8) * nf / width; 1140 TCGLabel *over = gen_new_label(); 1141 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, evl, over); 1142 1143 TCGv_ptr dest; 1144 TCGv base; 1145 TCGv_i32 desc; 1146 1147 uint32_t data = FIELD_DP32(0, VDATA, NF, nf); 1148 dest = tcg_temp_new_ptr(); 1149 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1150 s->cfg_ptr->vlen / 8, data)); 1151 1152 base = get_gpr(s, rs1, EXT_NONE); 1153 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1154 1155 fn(dest, base, cpu_env, desc); 1156 1157 tcg_temp_free_ptr(dest); 1158 1159 if (!is_store) { 1160 mark_vs_dirty(s); 1161 } 1162 gen_set_label(over); 1163 1164 return true; 1165 } 1166 1167 /* 1168 * load and store whole register instructions ignore vtype and vl setting. 1169 * Thus, we don't need to check vill bit. (Section 7.9) 1170 */ 1171 #define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF, WIDTH, IS_STORE) \ 1172 static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 1173 { \ 1174 if (require_rvv(s) && \ 1175 QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \ 1176 return ldst_whole_trans(a->rd, a->rs1, ARG_NF, WIDTH, \ 1177 gen_helper_##NAME, s, IS_STORE); \ 1178 } \ 1179 return false; \ 1180 } 1181 1182 GEN_LDST_WHOLE_TRANS(vl1re8_v, 1, 1, false) 1183 GEN_LDST_WHOLE_TRANS(vl1re16_v, 1, 2, false) 1184 GEN_LDST_WHOLE_TRANS(vl1re32_v, 1, 4, false) 1185 GEN_LDST_WHOLE_TRANS(vl1re64_v, 1, 8, false) 1186 GEN_LDST_WHOLE_TRANS(vl2re8_v, 2, 1, false) 1187 GEN_LDST_WHOLE_TRANS(vl2re16_v, 2, 2, false) 1188 GEN_LDST_WHOLE_TRANS(vl2re32_v, 2, 4, false) 1189 GEN_LDST_WHOLE_TRANS(vl2re64_v, 2, 8, false) 1190 GEN_LDST_WHOLE_TRANS(vl4re8_v, 4, 1, false) 1191 GEN_LDST_WHOLE_TRANS(vl4re16_v, 4, 2, false) 1192 GEN_LDST_WHOLE_TRANS(vl4re32_v, 4, 4, false) 1193 GEN_LDST_WHOLE_TRANS(vl4re64_v, 4, 8, false) 1194 GEN_LDST_WHOLE_TRANS(vl8re8_v, 8, 1, false) 1195 GEN_LDST_WHOLE_TRANS(vl8re16_v, 8, 2, false) 1196 GEN_LDST_WHOLE_TRANS(vl8re32_v, 8, 4, false) 1197 GEN_LDST_WHOLE_TRANS(vl8re64_v, 8, 8, false) 1198 1199 /* 1200 * The vector whole register store instructions are encoded similar to 1201 * unmasked unit-stride store of elements with EEW=8. 1202 */ 1203 GEN_LDST_WHOLE_TRANS(vs1r_v, 1, 1, true) 1204 GEN_LDST_WHOLE_TRANS(vs2r_v, 2, 1, true) 1205 GEN_LDST_WHOLE_TRANS(vs4r_v, 4, 1, true) 1206 GEN_LDST_WHOLE_TRANS(vs8r_v, 8, 1, true) 1207 1208 /* 1209 *** Vector Integer Arithmetic Instructions 1210 */ 1211 1212 /* 1213 * MAXSZ returns the maximum vector size can be operated in bytes, 1214 * which is used in GVEC IR when vl_eq_vlmax flag is set to true 1215 * to accerlate vector operation. 1216 */ 1217 static inline uint32_t MAXSZ(DisasContext *s) 1218 { 1219 int scale = s->lmul - 3; 1220 return s->cfg_ptr->vlen >> -scale; 1221 } 1222 1223 static bool opivv_check(DisasContext *s, arg_rmrr *a) 1224 { 1225 return require_rvv(s) && 1226 vext_check_isa_ill(s) && 1227 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1228 } 1229 1230 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 1231 uint32_t, uint32_t, uint32_t); 1232 1233 static inline bool 1234 do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn, 1235 gen_helper_gvec_4_ptr *fn) 1236 { 1237 TCGLabel *over = gen_new_label(); 1238 if (!opivv_check(s, a)) { 1239 return false; 1240 } 1241 1242 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1243 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1244 1245 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1246 gvec_fn(s->sew, vreg_ofs(s, a->rd), 1247 vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), 1248 MAXSZ(s), MAXSZ(s)); 1249 } else { 1250 uint32_t data = 0; 1251 1252 data = FIELD_DP32(data, VDATA, VM, a->vm); 1253 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1254 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1255 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1256 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1257 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 1258 cpu_env, s->cfg_ptr->vlen / 8, 1259 s->cfg_ptr->vlen / 8, data, fn); 1260 } 1261 mark_vs_dirty(s); 1262 gen_set_label(over); 1263 return true; 1264 } 1265 1266 /* OPIVV with GVEC IR */ 1267 #define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \ 1268 static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1269 { \ 1270 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1271 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1272 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1273 }; \ 1274 return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1275 } 1276 1277 GEN_OPIVV_GVEC_TRANS(vadd_vv, add) 1278 GEN_OPIVV_GVEC_TRANS(vsub_vv, sub) 1279 1280 typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, 1281 TCGv_env, TCGv_i32); 1282 1283 static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm, 1284 gen_helper_opivx *fn, DisasContext *s) 1285 { 1286 TCGv_ptr dest, src2, mask; 1287 TCGv src1; 1288 TCGv_i32 desc; 1289 uint32_t data = 0; 1290 1291 TCGLabel *over = gen_new_label(); 1292 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1293 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1294 1295 dest = tcg_temp_new_ptr(); 1296 mask = tcg_temp_new_ptr(); 1297 src2 = tcg_temp_new_ptr(); 1298 src1 = get_gpr(s, rs1, EXT_SIGN); 1299 1300 data = FIELD_DP32(data, VDATA, VM, vm); 1301 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1302 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1303 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); 1304 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1305 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1306 s->cfg_ptr->vlen / 8, data)); 1307 1308 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1309 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1310 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1311 1312 fn(dest, mask, src1, src2, cpu_env, desc); 1313 1314 tcg_temp_free_ptr(dest); 1315 tcg_temp_free_ptr(mask); 1316 tcg_temp_free_ptr(src2); 1317 mark_vs_dirty(s); 1318 gen_set_label(over); 1319 return true; 1320 } 1321 1322 static bool opivx_check(DisasContext *s, arg_rmrr *a) 1323 { 1324 return require_rvv(s) && 1325 vext_check_isa_ill(s) && 1326 vext_check_ss(s, a->rd, a->rs2, a->vm); 1327 } 1328 1329 typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64, 1330 uint32_t, uint32_t); 1331 1332 static inline bool 1333 do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn, 1334 gen_helper_opivx *fn) 1335 { 1336 if (!opivx_check(s, a)) { 1337 return false; 1338 } 1339 1340 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1341 TCGv_i64 src1 = tcg_temp_new_i64(); 1342 1343 tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN)); 1344 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1345 src1, MAXSZ(s), MAXSZ(s)); 1346 1347 tcg_temp_free_i64(src1); 1348 mark_vs_dirty(s); 1349 return true; 1350 } 1351 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1352 } 1353 1354 /* OPIVX with GVEC IR */ 1355 #define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \ 1356 static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1357 { \ 1358 static gen_helper_opivx * const fns[4] = { \ 1359 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1360 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1361 }; \ 1362 return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1363 } 1364 1365 GEN_OPIVX_GVEC_TRANS(vadd_vx, adds) 1366 GEN_OPIVX_GVEC_TRANS(vsub_vx, subs) 1367 1368 static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1369 { 1370 tcg_gen_vec_sub8_i64(d, b, a); 1371 } 1372 1373 static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1374 { 1375 tcg_gen_vec_sub16_i64(d, b, a); 1376 } 1377 1378 static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2) 1379 { 1380 tcg_gen_sub_i32(ret, arg2, arg1); 1381 } 1382 1383 static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2) 1384 { 1385 tcg_gen_sub_i64(ret, arg2, arg1); 1386 } 1387 1388 static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b) 1389 { 1390 tcg_gen_sub_vec(vece, r, b, a); 1391 } 1392 1393 static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs, 1394 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 1395 { 1396 static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 }; 1397 static const GVecGen2s rsub_op[4] = { 1398 { .fni8 = gen_vec_rsub8_i64, 1399 .fniv = gen_rsub_vec, 1400 .fno = gen_helper_vec_rsubs8, 1401 .opt_opc = vecop_list, 1402 .vece = MO_8 }, 1403 { .fni8 = gen_vec_rsub16_i64, 1404 .fniv = gen_rsub_vec, 1405 .fno = gen_helper_vec_rsubs16, 1406 .opt_opc = vecop_list, 1407 .vece = MO_16 }, 1408 { .fni4 = gen_rsub_i32, 1409 .fniv = gen_rsub_vec, 1410 .fno = gen_helper_vec_rsubs32, 1411 .opt_opc = vecop_list, 1412 .vece = MO_32 }, 1413 { .fni8 = gen_rsub_i64, 1414 .fniv = gen_rsub_vec, 1415 .fno = gen_helper_vec_rsubs64, 1416 .opt_opc = vecop_list, 1417 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1418 .vece = MO_64 }, 1419 }; 1420 1421 tcg_debug_assert(vece <= MO_64); 1422 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]); 1423 } 1424 1425 GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs) 1426 1427 typedef enum { 1428 IMM_ZX, /* Zero-extended */ 1429 IMM_SX, /* Sign-extended */ 1430 IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */ 1431 IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */ 1432 } imm_mode_t; 1433 1434 static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode) 1435 { 1436 switch (imm_mode) { 1437 case IMM_ZX: 1438 return extract64(imm, 0, 5); 1439 case IMM_SX: 1440 return sextract64(imm, 0, 5); 1441 case IMM_TRUNC_SEW: 1442 return extract64(imm, 0, s->sew + 3); 1443 case IMM_TRUNC_2SEW: 1444 return extract64(imm, 0, s->sew + 4); 1445 default: 1446 g_assert_not_reached(); 1447 } 1448 } 1449 1450 static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm, 1451 gen_helper_opivx *fn, DisasContext *s, 1452 imm_mode_t imm_mode) 1453 { 1454 TCGv_ptr dest, src2, mask; 1455 TCGv src1; 1456 TCGv_i32 desc; 1457 uint32_t data = 0; 1458 1459 TCGLabel *over = gen_new_label(); 1460 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1461 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1462 1463 dest = tcg_temp_new_ptr(); 1464 mask = tcg_temp_new_ptr(); 1465 src2 = tcg_temp_new_ptr(); 1466 src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode)); 1467 1468 data = FIELD_DP32(data, VDATA, VM, vm); 1469 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1470 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1471 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); 1472 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1473 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1474 s->cfg_ptr->vlen / 8, data)); 1475 1476 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1477 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1478 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1479 1480 fn(dest, mask, src1, src2, cpu_env, desc); 1481 1482 tcg_temp_free_ptr(dest); 1483 tcg_temp_free_ptr(mask); 1484 tcg_temp_free_ptr(src2); 1485 mark_vs_dirty(s); 1486 gen_set_label(over); 1487 return true; 1488 } 1489 1490 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 1491 uint32_t, uint32_t); 1492 1493 static inline bool 1494 do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn, 1495 gen_helper_opivx *fn, imm_mode_t imm_mode) 1496 { 1497 if (!opivx_check(s, a)) { 1498 return false; 1499 } 1500 1501 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1502 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1503 extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s)); 1504 