qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

cpu_helper.c (59979B)


      1 /*
      2  * RISC-V CPU helpers for qemu.
      3  *
      4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
      5  * Copyright (c) 2017-2018 SiFive, Inc.
      6  *
      7  * This program is free software; you can redistribute it and/or modify it
      8  * under the terms and conditions of the GNU General Public License,
      9  * version 2 or later, as published by the Free Software Foundation.
     10  *
     11  * This program is distributed in the hope it will be useful, but WITHOUT
     12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
     14  * more details.
     15  *
     16  * You should have received a copy of the GNU General Public License along with
     17  * this program.  If not, see <http://www.gnu.org/licenses/>.
     18  */
     19 
     20 #include "qemu/osdep.h"
     21 #include "qemu/log.h"
     22 #include "qemu/main-loop.h"
     23 #include "cpu.h"
     24 #include "pmu.h"
     25 #include "exec/exec-all.h"
     26 #include "instmap.h"
     27 #include "tcg/tcg-op.h"
     28 #include "trace.h"
     29 #include "semihosting/common-semi.h"
     30 #include "cpu_bits.h"
     31 
     32 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
     33 {
     34 #ifdef CONFIG_USER_ONLY
     35     return 0;
     36 #else
     37     return env->priv;
     38 #endif
     39 }
     40 
     41 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
     42                           target_ulong *cs_base, uint32_t *pflags)
     43 {
     44     CPUState *cs = env_cpu(env);
     45     RISCVCPU *cpu = RISCV_CPU(cs);
     46 
     47     uint32_t flags = 0;
     48 
     49     *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
     50     *cs_base = 0;
     51 
     52     if (riscv_has_ext(env, RVV) || cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) {
     53         /*
     54          * If env->vl equals to VLMAX, we can use generic vector operation
     55          * expanders (GVEC) to accerlate the vector operations.
     56          * However, as LMUL could be a fractional number. The maximum
     57          * vector size can be operated might be less than 8 bytes,
     58          * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
     59          * only when maxsz >= 8 bytes.
     60          */
     61         uint32_t vlmax = vext_get_vlmax(env_archcpu(env), env->vtype);
     62         uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
     63         uint32_t maxsz = vlmax << sew;
     64         bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
     65                            (maxsz >= 8);
     66         flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
     67         flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
     68         flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
     69                     FIELD_EX64(env->vtype, VTYPE, VLMUL));
     70         flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
     71         flags = FIELD_DP32(flags, TB_FLAGS, VTA,
     72                     FIELD_EX64(env->vtype, VTYPE, VTA));
     73         flags = FIELD_DP32(flags, TB_FLAGS, VMA,
     74                     FIELD_EX64(env->vtype, VTYPE, VMA));
     75     } else {
     76         flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
     77     }
     78 
     79 #ifdef CONFIG_USER_ONLY
     80     flags |= TB_FLAGS_MSTATUS_FS;
     81     flags |= TB_FLAGS_MSTATUS_VS;
     82 #else
     83     flags |= cpu_mmu_index(env, 0);
     84     if (riscv_cpu_fp_enabled(env)) {
     85         flags |= env->mstatus & MSTATUS_FS;
     86     }
     87 
     88     if (riscv_cpu_vector_enabled(env)) {
     89         flags |= env->mstatus & MSTATUS_VS;
     90     }
     91 
     92     if (riscv_has_ext(env, RVH)) {
     93         if (env->priv == PRV_M ||
     94             (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
     95             (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
     96                 get_field(env->hstatus, HSTATUS_HU))) {
     97             flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
     98         }
     99 
    100         flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS,
    101                            get_field(env->mstatus_hs, MSTATUS_FS));
    102 
    103         flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_VS,
    104                            get_field(env->mstatus_hs, MSTATUS_VS));
    105     }
    106 #endif
    107 
    108     flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
    109     if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
    110         flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
    111     }
    112     if (env->cur_pmbase != 0) {
    113         flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
    114     }
    115 
    116     *pflags = flags;
    117 }
    118 
    119 void riscv_cpu_update_mask(CPURISCVState *env)
    120 {
    121     target_ulong mask = -1, base = 0;
    122     /*
    123      * TODO: Current RVJ spec does not specify
    124      * how the extension interacts with XLEN.