mark_vs_dirty(s); 1505 return true; 1506 } 1507 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode); 1508 } 1509 1510 /* OPIVI with GVEC IR */ 1511 #define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \ 1512 static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1513 { \ 1514 static gen_helper_opivx * const fns[4] = { \ 1515 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1516 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1517 }; \ 1518 return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \ 1519 fns[s->sew], IMM_MODE); \ 1520 } 1521 1522 GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi) 1523 1524 static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs, 1525 int64_t c, uint32_t oprsz, uint32_t maxsz) 1526 { 1527 TCGv_i64 tmp = tcg_constant_i64(c); 1528 tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz); 1529 } 1530 1531 GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi) 1532 1533 /* Vector Widening Integer Add/Subtract */ 1534 1535 /* OPIVV with WIDEN */ 1536 static bool opivv_widen_check(DisasContext *s, arg_rmrr *a) 1537 { 1538 return require_rvv(s) && 1539 vext_check_isa_ill(s) && 1540 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 1541 } 1542 1543 static bool do_opivv_widen(DisasContext *s, arg_rmrr *a, 1544 gen_helper_gvec_4_ptr *fn, 1545 bool (*checkfn)(DisasContext *, arg_rmrr *)) 1546 { 1547 if (checkfn(s, a)) { 1548 uint32_t data = 0; 1549 TCGLabel *over = gen_new_label(); 1550 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1551 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1552 1553 data = FIELD_DP32(data, VDATA, VM, a->vm); 1554 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1555 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1556 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1557 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1558 vreg_ofs(s, a->rs1), 1559 vreg_ofs(s, a->rs2), 1560 cpu_env, s->cfg_ptr->vlen / 8, 1561 s->cfg_ptr->vlen / 8, 1562 data, fn); 1563 mark_vs_dirty(s); 1564 gen_set_label(over); 1565 return true; 1566 } 1567 return false; 1568 } 1569 1570 #define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \ 1571 static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1572 { \ 1573 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1574 gen_helper_##NAME##_b, \ 1575 gen_helper_##NAME##_h, \ 1576 gen_helper_##NAME##_w \ 1577 }; \ 1578 return do_opivv_widen(s, a, fns[s->sew], CHECK); \ 1579 } 1580 1581 GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check) 1582 GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check) 1583 GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check) 1584 GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check) 1585 1586 /* OPIVX with WIDEN */ 1587 static bool opivx_widen_check(DisasContext *s, arg_rmrr *a) 1588 { 1589 return require_rvv(s) && 1590 vext_check_isa_ill(s) && 1591 vext_check_ds(s, a->rd, a->rs2, a->vm); 1592 } 1593 1594 static bool do_opivx_widen(DisasContext *s, arg_rmrr *a, 1595 gen_helper_opivx *fn) 1596 { 1597 if (opivx_widen_check(s, a)) { 1598 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1599 } 1600 return false; 1601 } 1602 1603 #define GEN_OPIVX_WIDEN_TRANS(NAME) \ 1604 static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1605 { \ 1606 static gen_helper_opivx * const fns[3] = { \ 1607 gen_helper_##NAME##_b, \ 1608 gen_helper_##NAME##_h, \ 1609 gen_helper_##NAME##_w \ 1610 }; \ 1611 return do_opivx_widen(s, a, fns[s->sew]); \ 1612 } 1613 1614 GEN_OPIVX_WIDEN_TRANS(vwaddu_vx) 1615 GEN_OPIVX_WIDEN_TRANS(vwadd_vx) 1616 GEN_OPIVX_WIDEN_TRANS(vwsubu_vx) 1617 GEN_OPIVX_WIDEN_TRANS(vwsub_vx) 1618 1619 /* WIDEN OPIVV with WIDEN */ 1620 static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a) 1621 { 1622 return require_rvv(s) && 1623 vext_check_isa_ill(s) && 1624 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 1625 } 1626 1627 static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a, 1628 gen_helper_gvec_4_ptr *fn) 1629 { 1630 if (opiwv_widen_check(s, a)) { 1631 uint32_t data = 0; 1632 TCGLabel *over = gen_new_label(); 1633 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1634 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1635 1636 data = FIELD_DP32(data, VDATA, VM, a->vm); 1637 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1638 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1639 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1640 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1641 vreg_ofs(s, a->rs1), 1642 vreg_ofs(s, a->rs2), 1643 cpu_env, s->cfg_ptr->vlen / 8, 1644 s->cfg_ptr->vlen / 8, data, fn); 1645 mark_vs_dirty(s); 1646 gen_set_label(over); 1647 return true; 1648 } 1649 return false; 1650 } 1651 1652 #define GEN_OPIWV_WIDEN_TRANS(NAME) \ 1653 static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1654 { \ 1655 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1656 gen_helper_##NAME##_b, \ 1657 gen_helper_##NAME##_h, \ 1658 gen_helper_##NAME##_w \ 1659 }; \ 1660 return do_opiwv_widen(s, a, fns[s->sew]); \ 1661 } 1662 1663 GEN_OPIWV_WIDEN_TRANS(vwaddu_wv) 1664 GEN_OPIWV_WIDEN_TRANS(vwadd_wv) 1665 GEN_OPIWV_WIDEN_TRANS(vwsubu_wv) 1666 GEN_OPIWV_WIDEN_TRANS(vwsub_wv) 1667 1668 /* WIDEN OPIVX with WIDEN */ 1669 static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a) 1670 { 1671 return require_rvv(s) && 1672 vext_check_isa_ill(s) && 1673 vext_check_dd(s, a->rd, a->rs2, a->vm); 1674 } 1675 1676 static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a, 1677 gen_helper_opivx *fn) 1678 { 1679 if (opiwx_widen_check(s, a)) { 1680 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1681 } 1682 return false; 1683 } 1684 1685 #define GEN_OPIWX_WIDEN_TRANS(NAME) \ 1686 static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1687 { \ 1688 static gen_helper_opivx * const fns[3] = { \ 1689 gen_helper_##NAME##_b, \ 1690 gen_helper_##NAME##_h, \ 1691 gen_helper_##NAME##_w \ 1692 }; \ 1693 return do_opiwx_widen(s, a, fns[s->sew]); \ 1694 } 1695 1696 GEN_OPIWX_WIDEN_TRANS(vwaddu_wx) 1697 GEN_OPIWX_WIDEN_TRANS(vwadd_wx) 1698 GEN_OPIWX_WIDEN_TRANS(vwsubu_wx) 1699 GEN_OPIWX_WIDEN_TRANS(vwsub_wx) 1700 1701 /* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ 1702 /* OPIVV without GVEC IR */ 1703 #define GEN_OPIVV_TRANS(NAME, CHECK) \ 1704 static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1705 { \ 1706 if (CHECK(s, a)) { \ 1707 uint32_t data = 0; \ 1708 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1709 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1710 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1711 }; \ 1712 TCGLabel *over = gen_new_label(); \ 1713 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1714 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1715 \ 1716 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1717 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1718 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 1719 data = \ 1720 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 1721 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 1722 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1723 vreg_ofs(s, a->rs1), \ 1724 vreg_ofs(s, a->rs2), cpu_env, \ 1725 s->cfg_ptr->vlen / 8, \ 1726 s->cfg_ptr->vlen / 8, data, \ 1727 fns[s->sew]); \ 1728 mark_vs_dirty(s); \ 1729 gen_set_label(over); \ 1730 return true; \ 1731 } \ 1732 return false; \ 1733 } 1734 1735 /* 1736 * For vadc and vsbc, an illegal instruction exception is raised if the 1737 * destination vector register is v0 and LMUL > 1. (Section 11.4) 1738 */ 1739 static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a) 1740 { 1741 return require_rvv(s) && 1742 vext_check_isa_ill(s) && 1743 (a->rd != 0) && 1744 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1745 } 1746 1747 GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check) 1748 GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check) 1749 1750 /* 1751 * For vmadc and vmsbc, an illegal instruction exception is raised if the 1752 * destination vector register overlaps a source vector register group. 1753 */ 1754 static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a) 1755 { 1756 return require_rvv(s) && 1757 vext_check_isa_ill(s) && 1758 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1759 } 1760 1761 GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check) 1762 GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check) 1763 1764 static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a) 1765 { 1766 return require_rvv(s) && 1767 vext_check_isa_ill(s) && 1768 (a->rd != 0) && 1769 vext_check_ss(s, a->rd, a->rs2, a->vm); 1770 } 1771 1772 /* OPIVX without GVEC IR */ 1773 #define GEN_OPIVX_TRANS(NAME, CHECK) \ 1774 static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1775 { \ 1776 if (CHECK(s, a)) { \ 1777 static gen_helper_opivx * const fns[4] = { \ 1778 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1779 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1780 }; \ 1781 \ 1782 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1783 } \ 1784 return false; \ 1785 } 1786 1787 GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check) 1788 GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check) 1789 1790 static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a) 1791 { 1792 return require_rvv(s) && 1793 vext_check_isa_ill(s) && 1794 vext_check_ms(s, a->rd, a->rs2); 1795 } 1796 1797 GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check) 1798 GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check) 1799 1800 /* OPIVI without GVEC IR */ 1801 #define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \ 1802 static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1803 { \ 1804 if (CHECK(s, a)) { \ 1805 static gen_helper_opivx * const fns[4] = { \ 1806 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1807 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1808 }; \ 1809 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1810 fns[s->sew], s, IMM_MODE); \ 1811 } \ 1812 return false; \ 1813 } 1814 1815 GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check) 1816 GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check) 1817 1818 /* Vector Bitwise Logical Instructions */ 1819 GEN_OPIVV_GVEC_TRANS(vand_vv, and) 1820 GEN_OPIVV_GVEC_TRANS(vor_vv, or) 1821 GEN_OPIVV_GVEC_TRANS(vxor_vv, xor) 1822 GEN_OPIVX_GVEC_TRANS(vand_vx, ands) 1823 GEN_OPIVX_GVEC_TRANS(vor_vx, ors) 1824 GEN_OPIVX_GVEC_TRANS(vxor_vx, xors) 1825 GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi) 1826 GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori) 1827 GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori) 1828 1829 /* Vector Single-Width Bit Shift Instructions */ 1830 GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv) 1831 GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv) 1832 GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv) 1833 1834 typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32, 1835 uint32_t, uint32_t); 1836 1837 static inline bool 1838 do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn, 1839 gen_helper_opivx *fn) 1840 { 1841 if (!opivx_check(s, a)) { 1842 return false; 1843 } 1844 1845 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1846 TCGv_i32 src1 = tcg_temp_new_i32(); 1847 1848 tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE)); 1849 tcg_gen_extract_i32(src1, src1, 0, s->sew + 3); 1850 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1851 src1, MAXSZ(s), MAXSZ(s)); 1852 1853 tcg_temp_free_i32(src1); 1854 mark_vs_dirty(s); 1855 return true; 1856 } 1857 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1858 } 1859 1860 #define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \ 1861 static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1862 { \ 1863 static gen_helper_opivx * const fns[4] = { \ 1864 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1865 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1866 }; \ 1867 \ 1868 return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1869 } 1870 1871 GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls) 1872 GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs) 1873 GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars) 1874 1875 GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_TRUNC_SEW, vsll_vx, shli) 1876 GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_TRUNC_SEW, vsrl_vx, shri) 1877 GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_TRUNC_SEW, vsra_vx, sari) 1878 1879 /* Vector Narrowing Integer Right Shift Instructions */ 1880 static bool opiwv_narrow_check(DisasContext *s, arg_rmrr *a) 1881 { 1882 return require_rvv(s) && 1883 vext_check_isa_ill(s) && 1884 vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm); 1885 } 1886 1887 /* OPIVV with NARROW */ 1888 #define GEN_OPIWV_NARROW_TRANS(NAME) \ 1889 static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1890 { \ 1891 if (opiwv_narrow_check(s, a)) { \ 1892 uint32_t data = 0; \ 1893 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1894 gen_helper_##NAME##_b, \ 1895 gen_helper_##NAME##_h, \ 1896 gen_helper_##NAME##_w, \ 1897 }; \ 1898 TCGLabel *over = gen_new_label(); \ 1899 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1900 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1901 \ 1902 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1903 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1904 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 1905 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 1906 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1907 vreg_ofs(s, a->rs1), \ 1908 vreg_ofs(s, a->rs2), cpu_env, \ 1909 s->cfg_ptr->vlen / 8, \ 1910 s->cfg_ptr->vlen / 8, data, \ 1911 fns[s->sew]); \ 1912 mark_vs_dirty(s); \ 1913 gen_set_label(over); \ 1914 return true; \ 1915 } \ 1916 return false; \ 1917 } 1918 GEN_OPIWV_NARROW_TRANS(vnsra_wv) 1919 GEN_OPIWV_NARROW_TRANS(vnsrl_wv) 1920 1921 static bool opiwx_narrow_check(DisasContext *s, arg_rmrr *a) 1922 { 1923 return require_rvv(s) && 1924 vext_check_isa_ill(s) && 1925 vext_check_sd(s, a->rd, a->rs2, a->vm); 1926 } 1927 1928 /* OPIVX with NARROW */ 1929 #define GEN_OPIWX_NARROW_TRANS(NAME) \ 1930 static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1931 { \ 1932 if (opiwx_narrow_check(s, a)) { \ 1933 static gen_helper_opivx * const fns[3] = { \ 1934 gen_helper_##NAME##_b, \ 1935 gen_helper_##NAME##_h, \ 1936 gen_helper_##NAME##_w, \ 1937 }; \ 1938 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1939 } \ 1940 return false; \ 1941 } 1942 1943 GEN_OPIWX_NARROW_TRANS(vnsra_wx) 1944 GEN_OPIWX_NARROW_TRANS(vnsrl_wx) 1945 1946 /* OPIWI with NARROW */ 1947 #define GEN_OPIWI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \ 1948 static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1949 { \ 1950 if (opiwx_narrow_check(s, a)) { \ 1951 static gen_helper_opivx * const fns[3] = { \ 1952 gen_helper_##OPIVX##_b, \ 1953 gen_helper_##OPIVX##_h, \ 1954 gen_helper_##OPIVX##_w, \ 1955 }; \ 1956 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1957 fns[s->sew], s, IMM_MODE); \ 1958 } \ 1959 return false; \ 1960 } 1961 1962 GEN_OPIWI_NARROW_TRANS(vnsra_wi, IMM_ZX, vnsra_wx) 1963 GEN_OPIWI_NARROW_TRANS(vnsrl_wi, IMM_ZX, vnsrl_wx) 1964 1965 /* Vector Integer Comparison Instructions */ 1966 /* 1967 * For all comparison instructions, an illegal instruction exception is raised 1968 * if the destination vector register overlaps a source vector register group 1969 * and LMUL > 1. 1970 */ 1971 static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a) 1972 { 1973 return require_rvv(s) && 1974 vext_check_isa_ill(s) && 1975 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1976 } 1977 1978 GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check) 1979 GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check) 1980 GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check) 1981 GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check) 1982 GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check) 1983 GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check) 1984 1985 static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a) 1986 { 1987 return require_rvv(s) && 1988 vext_check_isa_ill(s) && 1989 vext_check_ms(s, a->rd, a->rs2); 1990 } 1991 1992 GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check) 1993 GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check) 1994 GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check) 1995 GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check) 1996 GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check) 1997 GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check) 1998 GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check) 1999 GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check) 2000 2001 GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check) 2002 GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check) 2003 GEN_OPIVI_TRANS(vmsleu_vi, IMM_SX, vmsleu_vx, opivx_cmp_check) 2004 GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check) 2005 GEN_OPIVI_TRANS(vmsgtu_vi, IMM_SX, vmsgtu_vx, opivx_cmp_check) 2006 GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check) 2007 2008 /* Vector Integer Min/Max Instructions */ 2009 GEN_OPIVV_GVEC_TRANS(vminu_vv, umin) 2010 GEN_OPIVV_GVEC_TRANS(vmin_vv, smin) 2011 GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax) 2012 GEN_OPIVV_GVEC_TRANS(vmax_vv, smax) 2013 GEN_OPIVX_TRANS(vminu_vx, opivx_check) 2014 GEN_OPIVX_TRANS(vmin_vx, opivx_check) 2015 GEN_OPIVX_TRANS(vmaxu_vx, opivx_check) 2016 GEN_OPIVX_TRANS(vmax_vx, opivx_check) 2017 2018 /* Vector Single-Width Integer Multiply Instructions */ 2019 2020 static bool vmulh_vv_check(DisasContext *s, arg_rmrr *a) 2021 { 2022 /* 2023 * All Zve* extensions support all vector integer instructions, 2024 * except that the vmulh integer multiply variants 2025 * that return the high word of the product 2026 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2027 * are not included for EEW=64 in Zve64*. (Section 18.2) 2028 */ 2029 return opivv_check(s, a) && 2030 (!has_ext(s, RVV) && 2031 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2032 } 2033 2034 static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a) 2035 { 2036 /* 2037 * All Zve* extensions support all vector integer instructions, 2038 * except that the vmulh integer multiply variants 2039 * that return the high word of the product 2040 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2041 * are not included for EEW=64 in Zve64*. (Section 18.2) 2042 */ 2043 return opivx_check(s, a) && 2044 (!has_ext(s, RVV) && 2045 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2046 } 2047 2048 GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) 2049 GEN_OPIVV_TRANS(vmulh_vv, vmulh_vv_check) 2050 GEN_OPIVV_TRANS(vmulhu_vv, vmulh_vv_check) 2051 GEN_OPIVV_TRANS(vmulhsu_vv, vmulh_vv_check) 2052 GEN_OPIVX_GVEC_TRANS(vmul_vx, muls) 2053 GEN_OPIVX_TRANS(vmulh_vx, vmulh_vx_check) 2054 GEN_OPIVX_TRANS(vmulhu_vx, vmulh_vx_check) 2055 GEN_OPIVX_TRANS(vmulhsu_vx, vmulh_vx_check) 2056 2057 /* Vector Integer Divide Instructions */ 2058 GEN_OPIVV_TRANS(vdivu_vv, opivv_check) 2059 GEN_OPIVV_TRANS(vdiv_vv, opivv_check) 2060 GEN_OPIVV_TRANS(vremu_vv, opivv_check) 2061 GEN_OPIVV_TRANS(vrem_vv, opivv_check) 2062 GEN_OPIVX_TRANS(vdivu_vx, opivx_check) 2063 GEN_OPIVX_TRANS(vdiv_vx, opivx_check) 2064 GEN_OPIVX_TRANS(vremu_vx, opivx_check) 2065 GEN_OPIVX_TRANS(vrem_vx, opivx_check) 2066 2067 /* Vector Widening Integer Multiply Instructions */ 2068 GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check) 2069 GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check) 2070 GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check) 2071 GEN_OPIVX_WIDEN_TRANS(vwmul_vx) 2072 GEN_OPIVX_WIDEN_TRANS(vwmulu_vx) 2073 GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx) 2074 2075 /* Vector Single-Width Integer Multiply-Add Instructions */ 2076 GEN_OPIVV_TRANS(vmacc_vv, opivv_check) 2077 GEN_OPIVV_TRANS(vnmsac_vv, opivv_check) 2078 GEN_OPIVV_TRANS(vmadd_vv, opivv_check) 2079 GEN_OPIVV_TRANS(vnmsub_vv, opivv_check) 2080 GEN_OPIVX_TRANS(vmacc_vx, opivx_check) 2081 GEN_OPIVX_TRANS(vnmsac_vx, opivx_check) 2082 GEN_OPIVX_TRANS(vmadd_vx, opivx_check) 2083 GEN_OPIVX_TRANS(vnmsub_vx, opivx_check) 2084 2085 /* Vector Widening Integer Multiply-Add Instructions */ 2086 GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check) 2087 GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check) 2088 GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check) 2089 GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx) 2090 GEN_OPIVX_WIDEN_TRANS(vwmacc_vx) 2091 GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx) 2092 GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx) 2093 2094 /* Vector Integer Merge and Move Instructions */ 2095 static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a) 2096 { 2097 if (require_rvv(s) && 2098 vext_check_isa_ill(s) && 2099 /* vmv.v.v has rs2 = 0 and vm = 1 */ 2100 vext_check_sss(s, a->rd, a->rs1, 0, 1)) { 2101 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2102 tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), 2103 vreg_ofs(s, a->rs1), 2104 MAXSZ(s), MAXSZ(s)); 2105 } else { 2106 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2107 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2108 static gen_helper_gvec_2_ptr * const fns[4] = { 2109 gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h, 2110 gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d, 2111 }; 2112 TCGLabel *over = gen_new_label(); 2113 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2114 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2115 2116 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), 2117 cpu_env, s->cfg_ptr->vlen / 8, 2118 s->cfg_ptr->vlen / 8, data, 2119 fns[s->sew]); 2120 gen_set_label(over); 2121 } 2122 mark_vs_dirty(s); 2123 return true; 2124 } 2125 return false; 2126 } 2127 2128 typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32); 2129 static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a) 2130 { 2131 if (require_rvv(s) && 2132 vext_check_isa_ill(s) && 2133 /* vmv.v.x has rs2 = 0 and vm = 1 */ 2134 vext_check_ss(s, a->rd, 0, 1)) { 2135 TCGv s1; 2136 TCGLabel *over = gen_new_label(); 2137 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2138 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2139 2140 s1 = get_gpr(s, a->rs1, EXT_SIGN); 2141 2142 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2143 if (get_xl(s) == MXL_RV32 && s->sew == MO_64) { 2144 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2145 tcg_gen_ext_tl_i64(s1_i64, s1); 2146 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2147 MAXSZ(s), MAXSZ(s), s1_i64); 2148 tcg_temp_free_i64(s1_i64); 2149 } else { 2150 tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd), 2151 MAXSZ(s), MAXSZ(s), s1); 2152 } 2153 } else { 2154 TCGv_i32 desc; 2155 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2156 TCGv_ptr dest = tcg_temp_new_ptr(); 2157 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2158 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2159 static gen_helper_vmv_vx * const fns[4] = { 2160 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2161 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2162 }; 2163 2164 tcg_gen_ext_tl_i64(s1_i64, s1); 2165 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2166 s->cfg_ptr->vlen / 8, data)); 2167 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2168 fns[s->sew](dest, s1_i64, cpu_env, desc); 2169 2170 tcg_temp_free_ptr(dest); 2171 tcg_temp_free_i64(s1_i64); 2172 } 2173 2174 mark_vs_dirty(s); 2175 gen_set_label(over); 2176 return true; 2177 } 2178 return false; 2179 } 2180 2181 static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a) 2182 { 2183 if (require_rvv(s) && 2184 vext_check_isa_ill(s) && 2185 /* vmv.v.i has rs2 = 0 and vm = 1 */ 2186 vext_check_ss(s, a->rd, 0, 1)) { 2187 int64_t simm = sextract64(a->rs1, 0, 5); 2188 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2189 tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd), 2190 MAXSZ(s), MAXSZ(s), simm); 2191 mark_vs_dirty(s); 2192 } else { 2193 TCGv_i32 desc; 2194 TCGv_i64 s1; 2195 TCGv_ptr dest; 2196 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2197 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2198 static gen_helper_vmv_vx * const fns[4] = { 2199 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2200 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2201 }; 2202 TCGLabel *over = gen_new_label(); 2203 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2204 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2205 2206 s1 = tcg_constant_i64(simm); 2207 dest = tcg_temp_new_ptr(); 2208 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2209 s->cfg_ptr->vlen / 8, data)); 2210 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2211 fns[s->sew](dest, s1, cpu_env, desc); 2212 2213 tcg_temp_free_ptr(dest); 2214 mark_vs_dirty(s); 2215 gen_set_label(over); 2216 } 2217 return true; 2218 } 2219 return false; 2220 } 2221 2222 GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check) 2223 GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check) 2224 GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check) 2225 2226 /* 2227 *** Vector Fixed-Point Arithmetic Instructions 2228 */ 2229 2230 /* Vector Single-Width Saturating Add and Subtract */ 2231 GEN_OPIVV_TRANS(vsaddu_vv, opivv_check) 2232 GEN_OPIVV_TRANS(vsadd_vv, opivv_check) 2233 GEN_OPIVV_TRANS(vssubu_vv, opivv_check) 2234 GEN_OPIVV_TRANS(vssub_vv, opivv_check) 2235 GEN_OPIVX_TRANS(vsaddu_vx, opivx_check) 2236 GEN_OPIVX_TRANS(vsadd_vx, opivx_check) 2237 GEN_OPIVX_TRANS(vssubu_vx, opivx_check) 2238 GEN_OPIVX_TRANS(vssub_vx, opivx_check) 2239 GEN_OPIVI_TRANS(vsaddu_vi, IMM_SX, vsaddu_vx, opivx_check) 2240 GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check) 2241 2242 /* Vector Single-Width Averaging Add and Subtract */ 2243 GEN_OPIVV_TRANS(vaadd_vv, opivv_check) 2244 GEN_OPIVV_TRANS(vaaddu_vv, opivv_check) 2245 GEN_OPIVV_TRANS(vasub_vv, opivv_check) 2246 GEN_OPIVV_TRANS(vasubu_vv, opivv_check) 2247 GEN_OPIVX_TRANS(vaadd_vx, opivx_check) 2248 GEN_OPIVX_TRANS(vaaddu_vx, opivx_check) 2249 GEN_OPIVX_TRANS(vasub_vx, opivx_check) 2250 GEN_OPIVX_TRANS(vasubu_vx, opivx_check) 2251 2252 /* Vector Single-Width Fractional Multiply with Rounding and Saturation */ 2253 2254 static bool vsmul_vv_check(DisasContext *s, arg_rmrr *a) 2255 { 2256 /* 2257 * All Zve* extensions support all vector fixed-point arithmetic 2258 * instructions, except that vsmul.vv and vsmul.vx are not supported 2259 * for EEW=64 in Zve64*. (Section 18.2) 2260 */ 2261 return opivv_check(s, a) && 2262 (!has_ext(s, RVV) && 2263 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2264 } 2265 2266 static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a) 2267 { 2268 /* 2269 * All Zve* extensions support all vector fixed-point arithmetic 2270 * instructions, except that vsmul.vv and vsmul.vx are not supported 2271 * for EEW=64 in Zve64*. (Section 18.2) 2272 */ 2273 return opivx_check(s, a) && 2274 (!has_ext(s, RVV) && 2275 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2276 } 2277 2278 GEN_OPIVV_TRANS(vsmul_vv, vsmul_vv_check) 2279 GEN_OPIVX_TRANS(vsmul_vx, vsmul_vx_check) 2280 2281 /* Vector Single-Width Scaling Shift Instructions */ 2282 GEN_OPIVV_TRANS(vssrl_vv, opivv_check) 2283 GEN_OPIVV_TRANS(vssra_vv, opivv_check) 2284 GEN_OPIVX_TRANS(vssrl_vx, opivx_check) 2285 GEN_OPIVX_TRANS(vssra_vx, opivx_check) 2286 GEN_OPIVI_TRANS(vssrl_vi, IMM_TRUNC_SEW, vssrl_vx, opivx_check) 2287 GEN_OPIVI_TRANS(vssra_vi, IMM_TRUNC_SEW, vssra_vx, opivx_check) 2288 2289 /* Vector Narrowing Fixed-Point Clip Instructions */ 2290 GEN_OPIWV_NARROW_TRANS(vnclipu_wv) 2291 GEN_OPIWV_NARROW_TRANS(vnclip_wv) 2292 GEN_OPIWX_NARROW_TRANS(vnclipu_wx) 2293 GEN_OPIWX_NARROW_TRANS(vnclip_wx) 2294 GEN_OPIWI_NARROW_TRANS(vnclipu_wi, IMM_ZX, vnclipu_wx) 2295 GEN_OPIWI_NARROW_TRANS(vnclip_wi, IMM_ZX, vnclip_wx) 2296 2297 /* 2298 *** Vector Float Point Arithmetic Instructions 2299 */ 2300 2301 /* 2302 * As RVF-only cpus always have values NaN-boxed to 64-bits, 2303 * RVF and RVD can be treated equally. 2304 * We don't have to deal with the cases of: SEW > FLEN. 2305 * 2306 * If SEW < FLEN, check whether input fp register is a valid 2307 * NaN-boxed value, in which case the least-significant SEW bits 2308 * of the f regsiter are used, else the canonical NaN value is used. 2309 */ 2310 static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in) 2311 { 2312 switch (s->sew) { 2313 case 1: 2314 gen_check_nanbox_h(out, in); 2315 break; 2316 case 2: 2317 gen_check_nanbox_s(out, in); 2318 break; 2319 case 3: 2320 tcg_gen_mov_i64(out, in); 2321 break; 2322 default: 2323 g_assert_not_reached(); 2324 } 2325 } 2326 2327 /* Vector Single-Width Floating-Point Add/Subtract Instructions */ 2328 2329 /* 2330 * If the current SEW does not correspond to a supported IEEE floating-point 2331 * type, an illegal instruction exception is raised. 2332 */ 2333 static bool opfvv_check(DisasContext *s, arg_rmrr *a) 2334 { 2335 return require_rvv(s) && 2336 require_rvf(s) && 2337 vext_check_isa_ill(s) && 2338 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm) && 2339 require_zve32f(s) && 2340 require_zve64f(s); 2341 } 2342 2343 /* OPFVV without GVEC IR */ 2344 #define GEN_OPFVV_TRANS(NAME, CHECK) \ 2345 static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2346 { \ 2347 if (CHECK(s, a)) { \ 2348 uint32_t data = 0; \ 2349 static gen_helper_gvec_4_ptr * const fns[3] = { \ 2350 gen_helper_##NAME##_h, \ 2351 gen_helper_##NAME##_w, \ 2352 gen_helper_##NAME##_d, \ 2353 }; \ 2354 TCGLabel *over = gen_new_label(); \ 2355 gen_set_rm(s, RISCV_FRM_DYN); \ 2356 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2357 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2358 \ 2359 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2360 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2361 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2362 data = \ 2363 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 2364 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2365 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2366 vreg_ofs(s, a->rs1), \ 2367 vreg_ofs(s, a->rs2), cpu_env, \ 2368 s->cfg_ptr->vlen / 8, \ 2369 s->cfg_ptr->vlen / 8, data, \ 2370 fns[s->sew - 1]); \ 2371 mark_vs_dirty(s); \ 2372 gen_set_label(over); \ 2373 return true; \ 2374 } \ 2375 return false; \ 2376 } 2377 GEN_OPFVV_TRANS(vfadd_vv, opfvv_check) 2378 GEN_OPFVV_TRANS(vfsub_vv, opfvv_check) 2379 2380 typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr, 2381 TCGv_env, TCGv_i32); 2382 2383 static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 2384 uint32_t data, gen_helper_opfvf *fn, DisasContext *s) 2385 { 2386 TCGv_ptr dest, src2, mask; 2387 TCGv_i32 desc; 2388 TCGv_i64 t1; 2389 2390 TCGLabel *over = gen_new_label(); 2391 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2392 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2393 2394 dest = tcg_temp_new_ptr(); 2395 mask = tcg_temp_new_ptr(); 2396 src2 = tcg_temp_new_ptr(); 2397 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2398 s->cfg_ptr->vlen / 8, data)); 2399 2400 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 2401 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 2402 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2403 2404 /* NaN-box f[rs1] */ 2405 t1 = tcg_temp_new_i64(); 2406 do_nanbox(s, t1, cpu_fpr[rs1]); 2407 2408 fn(dest, mask, t1, src2, cpu_env, desc); 2409 2410 tcg_temp_free_ptr(dest); 2411 tcg_temp_free_ptr(mask); 2412 tcg_temp_free_ptr(src2); 2413 tcg_temp_free_i64(t1); 2414 mark_vs_dirty(s); 2415 gen_set_label(over); 2416 return true; 2417 } 2418 2419 /* 2420 * If the current SEW does not correspond to a supported IEEE floating-point 2421 * type, an illegal instruction exception is raised 2422 */ 2423 static bool opfvf_check(DisasContext *s, arg_rmrr *a) 2424 { 2425 return require_rvv(s) && 2426 require_rvf(s) && 2427 vext_check_isa_ill(s) && 2428 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2429 require_zve32f(s) && 2430 require_zve64f(s); 2431 } 2432 2433 /* OPFVF without GVEC IR */ 2434 #define GEN_OPFVF_TRANS(NAME, CHECK) \ 2435 static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2436 { \ 2437 if (CHECK(s, a)) { \ 2438 uint32_t data = 0; \ 2439 static gen_helper_opfvf *const fns[3] = { \ 2440 gen_helper_##NAME##_h, \ 2441 gen_helper_##NAME##_w, \ 2442 gen_helper_##NAME##_d, \ 2443 }; \ 2444 gen_set_rm(s, RISCV_FRM_DYN); \ 2445 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2446 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2447 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2448 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, \ 2449 s->cfg_vta_all_1s); \ 2450 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2451 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2452 fns[s->sew - 1], s); \ 2453 } \ 2454 return false; \ 2455 } 2456 2457 GEN_OPFVF_TRANS(vfadd_vf, opfvf_check) 2458 GEN_OPFVF_TRANS(vfsub_vf, opfvf_check) 2459 GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check) 2460 2461 /* Vector Widening Floating-Point Add/Subtract Instructions */ 2462 static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a) 2463 { 2464 return require_rvv(s) && 2465 require_scale_rvf(s) && 2466 (s->sew != MO_8) && 2467 vext_check_isa_ill(s) && 2468 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm) && 2469 require_scale_zve32f(s) && 2470 require_scale_zve64f(s); 2471 } 2472 2473 /* OPFVV with WIDEN */ 2474 #define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \ 2475 static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2476 { \ 2477 if (CHECK(s, a)) { \ 2478 uint32_t data = 0; \ 2479 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2480 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2481 }; \ 2482 TCGLabel *over = gen_new_label(); \ 2483 gen_set_rm(s, RISCV_FRM_DYN); \ 2484 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2485 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);\ 2486 \ 2487 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2488 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2489 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2490 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2491 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2492 vreg_ofs(s, a->rs1), \ 2493 vreg_ofs(s, a->rs2), cpu_env, \ 2494 s->cfg_ptr->vlen / 8, \ 2495 