    125      */
    126 #ifndef CONFIG_USER_ONLY
    127     if (riscv_has_ext(env, RVJ)) {
    128         switch (env->priv) {
    129         case PRV_M:
    130             if (env->mmte & M_PM_ENABLE) {
    131                 mask = env->mpmmask;
    132                 base = env->mpmbase;
    133             }
    134             break;
    135         case PRV_S:
    136             if (env->mmte & S_PM_ENABLE) {
    137                 mask = env->spmmask;
    138                 base = env->spmbase;
    139             }
    140             break;
    141         case PRV_U:
    142             if (env->mmte & U_PM_ENABLE) {
    143                 mask = env->upmmask;
    144                 base = env->upmbase;
    145             }
    146             break;
    147         default:
    148             g_assert_not_reached();
    149         }
    150     }
    151 #endif
    152     if (env->xl == MXL_RV32) {
    153         env->cur_pmmask = mask & UINT32_MAX;
    154         env->cur_pmbase = base & UINT32_MAX;
    155     } else {
    156         env->cur_pmmask = mask;
    157         env->cur_pmbase = base;
    158     }
    159 }
    160 
    161 #ifndef CONFIG_USER_ONLY
    162 
    163 /*
    164  * The HS-mode is allowed to configure priority only for the
    165  * following VS-mode local interrupts:
    166  *
    167  * 0  (Reserved interrupt, reads as zero)
    168  * 1  Supervisor software interrupt
    169  * 4  (Reserved interrupt, reads as zero)
    170  * 5  Supervisor timer interrupt
    171  * 8  (Reserved interrupt, reads as zero)
    172  * 13 (Reserved interrupt)
    173  * 14 "
    174  * 15 "
    175  * 16 "
    176  * 17 "
    177  * 18 "
    178  * 19 "
    179  * 20 "
    180  * 21 "
    181  * 22 "
    182  * 23 "
    183  */
    184 
    185 static const int hviprio_index2irq[] = {
    186     0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
    187 static const int hviprio_index2rdzero[] = {
    188     1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
    189 
    190 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
    191 {
    192     if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
    193         return -EINVAL;
    194     }
    195 
    196     if (out_irq) {
    197         *out_irq = hviprio_index2irq[index];
    198     }
    199 
    200     if (out_rdzero) {
    201         *out_rdzero = hviprio_index2rdzero[index];
    202     }
    203 
    204     return 0;
    205 }
    206 
    207 /*
    208  * Default priorities of local interrupts are defined in the
    209  * RISC-V Advanced Interrupt Architecture specification.
    210  *
    211  * ----------------------------------------------------------------
    212  *  Default  |
    213  *  Priority | Major Interrupt Numbers
    214  * ----------------------------------------------------------------
    215  *  Highest  | 47, 23, 46, 45, 22, 44,
    216  *           | 43, 21, 42, 41, 20, 40
    217  *           |
    218  *           | 11 (0b),  3 (03),  7 (07)
    219  *           |  9 (09),  1 (01),  5 (05)
    220  *           | 12 (0c)
    221  *           | 10 (0a),  2 (02),  6 (06)
    222  *           |
    223  *           | 39, 19, 38, 37, 18, 36,
    224  *  Lowest   | 35, 17, 34, 33, 16, 32
    225  * ----------------------------------------------------------------
    226  */
    227 static const uint8_t default_iprio[64] = {
    228  /* Custom interrupts 48 to 63 */
    229  [63] = IPRIO_MMAXIPRIO,
    230  [62] = IPRIO_MMAXIPRIO,
    231  [61] = IPRIO_MMAXIPRIO,
    232  [60] = IPRIO_MMAXIPRIO,
    233  [59] = IPRIO_MMAXIPRIO,
    234  [58] = IPRIO_MMAXIPRIO,
    235  [57] = IPRIO_MMAXIPRIO,
    236  [56] = IPRIO_MMAXIPRIO,
    237  [55] = IPRIO_MMAXIPRIO,
    238  [54] = IPRIO_MMAXIPRIO,
    239  [53] = IPRIO_MMAXIPRIO,
    240  [52] = IPRIO_MMAXIPRIO,
    241  [51] = IPRIO_MMAXIPRIO,
    242  [50] = IPRIO_MMAXIPRIO,
    243  [49] = IPRIO_MMAXIPRIO,
    244  [48] = IPRIO_MMAXIPRIO,
    245 
    246  /* Custom interrupts 24 to 31 */
    247  [31] = IPRIO_MMAXIPRIO,
    248  [30] = IPRIO_MMAXIPRIO,
    249  [29] = IPRIO_MMAXIPRIO,
    250  [28] = IPRIO_MMAXIPRIO,
    251  [27] = IPRIO_MMAXIPRIO,
    252  [26] = IPRIO_MMAXIPRIO,
    253  [25] = IPRIO_MMAXIPRIO,
    254  [24] = IPRIO_MMAXIPRIO,
    255 
    256  [47] = IPRIO_DEFAULT_UPPER,
    257  [23] = IPRIO_DEFAULT_UPPER + 1,
    258  [46] = IPRIO_DEFAULT_UPPER + 2,
    259  [45] = IPRIO_DEFAULT_UPPER + 3,
    260  [22] = IPRIO_DEFAULT_UPPER + 4,
    261  [44] = IPRIO_DEFAULT_UPPER + 5,
    262 
    263  [43] = IPRIO_DEFAULT_UPPER + 6,
    264  [21] = IPRIO_DEFAULT_UPPER + 7,
    265  [42] = IPRIO_DEFAULT_UPPER + 8,
    266  [41] = IPRIO_DEFAULT_UPPER + 9,
    267  [20] = IPRIO_DEFAULT_UPPER + 10,
    268  [40] = IPRIO_DEFAULT_UPPER + 11,
    269 
    270  [11] = IPRIO_DEFAULT_M,
    271  [3]  = IPRIO_DEFAULT_M + 1,
    272  [7]  = IPRIO_DEFAULT_M + 2,
    273 
    274  [9]  = IPRIO_DEFAULT_S,
    275  [1]  = IPRIO_DEFAULT_S + 1,
    276  [5]  = IPRIO_DEFAULT_S + 2,
    277 
    278  [12] = IPRIO_DEFAULT_SGEXT,
    279 
    280  [10] = IPRIO_DEFAULT_VS,
    281  [2]  = IPRIO_DEFAULT_VS + 1,
    282  [6]  = IPRIO_DEFAULT_VS + 2,
    283 
    284  [39] = IPRIO_DEFAULT_LOWER,
    285  [19] = IPRIO_DEFAULT_LOWER + 1,
    286  [38] = IPRIO_DEFAULT_LOWER + 2,