s->cfg_ptr->vlen / 8, data, \ 2496 fns[s->sew - 1]); \ 2497 mark_vs_dirty(s); \ 2498 gen_set_label(over); \ 2499 return true; \ 2500 } \ 2501 return false; \ 2502 } 2503 2504 GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check) 2505 GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check) 2506 2507 static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a) 2508 { 2509 return require_rvv(s) && 2510 require_scale_rvf(s) && 2511 (s->sew != MO_8) && 2512 vext_check_isa_ill(s) && 2513 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2514 require_scale_zve32f(s) && 2515 require_scale_zve64f(s); 2516 } 2517 2518 /* OPFVF with WIDEN */ 2519 #define GEN_OPFVF_WIDEN_TRANS(NAME) \ 2520 static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2521 { \ 2522 if (opfvf_widen_check(s, a)) { \ 2523 uint32_t data = 0; \ 2524 static gen_helper_opfvf *const fns[2] = { \ 2525 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2526 }; \ 2527 gen_set_rm(s, RISCV_FRM_DYN); \ 2528 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2529 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2530 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2531 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2532 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2533 fns[s->sew - 1], s); \ 2534 } \ 2535 return false; \ 2536 } 2537 2538 GEN_OPFVF_WIDEN_TRANS(vfwadd_vf) 2539 GEN_OPFVF_WIDEN_TRANS(vfwsub_vf) 2540 2541 static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a) 2542 { 2543 return require_rvv(s) && 2544 require_scale_rvf(s) && 2545 (s->sew != MO_8) && 2546 vext_check_isa_ill(s) && 2547 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm) && 2548 require_scale_zve32f(s) && 2549 require_scale_zve64f(s); 2550 } 2551 2552 /* WIDEN OPFVV with WIDEN */ 2553 #define GEN_OPFWV_WIDEN_TRANS(NAME) \ 2554 static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2555 { \ 2556 if (opfwv_widen_check(s, a)) { \ 2557 uint32_t data = 0; \ 2558 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2559 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2560 }; \ 2561 TCGLabel *over = gen_new_label(); \ 2562 gen_set_rm(s, RISCV_FRM_DYN); \ 2563 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2564 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2565 \ 2566 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2567 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2568 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2569 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2570 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2571 vreg_ofs(s, a->rs1), \ 2572 vreg_ofs(s, a->rs2), cpu_env, \ 2573 s->cfg_ptr->vlen / 8, \ 2574 s->cfg_ptr->vlen / 8, data, \ 2575 fns[s->sew - 1]); \ 2576 mark_vs_dirty(s); \ 2577 gen_set_label(over); \ 2578 return true; \ 2579 } \ 2580 return false; \ 2581 } 2582 2583 GEN_OPFWV_WIDEN_TRANS(vfwadd_wv) 2584 GEN_OPFWV_WIDEN_TRANS(vfwsub_wv) 2585 2586 static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a) 2587 { 2588 return require_rvv(s) && 2589 require_scale_rvf(s) && 2590 (s->sew != MO_8) && 2591 vext_check_isa_ill(s) && 2592 vext_check_dd(s, a->rd, a->rs2, a->vm) && 2593 require_scale_zve32f(s) && 2594 require_scale_zve64f(s); 2595 } 2596 2597 /* WIDEN OPFVF with WIDEN */ 2598 #define GEN_OPFWF_WIDEN_TRANS(NAME) \ 2599 static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2600 { \ 2601 if (opfwf_widen_check(s, a)) { \ 2602 uint32_t data = 0; \ 2603 static gen_helper_opfvf *const fns[2] = { \ 2604 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2605 }; \ 2606 gen_set_rm(s, RISCV_FRM_DYN); \ 2607 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2608 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2609 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2610 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2611 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2612 fns[s->sew - 1], s); \ 2613 } \ 2614 return false; \ 2615 } 2616 2617 GEN_OPFWF_WIDEN_TRANS(vfwadd_wf) 2618 GEN_OPFWF_WIDEN_TRANS(vfwsub_wf) 2619 2620 /* Vector Single-Width Floating-Point Multiply/Divide Instructions */ 2621 GEN_OPFVV_TRANS(vfmul_vv, opfvv_check) 2622 GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check) 2623 GEN_OPFVF_TRANS(vfmul_vf, opfvf_check) 2624 GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check) 2625 GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check) 2626 2627 /* Vector Widening Floating-Point Multiply */ 2628 GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check) 2629 GEN_OPFVF_WIDEN_TRANS(vfwmul_vf) 2630 2631 /* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ 2632 GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check) 2633 GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check) 2634 GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check) 2635 GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check) 2636 GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check) 2637 GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check) 2638 GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check) 2639 GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check) 2640 GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check) 2641 GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check) 2642 GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check) 2643 GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check) 2644 GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check) 2645 GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check) 2646 GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check) 2647 GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check) 2648 2649 /* Vector Widening Floating-Point Fused Multiply-Add Instructions */ 2650 GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check) 2651 GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check) 2652 GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check) 2653 GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check) 2654 GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf) 2655 GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf) 2656 GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf) 2657 GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf) 2658 2659 /* Vector Floating-Point Square-Root Instruction */ 2660 2661 /* 2662 * If the current SEW does not correspond to a supported IEEE floating-point 2663 * type, an illegal instruction exception is raised 2664 */ 2665 static bool opfv_check(DisasContext *s, arg_rmr *a) 2666 { 2667 return require_rvv(s) && 2668 require_rvf(s) && 2669 vext_check_isa_ill(s) && 2670 /* OPFV instructions ignore vs1 check */ 2671 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2672 require_zve32f(s) && 2673 require_zve64f(s); 2674 } 2675 2676 static bool do_opfv(DisasContext *s, arg_rmr *a, 2677 gen_helper_gvec_3_ptr *fn, 2678 bool (*checkfn)(DisasContext *, arg_rmr *), 2679 int rm) 2680 { 2681 if (checkfn(s, a)) { 2682 if (rm != RISCV_FRM_DYN) { 2683 gen_set_rm(s, RISCV_FRM_DYN); 2684 } 2685 2686 uint32_t data = 0; 2687 TCGLabel *over = gen_new_label(); 2688 gen_set_rm(s, rm); 2689 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2690 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2691 2692 data = FIELD_DP32(data, VDATA, VM, a->vm); 2693 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2694 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2695 data = FIELD_DP32(data, VDATA, VMA, s->vma); 2696 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2697 vreg_ofs(s, a->rs2), cpu_env, 2698 s->cfg_ptr->vlen / 8, 2699 s->cfg_ptr->vlen / 8, data, fn); 2700 mark_vs_dirty(s); 2701 gen_set_label(over); 2702 return true; 2703 } 2704 return false; 2705 } 2706 2707 #define GEN_OPFV_TRANS(NAME, CHECK, FRM) \ 2708 static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2709 { \ 2710 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2711 gen_helper_##NAME##_h, \ 2712 gen_helper_##NAME##_w, \ 2713 gen_helper_##NAME##_d \ 2714 }; \ 2715 return do_opfv(s, a, fns[s->sew - 1], CHECK, FRM); \ 2716 } 2717 2718 GEN_OPFV_TRANS(vfsqrt_v, opfv_check, RISCV_FRM_DYN) 2719 GEN_OPFV_TRANS(vfrsqrt7_v, opfv_check, RISCV_FRM_DYN) 2720 GEN_OPFV_TRANS(vfrec7_v, opfv_check, RISCV_FRM_DYN) 2721 2722 /* Vector Floating-Point MIN/MAX Instructions */ 2723 GEN_OPFVV_TRANS(vfmin_vv, opfvv_check) 2724 GEN_OPFVV_TRANS(vfmax_vv, opfvv_check) 2725 GEN_OPFVF_TRANS(vfmin_vf, opfvf_check) 2726 GEN_OPFVF_TRANS(vfmax_vf, opfvf_check) 2727 2728 /* Vector Floating-Point Sign-Injection Instructions */ 2729 GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check) 2730 GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check) 2731 GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check) 2732 GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check) 2733 GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check) 2734 GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check) 2735 2736 /* Vector Floating-Point Compare Instructions */ 2737 static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a) 2738 { 2739 return require_rvv(s) && 2740 require_rvf(s) && 2741 vext_check_isa_ill(s) && 2742 vext_check_mss(s, a->rd, a->rs1, a->rs2) && 2743 require_zve32f(s) && 2744 require_zve64f(s); 2745 } 2746 2747 GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check) 2748 GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check) 2749 GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check) 2750 GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check) 2751 2752 static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a) 2753 { 2754 return require_rvv(s) && 2755 require_rvf(s) && 2756 vext_check_isa_ill(s) && 2757 vext_check_ms(s, a->rd, a->rs2) && 2758 require_zve32f(s) && 2759 require_zve64f(s); 2760 } 2761 2762 GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check) 2763 GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check) 2764 GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check) 2765 GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check) 2766 GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check) 2767 GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check) 2768 2769 /* Vector Floating-Point Classify Instruction */ 2770 GEN_OPFV_TRANS(vfclass_v, opfv_check, RISCV_FRM_DYN) 2771 2772 /* Vector Floating-Point Merge Instruction */ 2773 GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check) 2774 2775 static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a) 2776 { 2777 if (require_rvv(s) && 2778 require_rvf(s) && 2779 vext_check_isa_ill(s) && 2780 require_align(a->rd, s->lmul) && 2781 require_zve32f(s) && 2782 require_zve64f(s)) { 2783 gen_set_rm(s, RISCV_FRM_DYN); 2784 2785 TCGv_i64 t1; 2786 2787 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2788 t1 = tcg_temp_new_i64(); 2789 /* NaN-box f[rs1] */ 2790 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2791 2792 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2793 MAXSZ(s), MAXSZ(s), t1); 2794 mark_vs_dirty(s); 2795 } else { 2796 TCGv_ptr dest; 2797 TCGv_i32 desc; 2798 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2799 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2800 data = FIELD_DP32(data, VDATA, VMA, s->vma); 2801 static gen_helper_vmv_vx * const fns[3] = { 2802 gen_helper_vmv_v_x_h, 2803 gen_helper_vmv_v_x_w, 2804 gen_helper_vmv_v_x_d, 2805 }; 2806 TCGLabel *over = gen_new_label(); 2807 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2808 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2809 