    287  [37] = IPRIO_DEFAULT_LOWER + 3,
    288  [18] = IPRIO_DEFAULT_LOWER + 4,
    289  [36] = IPRIO_DEFAULT_LOWER + 5,
    290 
    291  [35] = IPRIO_DEFAULT_LOWER + 6,
    292  [17] = IPRIO_DEFAULT_LOWER + 7,
    293  [34] = IPRIO_DEFAULT_LOWER + 8,
    294  [33] = IPRIO_DEFAULT_LOWER + 9,
    295  [16] = IPRIO_DEFAULT_LOWER + 10,
    296  [32] = IPRIO_DEFAULT_LOWER + 11,
    297 };
    298 
    299 uint8_t riscv_cpu_default_priority(int irq)
    300 {
    301     if (irq < 0 || irq > 63) {
    302         return IPRIO_MMAXIPRIO;
    303     }
    304 
    305     return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
    306 };
    307 
    308 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
    309                                     int extirq, unsigned int extirq_def_prio,
    310                                     uint64_t pending, uint8_t *iprio)
    311 {
    312     RISCVCPU *cpu = env_archcpu(env);
    313     int irq, best_irq = RISCV_EXCP_NONE;
    314     unsigned int prio, best_prio = UINT_MAX;
    315 
    316     if (!pending) {
    317         return RISCV_EXCP_NONE;
    318     }
    319 
    320     irq = ctz64(pending);
    321     if (!((extirq == IRQ_M_EXT) ? cpu->cfg.ext_smaia : cpu->cfg.ext_ssaia)) {
    322         return irq;
    323     }
    324 
    325     pending = pending >> irq;
    326     while (pending) {
    327         prio = iprio[irq];
    328         if (!prio) {
    329             if (irq == extirq) {
    330                 prio = extirq_def_prio;
    331             } else {
    332                 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
    333                        1 : IPRIO_MMAXIPRIO;
    334             }
    335         }
    336         if ((pending & 0x1) && (prio <= best_prio)) {
    337             best_irq = irq;
    338             best_prio = prio;
    339         }
    340         irq++;
    341         pending = pending >> 1;
    342     }
    343 
    344     return best_irq;
    345 }
    346 
    347 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
    348 {
    349     uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
    350     uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
    351     uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
    352 
    353     return (env->mip | vsgein | vstip) & env->mie;
    354 }
    355 
    356 int riscv_cpu_mirq_pending(CPURISCVState *env)
    357 {
    358     uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
    359                     ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
    360 
    361     return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
    362                                     irqs, env->miprio);
    363 }
    364 
    365 int riscv_cpu_sirq_pending(CPURISCVState *env)
    366 {
    367     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
    368                     ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
    369 
    370     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
    371                                     irqs, env->siprio);
    372 }
    373 
    374 int riscv_cpu_vsirq_pending(CPURISCVState *env)
    375 {
    376     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
    377                     (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
    378 
    379     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
    380                                     irqs >> 1, env->hviprio);
    381 }
    382 
    383 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
    384 {
    385     int virq;
    386     uint64_t irqs, pending, mie, hsie, vsie;
    387 
    388     /* Determine interrupt enable state of all privilege modes */
    389     if (riscv_cpu_virt_enabled(env)) {
    390         mie = 1;
    391         hsie = 1;
    392         vsie = (env->priv < PRV_S) ||
    393                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
    394     } else {
    395         mie = (env->priv < PRV_M) ||
    396               (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
    397         hsie = (env->priv < PRV_S) ||
    398                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
    399         vsie = 0;
    400     }
    401 
    402     /* Determine all pending interrupts */
    403     pending = riscv_cpu_all_pending(env);
    404 
    405     /* Check M-mode interrupts */
    406     irqs = pending & ~env->mideleg & -mie;
    407     if (irqs) {
    408         return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
    409                                         irqs, env->miprio);
    410     }
    411 
    412     /* Check HS-mode interrupts */
    413     irqs = pending & env->mideleg & ~env->hideleg & -hsie;
    414     if (irqs) {
    415         return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
    416                                         irqs, env->siprio);
    417     }
    418 
    419     /* Check VS-mode interrupts */
    420     irqs = pending & env->mideleg & env->hideleg & -vsie;
    421     if (irqs) {
    422         virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
    423                                         irqs >> 1, env->hviprio);
    424         return (virq <= 0) ? virq : virq + 1;
    425     }
    426 
    427     /* Indicate no pending interrupt */
    428     return RISCV_EXCP_NONE;
    429 }
    430 
    431 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
    432 {
    433     if (interrupt_request & CPU_INTERRUPT_HARD) {
    434         RISCVCPU *cpu = RISCV_CPU(cs);
    435         CPURISCVState *env = &cpu->env;
    436         int interruptno = riscv_cpu_local_irq_pending(env);
    437         if (interruptno >= 0) {
    438             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
    439             riscv_cpu_do_interrupt(cs);
    440             return true;
    441         }
    442     }
    443     return false;
    444 }
    445 
    446 /* Return true is floating point support is currently enabled */
    447 bool riscv_cpu_fp_enabled(CPURISCVState *env)
    448 {
    449     if (env->mstatus & MSTATUS_FS) {
    450         if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
    451             return false;
    452         }
    453         return true;
    454     }
    455 
    456     return false;
    457 }
    458 
    459 /* Return true is vector support is currently enabled */
    460 bool riscv_cpu_vector_enabled(CPURISCVState *env)
    461 {
    462     if (env->mstatus & MSTATUS_VS) {
    463         if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_VS)) {
    464             return false;
    465         }
    466         return true;
    467     }
    468 
    469     return false;
    470 }
    471 
    472 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
    473 {
    474     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
    475                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
    476                             MSTATUS64_UXL | MSTATUS_VS;
    477 
    478     if (riscv_has_ext(env, RVF)) {
    479         mstatus_mask |= MSTATUS_FS;
    480     }
    481     bool current_virt = riscv_cpu_virt_enabled(env);
    482 
    483     g_assert(riscv_has_ext(env, RVH));
    484 
    485     if (current_virt) {
    486         /* Current V=1 and we are about to change to V=0 */
    487         env->vsstatus = env->mstatus & mstatus_mask;
    488         env->mstatus &= ~mstatus_mask;
    489         env->mstatus |= env->mstatus_hs;
    490 
    491         env->vstvec = env->stvec;
    492         env->stvec = env->stvec_hs;
    493 
    494         env->vsscratch = env->sscratch;
    495         env->sscratch = env->sscratch_hs;
    496 
    497         env->vsepc = env->sepc;
    498         env->sepc = env->sepc_hs;
    499 
    500         env->vscause = env->scause;
    501         env->scause = env->scause_hs;
    502 
    503         env->vstval = env->stval;
    504         env->stval = env->stval_hs;
    505 
    506         env->vsatp = env->satp;
    507         env->satp = env->satp_hs;
    508     } else {
    509         /* Current V=0 and we are about to change to V=1 */
    510         env->mstatus_hs = env->mstatus & mstatus_mask;
    511         env->mstatus &= ~mstatus_mask;
    512         env->mstatus |= env->vsstatus;
    513 
    514         env->stvec_hs = env->stvec;
    515         env->stvec = env->vstvec;
    516 
    517         env->sscratch_hs = env->sscratch;
    518         env->sscratch = env->vsscratch;
    519 
    520         env->sepc_hs = env->sepc;
    521         env->sepc = env->vsepc;
    522 
    523         env->scause_hs = env->scause;
    524         env->scause = env->vscause;
    525 
    526         env->stval_hs = env->stval;
    527         env->stval = env->vstval;
    528 
    529         env->satp_hs = env->satp;
    530         env->satp = env->vsatp;
    531     }
    532 }
    533 
    534 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
    535 {
    536     if (!riscv_has_ext(env, RVH)) {
    537         return 0;
    538     }
    539 
    540     return env->geilen;
    541 }
    542 
    543 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
    544 {
    545     if (!riscv_has_ext(env, RVH)) {
    546         return;
    547     }
    548 
    549     if (geilen > (TARGET_LONG_BITS - 1)) {
    550         return;
    551     }
    552 
    553     env->geilen = geilen;
    554 }
    555 
    556 bool riscv_cpu_virt_enabled(CPURISCVState *env)
    557 {
    558     if (!riscv_has_ext(env, RVH)) {
    559         return false;
    560     }
    561 
    562     return get_field(env->virt, VIRT_ONOFF);
    563 }
    564 
    565 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
    566 {
    567     if (!riscv_has_ext(env, RVH)) {
    568         return;
    569     }
    570 
    571     /* Flush the TLB on all virt mode changes. */
    572     if (get_field(env->virt, VIRT_ONOFF) != enable) {
    573         tlb_flush(env_cpu(env));
    574     }
    575 
    576     env->virt = set_field(env->virt, VIRT_ONOFF, enable);
    577 
    578     if (enable) {
    579         /*
    580          * The guest external interrupts from an interrupt controller are
    581          * delivered only when the Guest/VM is running (i.e. V=1). This means
    582          * any guest external interrupt which is triggered while the Guest/VM
    583          * is not running (i.e. V=0) will be missed on QEMU resulting in guest
    584          * with sluggish response to serial console input and other I/O events.