2810 t1 = tcg_temp_new_i64(); 2811 /* NaN-box f[rs1] */ 2812 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2813 2814 dest = tcg_temp_new_ptr(); 2815 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2816 s->cfg_ptr->vlen / 8, data)); 2817 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2818 2819 fns[s->sew - 1](dest, t1, cpu_env, desc); 2820 2821 tcg_temp_free_ptr(dest); 2822 mark_vs_dirty(s); 2823 gen_set_label(over); 2824 } 2825 tcg_temp_free_i64(t1); 2826 return true; 2827 } 2828 return false; 2829 } 2830 2831 /* Single-Width Floating-Point/Integer Type-Convert Instructions */ 2832 #define GEN_OPFV_CVT_TRANS(NAME, HELPER, FRM) \ 2833 static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2834 { \ 2835 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2836 gen_helper_##HELPER##_h, \ 2837 gen_helper_##HELPER##_w, \ 2838 gen_helper_##HELPER##_d \ 2839 }; \ 2840 return do_opfv(s, a, fns[s->sew - 1], opfv_check, FRM); \ 2841 } 2842 2843 GEN_OPFV_CVT_TRANS(vfcvt_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_DYN) 2844 GEN_OPFV_CVT_TRANS(vfcvt_x_f_v, vfcvt_x_f_v, RISCV_FRM_DYN) 2845 GEN_OPFV_CVT_TRANS(vfcvt_f_xu_v, vfcvt_f_xu_v, RISCV_FRM_DYN) 2846 GEN_OPFV_CVT_TRANS(vfcvt_f_x_v, vfcvt_f_x_v, RISCV_FRM_DYN) 2847 /* Reuse the helper functions from vfcvt.xu.f.v and vfcvt.x.f.v */ 2848 GEN_OPFV_CVT_TRANS(vfcvt_rtz_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_RTZ) 2849 GEN_OPFV_CVT_TRANS(vfcvt_rtz_x_f_v, vfcvt_x_f_v, RISCV_FRM_RTZ) 2850 2851 /* Widening Floating-Point/Integer Type-Convert Instructions */ 2852 2853 /* 2854 * If the current SEW does not correspond to a supported IEEE floating-point 2855 * type, an illegal instruction exception is raised 2856 */ 2857 static bool opfv_widen_check(DisasContext *s, arg_rmr *a) 2858 { 2859 return require_rvv(s) && 2860 vext_check_isa_ill(s) && 2861 vext_check_ds(s, a->rd, a->rs2, a->vm); 2862 } 2863 2864 static bool opxfv_widen_check(DisasContext *s, arg_rmr *a) 2865 { 2866 return opfv_widen_check(s, a) && 2867 require_rvf(s) && 2868 require_zve32f(s) && 2869 require_zve64f(s); 2870 } 2871 2872 static bool opffv_widen_check(DisasContext *s, arg_rmr *a) 2873 { 2874 return opfv_widen_check(s, a) && 2875 require_scale_rvf(s) && 2876 (s->sew != MO_8) && 2877 require_scale_zve32f(s) && 2878 require_scale_zve64f(s); 2879 } 2880 2881 #define GEN_OPFV_WIDEN_TRANS(NAME, CHECK, HELPER, FRM) \ 2882 static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2883 { \ 2884 if (CHECK(s, a)) { \ 2885 if (FRM != RISCV_FRM_DYN) { \ 2886 gen_set_rm(s, RISCV_FRM_DYN); \ 2887 } \ 2888 \ 2889 uint32_t data = 0; \ 2890 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2891 gen_helper_##HELPER##_h, \ 2892 gen_helper_##HELPER##_w, \ 2893 }; \ 2894 TCGLabel *over = gen_new_label(); \ 2895 gen_set_rm(s, FRM); \ 2896 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2897 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2898 \ 2899 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2900 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2901 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2902 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2903 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2904 vreg_ofs(s, a->rs2), cpu_env, \ 2905 s->cfg_ptr->vlen / 8, \ 2906 s->cfg_ptr->vlen / 8, data, \ 2907 fns[s->sew - 1]); \ 2908 mark_vs_dirty(s); \ 2909 gen_set_label(over); \ 2910 return true; \ 2911 } \ 2912 return false; \ 2913 } 2914 2915 GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2916 RISCV_FRM_DYN) 2917 GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2918 RISCV_FRM_DYN) 2919 GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v, opffv_widen_check, vfwcvt_f_f_v, 2920 RISCV_FRM_DYN) 2921 /* Reuse the helper functions from vfwcvt.xu.f.v and vfwcvt.x.f.v */ 2922 GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2923 RISCV_FRM_RTZ) 2924 GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2925 RISCV_FRM_RTZ) 2926 2927 static bool opfxv_widen_check(DisasContext *s, arg_rmr *a) 2928 { 2929 return require_rvv(s) && 2930 require_scale_rvf(s) && 2931 vext_check_isa_ill(s) && 2932 /* OPFV widening instructions ignore vs1 check */ 2933 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2934 require_scale_zve32f(s) && 2935 require_scale_zve64f(s); 2936 } 2937 2938 #define GEN_OPFXV_WIDEN_TRANS(NAME) \ 2939 static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2940 { \ 2941 if (opfxv_widen_check(s, a)) { \ 2942 uint32_t data = 0; \ 2943 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2944 gen_helper_##NAME##_b, \ 2945 gen_helper_##NAME##_h, \ 2946 gen_helper_##NAME##_w, \ 2947 }; \ 2948 TCGLabel *over = gen_new_label(); \ 2949 gen_set_rm(s, RISCV_FRM_DYN); \ 2950 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2951 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2952 \ 2953 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2954 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2955 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2956 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2957 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2958 vreg_ofs(s, a->rs2), cpu_env, \ 2959 s->cfg_ptr->vlen / 8, \ 2960 s->cfg_ptr->vlen / 8, data, \ 2961 fns[s->sew]); \ 2962 mark_vs_dirty(s); \ 2963 gen_set_label(over); \ 2964 return true; \ 2965 } \ 2966 return false; \ 2967 } 2968 2969 GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_xu_v) 2970 GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_x_v) 2971 2972 /* Narrowing Floating-Point/Integer Type-Convert Instructions */ 2973 2974 /* 2975 * If the current SEW does not correspond to a supported IEEE floating-point 2976 * type, an illegal instruction exception is raised 2977 */ 2978 static bool opfv_narrow_check(DisasContext *s, arg_rmr *a) 2979 { 2980 return require_rvv(s) && 2981 vext_check_isa_ill(s) && 2982 /* OPFV narrowing instructions ignore vs1 check */ 2983 vext_check_sd(s, a->rd, a->rs2, a->vm); 2984 } 2985 2986 static bool opfxv_narrow_check(DisasContext *s, arg_rmr *a) 2987 { 2988 return opfv_narrow_check(s, a) && 2989 require_rvf(s) && 2990 (s->sew != MO_64) && 2991 require_zve32f(s) && 2992 require_zve64f(s); 2993 } 2994 2995 static bool opffv_narrow_check(DisasContext *s, arg_rmr *a) 2996 { 2997 return opfv_narrow_check(s, a) && 2998 require_scale_rvf(s) && 2999 (s->sew != MO_8) && 3000 require_scale_zve32f(s) && 3001 require_scale_zve64f(s); 3002 } 3003 3004 #define GEN_OPFV_NARROW_TRANS(NAME, CHECK, HELPER, FRM) \ 3005 static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3006 { \ 3007 if (CHECK(s, a)) { \ 3008 if (FRM != RISCV_FRM_DYN) { \ 3009 gen_set_rm(s, RISCV_FRM_DYN); \ 3010 } \ 3011 \ 3012 uint32_t data = 0; \ 3013 static gen_helper_gvec_3_ptr * const fns[2] = { \ 3014 gen_helper_##HELPER##_h, \ 3015 gen_helper_##HELPER##_w, \ 3016 }; \ 3017 TCGLabel *over = gen_new_label(); \ 3018 gen_set_rm(s, FRM); \ 3019 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3020 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3021 \ 3022 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3023 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3024 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 3025 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 3026 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3027 vreg_ofs(s, a->rs2), cpu_env, \ 3028 s->cfg_ptr->vlen / 8, \ 3029 s->cfg_ptr->vlen / 8, data, \ 3030 fns[s->sew - 1]); \ 3031 mark_vs_dirty(s); \ 3032 gen_set_label(over); \ 3033 return true; \ 3034 } \ 3035 return false; \ 3036 } 3037 3038 GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_w, opfxv_narrow_check, vfncvt_f_xu_w, 3039 RISCV_FRM_DYN) 3040 GEN_OPFV_NARROW_TRANS(vfncvt_f_x_w, opfxv_narrow_check, vfncvt_f_x_w, 3041 RISCV_FRM_DYN) 3042 GEN_OPFV_NARROW_TRANS(vfncvt_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 3043 RISCV_FRM_DYN) 3044 /* Reuse the helper function from vfncvt.f.f.w */ 3045 GEN_OPFV_NARROW_TRANS(vfncvt_rod_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 3046 RISCV_FRM_ROD) 3047 3048 static bool opxfv_narrow_check(DisasContext *s, arg_rmr *a) 3049 { 3050 return require_rvv(s) && 3051 require_scale_rvf(s) && 3052 vext_check_isa_ill(s) && 3053 /* OPFV narrowing instructions ignore vs1 check */ 3054 vext_check_sd(s, a->rd, a->rs2, a->vm) && 3055 require_scale_zve32f(s) && 3056 require_scale_zve64f(s); 3057 } 3058 3059 #define GEN_OPXFV_NARROW_TRANS(NAME, HELPER, FRM) \ 3060 static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3061 { \ 3062 if (opxfv_narrow_check(s, a)) { \ 3063 if (FRM != RISCV_FRM_DYN) { \ 3064 gen_set_rm(s, RISCV_FRM_DYN); \ 3065 } \ 3066 \ 3067 uint32_t data = 0; \ 3068 static gen_helper_gvec_3_ptr * const fns[3] = { \ 3069 gen_helper_##HELPER##_b, \ 3070 gen_helper_##HELPER##_h, \ 3071 gen_helper_##HELPER##_w, \ 3072 }; \ 3073 TCGLabel *over = gen_new_label(); \ 3074 gen_set_rm(s, FRM); \ 3075 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3076 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3077 \ 3078 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3079 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3080 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 3081 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 3082 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3083 vreg_ofs(s, a->rs2), cpu_env, \ 3084 s->cfg_ptr->vlen / 8, \ 3085 s->cfg_ptr->vlen / 8, data, \ 3086 fns[s->sew]); \ 3087 mark_vs_dirty(s); \ 3088 gen_set_label(over); \ 3089 return true; \ 3090 } \ 3091 return false; \ 3092 } 3093 3094 GEN_OPXFV_NARROW_TRANS(vfncvt_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_DYN) 3095 GEN_OPXFV_NARROW_TRANS(vfncvt_x_f_w, vfncvt_x_f_w, RISCV_FRM_DYN) 3096 /* Reuse the helper functions from vfncvt.xu.f.w and vfncvt.x.f.w */ 3097 GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_RTZ) 3098 GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_x_f_w, vfncvt_x_f_w, RISCV_FRM_RTZ) 3099 3100 /* 3101 *** Vector Reduction Operations 3102 */ 3103 /* Vector Single-Width Integer Reduction Instructions */ 3104 static bool reduction_check(DisasContext *s, arg_rmrr *a) 3105 { 3106 return require_rvv(s) && 3107 vext_check_isa_ill(s) && 3108 vext_check_reduction(s, a->rs2); 3109 } 3110 3111 GEN_OPIVV_TRANS(vredsum_vs, reduction_check) 3112 GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check) 3113 GEN_OPIVV_TRANS(vredmax_vs, reduction_check) 3114 GEN_OPIVV_TRANS(vredminu_vs, reduction_check) 3115 GEN_OPIVV_TRANS(vredmin_vs, reduction_check) 3116 GEN_OPIVV_TRANS(vredand_vs, reduction_check) 3117 GEN_OPIVV_TRANS(vredor_vs, reduction_check) 3118 GEN_OPIVV_TRANS(vredxor_vs, reduction_check) 3119 3120 /* Vector Widening Integer Reduction Instructions */ 3121 static bool reduction_widen_check(DisasContext *s, arg_rmrr *a) 3122 { 3123 return reduction_check(s, a) && (s->sew < MO_64) && 3124 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)); 3125 } 3126 3127 GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check) 3128 GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check) 3129 3130 /* Vector Single-Width Floating-Point Reduction Instructions */ 3131 static bool freduction_check(DisasContext *s, arg_rmrr *a) 3132 { 3133 return reduction_check(s, a) && 3134 require_rvf(s) && 3135 require_zve32f(s) && 3136 require_zve64f(s); 3137 } 3138 3139 GEN_OPFVV_TRANS(vfredusum_vs, freduction_check) 3140 GEN_OPFVV_TRANS(vfredosum_vs, freduction_check) 3141 GEN_OPFVV_TRANS(vfredmax_vs, freduction_check) 3142 