    585          *
    586          * To solve this, we check and inject interrupt after setting V=1.
    587          */
    588         riscv_cpu_update_mip(env_archcpu(env), 0, 0);
    589     }
    590 }
    591 
    592 bool riscv_cpu_two_stage_lookup(int mmu_idx)
    593 {
    594     return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
    595 }
    596 
    597 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
    598 {
    599     CPURISCVState *env = &cpu->env;
    600     if (env->miclaim & interrupts) {
    601         return -1;
    602     } else {
    603         env->miclaim |= interrupts;
    604         return 0;
    605     }
    606 }
    607 
    608 uint64_t riscv_cpu_update_mip(RISCVCPU *cpu, uint64_t mask, uint64_t value)
    609 {
    610     CPURISCVState *env = &cpu->env;
    611     CPUState *cs = CPU(cpu);
    612     uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
    613     bool locked = false;
    614 
    615     if (riscv_cpu_virt_enabled(env)) {
    616         gein = get_field(env->hstatus, HSTATUS_VGEIN);
    617         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
    618     }
    619 
    620     /* No need to update mip for VSTIP */
    621     mask = ((mask == MIP_VSTIP) && env->vstime_irq) ? 0 : mask;
    622     vstip = env->vstime_irq ? MIP_VSTIP : 0;
    623 
    624     if (!qemu_mutex_iothread_locked()) {
    625         locked = true;
    626         qemu_mutex_lock_iothread();
    627     }
    628 
    629     env->mip = (env->mip & ~mask) | (value & mask);
    630 
    631     if (env->mip | vsgein | vstip) {
    632         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
    633     } else {
    634         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
    635     }
    636 
    637     if (locked) {
    638         qemu_mutex_unlock_iothread();
    639     }
    640 
    641     return old;
    642 }
    643 
    644 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
    645                              void *arg)
    646 {
    647     env->rdtime_fn = fn;
    648     env->rdtime_fn_arg = arg;
    649 }
    650 
    651 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
    652                                    int (*rmw_fn)(void *arg,
    653                                                  target_ulong reg,
    654                                                  target_ulong *val,
    655                                                  target_ulong new_val,
    656                                                  target_ulong write_mask),
    657                                    void *rmw_fn_arg)
    658 {
    659     if (priv <= PRV_M) {
    660         env->aia_ireg_rmw_fn[priv] = rmw_fn;
    661         env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
    662     }
    663 }
    664 
    665 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
    666 {
    667     if (newpriv > PRV_M) {
    668         g_assert_not_reached();
    669     }
    670     if (newpriv == PRV_H) {
    671         newpriv = PRV_U;
    672     }
    673     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
    674     env->priv = newpriv;
    675     env->xl = cpu_recompute_xl(env);
    676     riscv_cpu_update_mask(env);
    677 
    678     /*
    679      * Clear the load reservation - otherwise a reservation placed in one
    680      * context/process can be used by another, resulting in an SC succeeding
    681      * incorrectly. Version 2.2 of the ISA specification explicitly requires
    682      * this behaviour, while later revisions say that the kernel "should" use
    683      * an SC instruction to force the yielding of a load reservation on a
    684      * preemptive context switch. As a result, do both.
    685      */
    686     env->load_res = -1;
    687 }
    688 
    689 /*
    690  * get_physical_address_pmp - check PMP permission for this physical address
    691  *
    692  * Match the PMP region and check permission for this physical address and it's
    693  * TLB page. Returns 0 if the permission checking was successful
    694  *
    695  * @env: CPURISCVState
    696  * @prot: The returned protection attributes
    697  * @tlb_size: TLB page size containing addr. It could be modified after PMP
    698  *            permission checking. NULL if not set TLB page for addr.
    699  * @addr: The physical address to be checked permission
    700  * @access_type: The type of MMU access
    701  * @mode: Indicates current privilege level.
    702  */
    703 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
    704                                     target_ulong *tlb_size, hwaddr addr,
    705                                     int size, MMUAccessType access_type,
    706                                     int mode)
    707 {
    708     pmp_priv_t pmp_priv;
    709     target_ulong tlb_size_pmp = 0;
    710 
    711     if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
    712         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    713         return TRANSLATE_SUCCESS;
    714     }
    715 
    716     if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv,
    717                             mode)) {
    718         *prot = 0;
    719         return TRANSLATE_PMP_FAIL;
    720     }
    721 
    722     *prot = pmp_priv_to_page_prot(pmp_priv);
    723     if (tlb_size != NULL) {
    724         if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) {
    725             *tlb_size = tlb_size_pmp;
    726         }
    727     }
    728 
    729     return TRANSLATE_SUCCESS;
    730 }
    731 
    732 /* get_physical_address - get the physical address for this virtual address
    733  *
    734  * Do a page table walk to obtain the physical address corresponding to a
    735  * virtual address. Returns 0 if the translation was successful
    736  *
    737  * Adapted from Spike's mmu_t::translate and mmu_t::walk
    738  *
    739  * @env: CPURISCVState
    740  * @physical: This will be set to the calculated physical address
    741  * @prot: The returned protection attributes
    742  * @addr: The virtual address to be translated
    743  * @fault_pte_addr: If not NULL, this will be set to fault pte address
    744  *                  when a error occurs on pte address translation.
    745  *                  This will already be shifted to match htval.
    746  * @access_type: The type of MMU access
    747  * @mmu_idx: Indicates current privilege level
    748  * @first_stage: Are we in first stage translation?
    749  *               Second stage is used for hypervisor guest translation
    750  * @two_stage: Are we going to perform two stage translation
    751  * @is_debug: Is this access from a debugger or the monitor?
    752  */
    753 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
    754                                 int *prot, target_ulong addr,
    755                                 target_ulong *fault_pte_addr,
    756                                 int access_type, int mmu_idx,
    757                                 bool first_stage, bool two_stage,
    758                                 bool is_debug)
    759 {
    760     /* NOTE: the env->pc value visible here will not be
    761      * correct, but the value visible to the exception handler
    762      * (riscv_cpu_do_interrupt) is correct */
    763     MemTxResult res;
    764     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
    765     int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
    766     bool use_background = false;
    767     hwaddr ppn;
    768     RISCVCPU *cpu = env_archcpu(env);
    769     int napot_bits = 0;
    770     target_ulong napot_mask;
    771 
    772     /*
    773      * Check if we should use the background registers for the two
    774      * stage translation. We don't need to check if we actually need
    775      * two stage translation as that happened before this function
    776      * was called. Background registers will be used if the guest has
    777      * forced a two stage translation to be on (in HS or M mode).
    778      */
    779     if (!riscv_cpu_virt_enabled(env) && two_stage) {
    780         use_background = true;
    781     }
    782 
    783     /* MPRV does not affect the virtual-machine load/store
    784        instructions, HLV, HLVX, and HSV. */
    785     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
    786         mode = get_field(env->hstatus, HSTATUS_SPVP);
    787     } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
    788         if (get_field(env->mstatus, MSTATUS_MPRV)) {
    789             mode = get_field(env->mstatus, MSTATUS_MPP);
    790         }
    791     }
    792 
    793     if (first_stage == false) {
    794         /* We are in stage 2 translation, this is similar to stage 1. */
    795         /* Stage 2 is always taken as U-mode */
    796         mode = PRV_U;
    797     }
    798 
    799     if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
    800         *physical = addr;
    801         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    802         return TRANSLATE_SUCCESS;
    803     }
    804 
    805     *prot = 0;
    806 
    807     hwaddr base;
    808     int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
    809 
    810     if (first_stage == true) {
    811         mxr = get_field(env->mstatus, MSTATUS_MXR);
    812     } else {
    813         mxr = get_field(env->vsstatus, MSTATUS_MXR);
    814     }
    815 
    816     if (first_stage == true) {
    817         if (use_background) {
    818             if (riscv_cpu_mxl(env) == MXL_RV32) {
    819                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
    820                 vm = get_field(env->vsatp, SATP32_MODE);
    821             } else {
    822                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
    823                 vm = get_field(env->vsatp, SATP64_MODE);
    824             }
    825         } else {
    826             if (riscv_cpu_mxl(env) == MXL_RV32) {
    827                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
    828                 vm = get_field(env->satp, SATP32_MODE);
    829             } else {
    830                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
    831                 vm = get_field(env->satp, SATP64_MODE);
    832             }
    833         }
    834         widened = 0;
    835     } else {
    836         if (riscv_cpu_mxl(env) == MXL_RV32) {
    837             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
    838             vm = get_field(env->hgatp, SATP32_MODE);
    839         } else {
    840             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
    841             vm = get_field(env->hgatp, SATP64_MODE);
    842         }
    843         widened = 2;
    844     }
    845     /* status.SUM will be ignored if execute on background */
    846     sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
    847     switch (vm) {
    848     case VM_1_10_SV32:
    849       levels = 2; ptidxbits = 10; ptesize = 4; break;
    850     case VM_1_10_SV39:
    851       levels = 3; ptidxbits = 9; ptesize = 8; break;
    852     case VM_1_10_SV48:
    853       levels = 4; ptidxbits = 9; ptesize = 8; break;
    854     case VM_1_10_SV57:
    855       levels = 5; ptidxbits = 9; ptesize = 8; break;
    856     case VM_1_10_MBARE:
    857         *physical = addr;
    858         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    859         return TRANSLATE_SUCCESS;
    860     default:
    861       g_assert_not_reached();
    862     }
    863 
    864     CPUState *cs = env_cpu(env);
    865     int va_bits = PGSHIFT + levels * ptidxbits + widened;
    866     target_ulong mask, masked_msbs;
    867 
    868     if (TARGET_LONG_BITS > (va_bits - 1)) {
    869         mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
    870     } else {
    871         mask = 0;
    872     }