GEN_OPFVV_TRANS(vfredmin_vs, freduction_check) 3143 3144 /* Vector Widening Floating-Point Reduction Instructions */ 3145 static bool freduction_widen_check(DisasContext *s, arg_rmrr *a) 3146 { 3147 return reduction_widen_check(s, a) && 3148 require_scale_rvf(s) && 3149 (s->sew != MO_8); 3150 } 3151 3152 GEN_OPFVV_WIDEN_TRANS(vfwredusum_vs, freduction_widen_check) 3153 GEN_OPFVV_WIDEN_TRANS(vfwredosum_vs, freduction_widen_check) 3154 3155 /* 3156 *** Vector Mask Operations 3157 */ 3158 3159 /* Vector Mask-Register Logical Instructions */ 3160 #define GEN_MM_TRANS(NAME) \ 3161 static bool trans_##NAME(DisasContext *s, arg_r *a) \ 3162 { \ 3163 if (require_rvv(s) && \ 3164 vext_check_isa_ill(s)) { \ 3165 uint32_t data = 0; \ 3166 gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \ 3167 TCGLabel *over = gen_new_label(); \ 3168 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3169 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3170 \ 3171 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3172 data = \ 3173 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 3174 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3175 vreg_ofs(s, a->rs1), \ 3176 vreg_ofs(s, a->rs2), cpu_env, \ 3177 s->cfg_ptr->vlen / 8, \ 3178 s->cfg_ptr->vlen / 8, data, fn); \ 3179 mark_vs_dirty(s); \ 3180 gen_set_label(over); \ 3181 return true; \ 3182 } \ 3183 return false; \ 3184 } 3185 3186 GEN_MM_TRANS(vmand_mm) 3187 GEN_MM_TRANS(vmnand_mm) 3188 GEN_MM_TRANS(vmandn_mm) 3189 GEN_MM_TRANS(vmxor_mm) 3190 GEN_MM_TRANS(vmor_mm) 3191 GEN_MM_TRANS(vmnor_mm) 3192 GEN_MM_TRANS(vmorn_mm) 3193 GEN_MM_TRANS(vmxnor_mm) 3194 3195 /* Vector count population in mask vcpop */ 3196 static bool trans_vcpop_m(DisasContext *s, arg_rmr *a) 3197 { 3198 if (require_rvv(s) && 3199 vext_check_isa_ill(s) && 3200 s->vstart == 0) { 3201 TCGv_ptr src2, mask; 3202 TCGv dst; 3203 TCGv_i32 desc; 3204 uint32_t data = 0; 3205 data = FIELD_DP32(data, VDATA, VM, a->vm); 3206 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3207 3208 mask = tcg_temp_new_ptr(); 3209 src2 = tcg_temp_new_ptr(); 3210 dst = dest_gpr(s, a->rd); 3211 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3212 s->cfg_ptr->vlen / 8, data)); 3213 3214 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3215 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3216 3217 gen_helper_vcpop_m(dst, mask, src2, cpu_env, desc); 3218 gen_set_gpr(s, a->rd, dst); 3219 3220 tcg_temp_free_ptr(mask); 3221 tcg_temp_free_ptr(src2); 3222 3223 return true; 3224 } 3225 return false; 3226 } 3227 3228 /* vmfirst find-first-set mask bit */ 3229 static bool trans_vfirst_m(DisasContext *s, arg_rmr *a) 3230 { 3231 if (require_rvv(s) && 3232 vext_check_isa_ill(s) && 3233 s->vstart == 0) { 3234 TCGv_ptr src2, mask; 3235 TCGv dst; 3236 TCGv_i32 desc; 3237 uint32_t data = 0; 3238 data = FIELD_DP32(data, VDATA, VM, a->vm); 3239 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3240 3241 mask = tcg_temp_new_ptr(); 3242 src2 = tcg_temp_new_ptr(); 3243 dst = dest_gpr(s, a->rd); 3244 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3245 s->cfg_ptr->vlen / 8, data)); 3246 3247 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3248 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3249 3250 gen_helper_vfirst_m(dst, mask, src2, cpu_env, desc); 3251 gen_set_gpr(s, a->rd, dst); 3252 3253 tcg_temp_free_ptr(mask); 3254 tcg_temp_free_ptr(src2); 3255 return true; 3256 } 3257 return false; 3258 } 3259 3260 /* vmsbf.m set-before-first mask bit */ 3261 /* vmsif.m set-includ-first mask bit */ 3262 /* vmsof.m set-only-first mask bit */ 3263 #define GEN_M_TRANS(NAME) \ 3264 static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3265 { \ 3266 if (require_rvv(s) && \ 3267 vext_check_isa_ill(s) && \ 3268 require_vm(a->vm, a->rd) && \ 3269 (a->rd != a->rs2) && \ 3270 (s->vstart == 0)) { \ 3271 uint32_t data = 0; \ 3272 gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \ 3273 TCGLabel *over = gen_new_label(); \ 3274 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3275 \ 3276 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3277 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3278 data = \ 3279 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 3280 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 3281 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \ 3282 vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \ 3283 cpu_env, s->cfg_ptr->vlen / 8, \ 3284 s->cfg_ptr->vlen / 8, \ 3285 data, fn); \ 3286 mark_vs_dirty(s); \ 3287 gen_set_label(over); \ 3288 return true; \ 3289 } \ 3290 return false; \ 3291 } 3292 3293 GEN_M_TRANS(vmsbf_m) 3294 GEN_M_TRANS(vmsif_m) 3295 GEN_M_TRANS(vmsof_m) 3296 3297 /* 3298 * Vector Iota Instruction 3299 * 3300 * 1. The destination register cannot overlap the source register. 3301 * 2. If masked, cannot overlap the mask register ('v0'). 3302 * 3. An illegal instruction exception is raised if vstart is non-zero. 3303 */ 3304 static bool trans_viota_m(DisasContext *s, arg_viota_m *a) 3305 { 3306 if (require_rvv(s) && 3307 vext_check_isa_ill(s) && 3308 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1) && 3309 require_vm(a->vm, a->rd) && 3310 require_align(a->rd, s->lmul) && 3311 (s->vstart == 0)) { 3312 uint32_t data = 0; 3313 TCGLabel *over = gen_new_label(); 3314 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3315 3316 data = FIELD_DP32(data, VDATA, VM, a->vm); 3317 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3318 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3319 data = FIELD_DP32(data, VDATA, VMA, s->vma); 3320 static gen_helper_gvec_3_ptr * const fns[4] = { 3321 gen_helper_viota_m_b, gen_helper_viota_m_h, 3322 gen_helper_viota_m_w, gen_helper_viota_m_d, 3323 }; 3324 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3325 vreg_ofs(s, a->rs2), cpu_env, 3326 s->cfg_ptr->vlen / 8, 3327 s->cfg_ptr->vlen / 8, data, fns[s->sew]); 3328 mark_vs_dirty(s); 3329 gen_set_label(over); 3330 return true; 3331 } 3332 return false; 3333 } 3334 3335 /* Vector Element Index Instruction */ 3336 static bool trans_vid_v(DisasContext *s, arg_vid_v *a) 3337 { 3338 if (require_rvv(s) && 3339 vext_check_isa_ill(s) && 3340 require_align(a->rd, s->lmul) && 3341 require_vm(a->vm, a->rd)) { 3342 uint32_t data = 0; 3343 TCGLabel *over = gen_new_label(); 3344 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3345 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3346 3347 data = FIELD_DP32(data, VDATA, VM, a->vm); 3348 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3349 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3350 data = FIELD_DP32(data, VDATA, VMA, s->vma); 3351 static gen_helper_gvec_2_ptr * const fns[4] = { 3352 gen_helper_vid_v_b, gen_helper_vid_v_h, 3353 gen_helper_vid_v_w, gen_helper_vid_v_d, 3354 }; 3355 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3356 cpu_env, s->cfg_ptr->vlen / 8, 3357 s->cfg_ptr->vlen / 8, 3358 data, fns[s->sew]); 3359 mark_vs_dirty(s); 3360 gen_set_label(over); 3361 return true; 3362 } 3363 return false; 3364 } 3365 3366 /* 3367 *** Vector Permutation Instructions 3368 */ 3369 3370 static void load_element(TCGv_i64 dest, TCGv_ptr base, 3371 int ofs, int sew, bool sign) 3372 { 3373 switch (sew) { 3374 case MO_8: 3375 if (!sign) { 3376 tcg_gen_ld8u_i64(dest, base, ofs); 3377 } else { 3378 tcg_gen_ld8s_i64(dest, base, ofs); 3379 } 3380 break; 3381 case MO_16: 3382 if (!sign) { 3383 tcg_gen_ld16u_i64(dest, base, ofs); 3384 } else { 3385 tcg_gen_ld16s_i64(dest, base, ofs); 3386 } 3387 break; 3388 case MO_32: 3389 if (!sign) { 3390 tcg_gen_ld32u_i64(dest, base, ofs); 3391 } else { 3392 tcg_gen_ld32s_i64(dest, base, ofs); 3393 } 3394 break; 3395 case MO_64: 3396 tcg_gen_ld_i64(dest, base, ofs); 3397 break; 3398 default: 3399 g_assert_not_reached(); 3400 break; 3401 } 3402 } 3403 3404 /* offset of the idx element with base regsiter r */ 3405 static uint32_t endian_ofs(DisasContext *s, int r, int idx) 3406 { 3407 #if HOST_BIG_ENDIAN 3408 return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew); 3409 #else 3410 return vreg_ofs(s, r) + (idx << s->sew); 3411 #endif 3412 } 3413 3414 /* adjust the index according to the endian */ 3415 static void endian_adjust(TCGv_i32 ofs, int sew) 3416 { 3417 #if HOST_BIG_ENDIAN 3418 tcg_gen_xori_i32(ofs, ofs, 7 >> sew); 3419 #endif 3420 } 3421 3422 /* Load idx >= VLMAX ? 0 : vreg[idx] */ 3423 static void vec_element_loadx(DisasContext *s, TCGv_i64 dest, 3424 int vreg, TCGv idx, int vlmax) 3425 { 3426 TCGv_i32 ofs = tcg_temp_new_i32(); 3427 TCGv_ptr base = tcg_temp_new_ptr(); 3428 TCGv_i64 t_idx = tcg_temp_new_i64(); 3429 TCGv_i64 t_vlmax, t_zero; 3430 3431 /* 3432 * Mask the index to the length so that we do 3433 * not produce an out-of-range load. 3434 */ 3435 tcg_gen_trunc_tl_i32(ofs, idx); 3436 tcg_gen_andi_i32(ofs, ofs, vlmax - 1); 3437 3438 /* Convert the index to an offset. */ 3439 endian_adjust(ofs, s->sew); 3440 tcg_gen_shli_i32(ofs, ofs, s->sew); 3441 3442 /* Convert the index to a pointer. */ 3443 tcg_gen_ext_i32_ptr(base, ofs); 3444 tcg_gen_add_ptr(base, base, cpu_env); 3445 3446 /* Perform the load. */ 3447 load_element(dest, base, 3448 vreg_ofs(s, vreg), s->sew, false); 3449 tcg_temp_free_ptr(base); 3450 tcg_temp_free_i32(ofs); 3451 3452 /* Flush out-of-range indexing to zero. */ 3453 t_vlmax = tcg_constant_i64(vlmax); 3454 t_zero = tcg_constant_i64(0); 3455 tcg_gen_extu_tl_i64(t_idx, idx); 3456 3457 tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx, 3458 t_vlmax, dest, t_zero); 3459 3460 tcg_temp_free_i64(t_idx); 3461 } 3462 3463 static void vec_element_loadi(DisasContext *s, TCGv_i64 dest, 3464 int vreg, int idx, bool sign) 3465 { 3466 load_element(dest, cpu_env, endian_ofs(s, vreg, idx), s->sew, sign); 3467 } 3468 3469 /* Integer Scalar Move Instruction */ 3470 3471 static void store_element(TCGv_i64 val, TCGv_ptr base, 3472 int ofs, int sew) 3473 { 3474 switch (sew) { 3475 case MO_8: 3476 tcg_gen_st8_i64(val, base, ofs); 3477 break; 3478 case MO_16: 3479 tcg_gen_st16_i64(val, base, ofs); 3480 break; 3481 case MO_32: 3482 tcg_gen_st32_i64(val, base, ofs); 3483 break; 3484 case MO_64: 3485 tcg_gen_st_i64(val, base, ofs); 3486 break; 3487 default: 3488 g_assert_not_reached(); 3489 break; 3490 } 3491 } 3492 3493 /* 3494 * Store vreg[idx] = val. 3495 * The index must be in range of VLMAX. 