    873     masked_msbs = (addr >> (va_bits - 1)) & mask;
    874 
    875     if (masked_msbs != 0 && masked_msbs != mask) {
    876         return TRANSLATE_FAIL;
    877     }
    878 
    879     int ptshift = (levels - 1) * ptidxbits;
    880     int i;
    881 
    882 #if !TCG_OVERSIZED_GUEST
    883 restart:
    884 #endif
    885     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
    886         target_ulong idx;
    887         if (i == 0) {
    888             idx = (addr >> (PGSHIFT + ptshift)) &
    889                            ((1 << (ptidxbits + widened)) - 1);
    890         } else {
    891             idx = (addr >> (PGSHIFT + ptshift)) &
    892                            ((1 << ptidxbits) - 1);
    893         }
    894 
    895         /* check that physical address of PTE is legal */
    896         hwaddr pte_addr;
    897 
    898         if (two_stage && first_stage) {
    899             int vbase_prot;
    900             hwaddr vbase;
    901 
    902             /* Do the second stage translation on the base PTE address. */
    903             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
    904                                                  base, NULL, MMU_DATA_LOAD,
    905                                                  mmu_idx, false, true,
    906                                                  is_debug);
    907 
    908             if (vbase_ret != TRANSLATE_SUCCESS) {
    909                 if (fault_pte_addr) {
    910                     *fault_pte_addr = (base + idx * ptesize) >> 2;
    911                 }
    912                 return TRANSLATE_G_STAGE_FAIL;
    913             }
    914 
    915             pte_addr = vbase + idx * ptesize;
    916         } else {
    917             pte_addr = base + idx * ptesize;
    918         }
    919 
    920         int pmp_prot;
    921         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
    922                                                sizeof(target_ulong),
    923                                                MMU_DATA_LOAD, PRV_S);
    924         if (pmp_ret != TRANSLATE_SUCCESS) {
    925             return TRANSLATE_PMP_FAIL;
    926         }
    927 
    928         target_ulong pte;
    929         if (riscv_cpu_mxl(env) == MXL_RV32) {
    930             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
    931         } else {
    932             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
    933         }
    934 
    935         if (res != MEMTX_OK) {
    936             return TRANSLATE_FAIL;
    937         }
    938 
    939         if (riscv_cpu_sxl(env) == MXL_RV32) {
    940             ppn = pte >> PTE_PPN_SHIFT;
    941         } else if (cpu->cfg.ext_svpbmt || cpu->cfg.ext_svnapot) {
    942             ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
    943         } else {
    944             ppn = pte >> PTE_PPN_SHIFT;
    945             if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
    946                 return TRANSLATE_FAIL;
    947             }
    948         }
    949 
    950         if (!(pte & PTE_V)) {
    951             /* Invalid PTE */
    952             return TRANSLATE_FAIL;
    953         } else if (!cpu->cfg.ext_svpbmt && (pte & PTE_PBMT)) {
    954             return TRANSLATE_FAIL;
    955         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
    956             /* Inner PTE, continue walking */
    957             if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
    958                 return TRANSLATE_FAIL;
    959             }
    960             base = ppn << PGSHIFT;
    961         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
    962             /* Reserved leaf PTE flags: PTE_W */
    963             return TRANSLATE_FAIL;
    964         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
    965             /* Reserved leaf PTE flags: PTE_W + PTE_X */
    966             return TRANSLATE_FAIL;
    967         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
    968                    (!sum || access_type == MMU_INST_FETCH))) {
    969             /* User PTE flags when not U mode and mstatus.SUM is not set,
    970                or the access type is an instruction fetch */
    971             return TRANSLATE_FAIL;
    972         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
    973             /* Supervisor PTE flags when not S mode */
    974             return TRANSLATE_FAIL;
    975         } else if (ppn & ((1ULL << ptshift) - 1)) {
    976             /* Misaligned PPN */
    977             return TRANSLATE_FAIL;
    978         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
    979                    ((pte & PTE_X) && mxr))) {
    980             /* Read access check failed */
    981             return TRANSLATE_FAIL;
    982         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
    983             /* Write access check failed */
    984             return TRANSLATE_FAIL;
    985         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
    986             /* Fetch access check failed */
    987             return TRANSLATE_FAIL;
    988         } else {
    989             /* if necessary, set accessed and dirty bits. */
    990             target_ulong updated_pte = pte | PTE_A |
    991                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
    992 
    993             /* Page table updates need to be atomic with MTTCG enabled */
    994             if (updated_pte != pte) {
    995                 /*
    996                  * - if accessed or dirty bits need updating, and the PTE is
    997                  *   in RAM, then we do so atomically with a compare and swap.