3496 */ 3497 static void vec_element_storei(DisasContext *s, int vreg, 3498 int idx, TCGv_i64 val) 3499 { 3500 store_element(val, cpu_env, endian_ofs(s, vreg, idx), s->sew); 3501 } 3502 3503 /* vmv.x.s rd, vs2 # x[rd] = vs2[0] */ 3504 static bool trans_vmv_x_s(DisasContext *s, arg_vmv_x_s *a) 3505 { 3506 if (require_rvv(s) && 3507 vext_check_isa_ill(s)) { 3508 TCGv_i64 t1; 3509 TCGv dest; 3510 3511 t1 = tcg_temp_new_i64(); 3512 dest = tcg_temp_new(); 3513 /* 3514 * load vreg and sign-extend to 64 bits, 3515 * then truncate to XLEN bits before storing to gpr. 3516 */ 3517 vec_element_loadi(s, t1, a->rs2, 0, true); 3518 tcg_gen_trunc_i64_tl(dest, t1); 3519 gen_set_gpr(s, a->rd, dest); 3520 tcg_temp_free_i64(t1); 3521 tcg_temp_free(dest); 3522 3523 return true; 3524 } 3525 return false; 3526 } 3527 3528 /* vmv.s.x vd, rs1 # vd[0] = rs1 */ 3529 static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a) 3530 { 3531 if (require_rvv(s) && 3532 vext_check_isa_ill(s)) { 3533 /* This instruction ignores LMUL and vector register groups */ 3534 TCGv_i64 t1; 3535 TCGv s1; 3536 TCGLabel *over = gen_new_label(); 3537 3538 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3539 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3540 3541 t1 = tcg_temp_new_i64(); 3542 3543 /* 3544 * load gpr and sign-extend to 64 bits, 3545 * then truncate to SEW bits when storing to vreg. 3546 */ 3547 s1 = get_gpr(s, a->rs1, EXT_NONE); 3548 tcg_gen_ext_tl_i64(t1, s1); 3549 vec_element_storei(s, a->rd, 0, t1); 3550 tcg_temp_free_i64(t1); 3551 mark_vs_dirty(s); 3552 gen_set_label(over); 3553 return true; 3554 } 3555 return false; 3556 } 3557 3558 /* Floating-Point Scalar Move Instructions */ 3559 static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a) 3560 { 3561 if (require_rvv(s) && 3562 require_rvf(s) && 3563 vext_check_isa_ill(s) && 3564 require_zve32f(s) && 3565 require_zve64f(s)) { 3566 gen_set_rm(s, RISCV_FRM_DYN); 3567 3568 unsigned int ofs = (8 << s->sew); 3569 unsigned int len = 64 - ofs; 3570 TCGv_i64 t_nan; 3571 3572 vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0, false); 3573 /* NaN-box f[rd] as necessary for SEW */ 3574 if (len) { 3575 t_nan = tcg_constant_i64(UINT64_MAX); 3576 tcg_gen_deposit_i64(cpu_fpr[a->rd], cpu_fpr[a->rd], 3577 t_nan, ofs, len); 3578 } 3579 3580 mark_fs_dirty(s); 3581 return true; 3582 } 3583 return false; 3584 } 3585 3586 /* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */ 3587 static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a) 3588 { 3589 if (require_rvv(s) && 3590 require_rvf(s) && 3591 vext_check_isa_ill(s) && 3592 require_zve32f(s) && 3593 require_zve64f(s)) { 3594 gen_set_rm(s, RISCV_FRM_DYN); 3595 3596 /* The instructions ignore LMUL and vector register group. */ 3597 TCGv_i64 t1; 3598 TCGLabel *over = gen_new_label(); 3599 3600 /* if vl == 0 or vstart >= vl, skip vector register write back */ 3601 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3602 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3603 3604 /* NaN-box f[rs1] */ 3605 t1 = tcg_temp_new_i64(); 3606 do_nanbox(s, t1, cpu_fpr[a->rs1]); 3607 3608 vec_element_storei(s, a->rd, 0, t1); 3609 tcg_temp_free_i64(t1); 3610 mark_vs_dirty(s); 3611 gen_set_label(over); 3612 return true; 3613 } 3614 return false; 3615 } 3616 3617 /* Vector Slide Instructions */ 3618 static bool slideup_check(DisasContext *s, arg_rmrr *a) 3619 { 3620 return require_rvv(s) && 3621 vext_check_isa_ill(s) && 3622 vext_check_slide(s, a->rd, a->rs2, a->vm, true); 3623 } 3624 3625 GEN_OPIVX_TRANS(vslideup_vx, slideup_check) 3626 GEN_OPIVX_TRANS(vslide1up_vx, slideup_check) 3627 GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check) 3628 3629 static bool slidedown_check(DisasContext *s, arg_rmrr *a) 3630 { 3631 return require_rvv(s) && 3632 vext_check_isa_ill(s) && 3633 vext_check_slide(s, a->rd, a->rs2, a->vm, false); 3634 } 3635 3636 GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check) 3637 GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check) 3638 GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check) 3639 3640 /* Vector Floating-Point Slide Instructions */ 3641 static bool fslideup_check(DisasContext *s, arg_rmrr *a) 3642 { 3643 return slideup_check(s, a) && 3644 require_rvf(s) && 3645 require_zve32f(s) && 3646 require_zve64f(s); 3647 } 3648 3649 static bool fslidedown_check(DisasContext *s, arg_rmrr *a) 3650 { 3651 return slidedown_check(s, a) && 3652 require_rvf(s) && 3653 require_zve32f(s) && 3654 require_zve64f(s); 3655 } 3656 3657 GEN_OPFVF_TRANS(vfslide1up_vf, fslideup_check) 3658 GEN_OPFVF_TRANS(vfslide1down_vf, fslidedown_check) 3659 3660 /* Vector Register Gather Instruction */ 3661 static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a) 3662 { 3663 return require_rvv(s) && 3664 vext_check_isa_ill(s) && 3665 require_align(a->rd, s->lmul) && 3666 require_align(a->rs1, s->lmul) && 3667 require_align(a->rs2, s->lmul) && 3668 (a->rd != a->rs2 && a->rd != a->rs1) && 3669 require_vm(a->vm, a->rd); 3670 } 3671 3672 static bool vrgatherei16_vv_check(DisasContext *s, arg_rmrr *a) 3673 { 3674 int8_t emul = MO_16 - s->sew + s->lmul; 3675 return require_rvv(s) && 3676 vext_check_isa_ill(s) && 3677 (emul >= -3 && emul <= 3) && 3678 require_align(a->rd, s->lmul) && 3679 require_align(a->rs1, emul) && 3680 require_align(a->rs2, s->lmul) && 3681 (a->rd != a->rs2 && a->rd != a->rs1) && 3682 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3683 a->rs1, 1 << MAX(emul, 0)) && 3684 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3685 a->rs2, 1 << MAX(s->lmul, 0)) && 3686 require_vm(a->vm, a->rd); 3687 } 3688 3689 GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check) 3690 GEN_OPIVV_TRANS(vrgatherei16_vv, vrgatherei16_vv_check) 3691 3692 static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a) 3693 { 3694 return require_rvv(s) && 3695 vext_check_isa_ill(s) && 3696 require_align(a->rd, s->lmul) && 3697 require_align(a->rs2, s->lmul) && 3698 (a->rd != a->rs2) && 3699 require_vm(a->vm, a->rd); 3700 } 3701 3702 /* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */ 3703 static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a) 3704 { 3705 if (!vrgather_vx_check(s, a)) { 3706 return false; 3707 } 3708 3709 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 3710 int scale = s->lmul - (s->sew + 3); 3711 int vlmax = s->cfg_ptr->vlen >> -scale; 3712 TCGv_i64 dest = tcg_temp_new_i64(); 3713 3714 if (a->rs1 == 0) { 3715 vec_element_loadi(s, dest, a->rs2, 0, false); 3716 } else { 3717 vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax); 3718 } 3719 3720 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 3721 MAXSZ(s), MAXSZ(s), dest); 3722 tcg_temp_free_i64(dest); 3723 mark_vs_dirty(s); 3724 } else { 3725 static gen_helper_opivx * const fns[4] = { 3726 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3727 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3728 }; 3729 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); 3730 } 3731 return true; 3732 } 3733 3734 /* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */ 3735 static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a) 3736 { 3737 if (!vrgather_vx_check(s, a)) { 3738 return false; 3739 } 3740 3741 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 3742 int scale = s->lmul - (s->sew + 3); 3743 int vlmax = s->cfg_ptr->vlen >> -scale; 3744 if (a->rs1 >= vlmax) { 3745 tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd), 3746 MAXSZ(s), MAXSZ(s), 0); 3747 } else { 3748 tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd), 3749 endian_ofs(s, a->rs2, a->rs1), 3750 MAXSZ(s), MAXSZ(s)); 3751 } 3752 mark_vs_dirty(s); 3753 } else { 3754 static gen_helper_opivx * const fns[4] = { 3755 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3756 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3757 }; 3758 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], 3759 s, IMM_ZX); 3760 } 3761 return true; 3762 } 3763 3764 /* 3765 * Vector Compress Instruction 3766 * 3767 * The destination vector register group cannot overlap the 3768 * source vector register group or the source mask register. 3769 */ 3770 static bool vcompress_vm_check(DisasContext *s, arg_r *a) 3771 { 3772 return require_rvv(s) && 3773 vext_check_isa_ill(s) && 3774 require_align(a->rd, s->lmul) && 3775 require_align(a->rs2, s->lmul) && 3776 (a->rd != a->rs2) && 3777 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1) && 3778 (s->vstart == 0); 3779 } 3780 3781 static bool trans_vcompress_vm(DisasContext *s, arg_r *a) 3782 { 3783 if (vcompress_vm_check(s, a)) { 3784 uint32_t data = 0; 3785 static gen_helper_gvec_4_ptr * const fns[4] = { 3786 gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h, 3787 gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d, 3788 }; 3789 TCGLabel *over = gen_new_label(); 3790 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3791 3792 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3793 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3794 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3795 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 3796 cpu_env, s->cfg_ptr->vlen / 8, 3797 s->cfg_ptr->vlen / 8, data, 3798 fns[s->sew]); 3799 mark_vs_dirty(s); 3800 gen_set_label(over); 3801 return true; 3802 } 3803 return false; 3804 } 3805 3806 /* 3807 * Whole Vector Register Move Instructions ignore vtype and vl setting. 3808 * Thus, we don't need to check vill bit. (Section 16.6) 3809 */ 3810 #define GEN_VMV_WHOLE_TRANS(NAME, LEN) \ 3811 static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 3812 { \ 3813 if (require_rvv(s) && \ 3814 QEMU_IS_ALIGNED(a->rd, LEN) && \ 3815 QEMU_IS_ALIGNED(a->rs2, LEN)) { \ 3816 uint32_t maxsz = (s->cfg_ptr->vlen >> 3) * LEN; \ 3817 if (s->vstart == 0) { \ 3818 /* EEW = 8 */ \ 3819 tcg_gen_gvec_mov(MO_8, vreg_ofs(s, a->rd), \ 3820 vreg_ofs(s, a->rs2), maxsz, maxsz); \ 3821 mark_vs_dirty(s); \ 3822 } else { \ 3823 TCGLabel *over = gen_new_label(); \ 3824 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, maxsz, over); \ 3825 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), \ 3826 cpu_env, maxsz, maxsz, 0, gen_helper_vmvr_v); \ 3827 mark_vs_dirty(s); \ 3828 gen_set_label(over); \ 3829 } \ 3830 return true; \ 3831 } \ 3832 return false; \ 3833 } 3834 3835 GEN_VMV_WHOLE_TRANS(vmv1r_v, 1) 3836 GEN_VMV_WHOLE_TRANS(vmv2r_v, 2) 3837 GEN_VMV_WHOLE_TRANS(vmv4r_v, 4) 3838 GEN_VMV_WHOLE_TRANS(vmv8r_v, 8) 3839 3840 static bool int_ext_check(DisasContext *s, arg_rmr *a, uint8_t div) 3841 { 3842 uint8_t from = (s->sew + 3) - div; 3843 bool ret = require_rvv(s) && 3844 (from >= 3 && from <= 8) && 3845 (a->rd != a->rs2) && 3846 require_align(a->rd, s->lmul) && 3847 require_align(a->rs2, s->lmul - div) && 3848 require_vm(a->vm, a->rd) && 3849 require_noover(a->rd, s->lmul, a->rs2, s->lmul - div); 3850 return ret; 3851 } 3852 3853 static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq) 3854 { 3855 uint32_t data = 0; 3856 gen_helper_gvec_3_ptr *fn; 3857 TCGLabel *over = gen_new_label(); 3858 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3859 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3860 3861 static gen_helper_gvec_3_ptr * const fns[6][4] = { 3862 { 3863 NULL, gen_helper_vzext_vf2_h, 3864 gen_helper_vzext_vf2_w, gen_helper_vzext_vf2_d 3865 }, 3866 { 3867 NULL, NULL, 3868 gen_helper_vzext_vf4_w, gen_helper_vzext_vf4_d, 3869 }, 3870 { 3871 NULL, NULL, 3872 NULL, gen_helper_vzext_vf8_d 3873 }, 3874 { 3875 NULL, gen_helper_vsext_vf2_h, 3876 gen_helper_vsext_vf2_w, gen_helper_vsext_vf2_d 3877 }, 3878 { 3879 NULL, NULL, 3880 gen_helper_vsext_vf4_w, gen_helper_vsext_vf4_d, 3881 }, 3882 { 3883 NULL, NULL, 3884 NULL, gen_helper_vsext_vf8_d 3885 } 3886 }; 3887 3888 fn = fns[seq][s->sew]; 3889 if (fn == NULL) { 3890 return false; 3891 } 3892 3893 data = FIELD_DP32(data, VDATA, VM, a->vm); 3894 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3895 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3896 data = FIELD_DP32(data, VDATA, VMA, s->vma); 3897 3898 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3899 vreg_ofs(s, a->rs2), cpu_env, 3900 s->cfg_ptr->vlen / 8, 3901 s->cfg_ptr->vlen / 8, data, fn); 3902 3903 mark_vs_dirty(s); 3904 gen_set_label(over); 3905 return true; 3906 } 3907 3908 /* Vector Integer Extension */ 3909 #define GEN_INT_EXT_TRANS(NAME, DIV, SEQ) \ 3910 static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3911 { \ 3912 if (int_ext_check(s, a, DIV)) { \ 3913 return int_ext_op(s, a, SEQ); \ 3914 } \ 3915 return false; \ 3916 } 3917 3918 GEN_INT_EXT_TRANS(vzext_vf2, 1, 0) 3919 GEN_INT_EXT_TRANS(vzext_vf4, 2, 1) 3920 GEN_INT_EXT_TRANS(vzext_vf8, 3, 2) 3921 GEN_INT_EXT_TRANS(vsext_vf2, 1, 3) 3922 GEN_INT_EXT_TRANS(vsext_vf4, 2, 4) 3923 GEN_INT_EXT_TRANS(vsext_vf8, 3, 5)