    998                  * - if the PTE is in IO space or ROM, then it can't be updated
    999                  *   and we return TRANSLATE_FAIL.
   1000                  * - if the PTE changed by the time we went to update it, then
   1001                  *   it is no longer valid and we must re-walk the page table.
   1002                  */
   1003                 MemoryRegion *mr;
   1004                 hwaddr l = sizeof(target_ulong), addr1;
   1005                 mr = address_space_translate(cs->as, pte_addr,
   1006                     &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
   1007                 if (memory_region_is_ram(mr)) {
   1008                     target_ulong *pte_pa =
   1009                         qemu_map_ram_ptr(mr->ram_block, addr1);
   1010 #if TCG_OVERSIZED_GUEST
   1011                     /* MTTCG is not enabled on oversized TCG guests so
   1012                      * page table updates do not need to be atomic */
   1013                     *pte_pa = pte = updated_pte;
   1014 #else
   1015                     target_ulong old_pte =
   1016                         qatomic_cmpxchg(pte_pa, pte, updated_pte);
   1017                     if (old_pte != pte) {
   1018                         goto restart;
   1019                     } else {
   1020                         pte = updated_pte;
   1021                     }
   1022 #endif
   1023                 } else {
   1024                     /* misconfigured PTE in ROM (AD bits are not preset) or
   1025                      * PTE is in IO space and can't be updated atomically */
   1026                     return TRANSLATE_FAIL;
   1027                 }
   1028             }
   1029 
   1030             /* for superpage mappings, make a fake leaf PTE for the TLB's
   1031                benefit. */
   1032             target_ulong vpn = addr >> PGSHIFT;
   1033 
   1034             if (cpu->cfg.ext_svnapot && (pte & PTE_N)) {
   1035                 napot_bits = ctzl(ppn) + 1;
   1036                 if ((i != (levels - 1)) || (napot_bits != 4)) {
   1037                     return TRANSLATE_FAIL;
   1038                 }
   1039             }
   1040 
   1041             napot_mask = (1 << napot_bits) - 1;
   1042             *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
   1043                           (vpn & (((target_ulong)1 << ptshift) - 1))
   1044                          ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
   1045 
   1046             /* set permissions on the TLB entry */
   1047             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
   1048                 *prot |= PAGE_READ;
   1049             }
   1050             if ((pte & PTE_X)) {
   1051                 *prot |= PAGE_EXEC;
   1052             }
   1053             /* add write permission on stores or if the page is already dirty,
   1054                so that we TLB miss on later writes to update the dirty bit */
   1055             if ((pte & PTE_W) &&
   1056                     (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
   1057                 *prot |= PAGE_WRITE;
   1058             }
   1059             return TRANSLATE_SUCCESS;
   1060         }
   1061     }
   1062     return TRANSLATE_FAIL;
   1063 }
   1064 
   1065 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
   1066                                 MMUAccessType access_type, bool pmp_violation,
   1067                                 bool first_stage, bool two_stage,
   1068                                 bool two_stage_indirect)
   1069 {
   1070     CPUState *cs = env_cpu(env);
   1071     int page_fault_exceptions, vm;
   1072     uint64_t stap_mode;
   1073 
   1074     if (riscv_cpu_mxl(env) == MXL_RV32) {
   1075         stap_mode = SATP32_MODE;
   1076     } else {
   1077         stap_mode = SATP64_MODE;
   1078     }
   1079 
   1080     if (first_stage) {
   1081         vm = get_field(env->satp, stap_mode);
   1082     } else {
   1083         vm = get_field(env->hgatp, stap_mode);
   1084     }
   1085 
   1086     page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
   1087 
   1088     switch (access_type) {
   1089     case MMU_INST_FETCH:
   1090         if (riscv_cpu_virt_enabled(env) && !first_stage) {
   1091             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
   1092         } else {
   1093             cs->exception_index = page_fault_exceptions ?
   1094                 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
   1095         }
   1096         break;
   1097     case MMU_DATA_LOAD:
   1098         if (two_stage && !first_stage) {
   1099             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
   1100         } else {
   1101             cs->exception_index = page_fault_exceptions ?
   1102                 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
   1103         }
   1104         break;
   1105     case MMU_DATA_STORE:
   1106         if (two_stage && !first_stage) {
   1107             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
   1108         } else {
   1109             cs->exception_index = page_fault_exceptions ?
   1110                 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
   1111         }
   1112         break;
   1113     default:
   1114         g_assert_not_reached();
   1115     }
   1116     env->badaddr = address;
   1117     env->two_stage_lookup = two_stage;
   1118     env->two_stage_indirect_lookup = two_stage_indirect;
   1119 }
   1120 
   1121 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
   1122 {
   1123     RISCVCPU *cpu = RISCV_CPU(cs);
   1124     CPURISCVState *env = &cpu->env;
   1125     hwaddr phys_addr;
   1126     int prot;
   1127     int mmu_idx = cpu_mmu_index(&cpu->env, false);
   1128 
   1129     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
   1130                              true, riscv_cpu_virt_enabled(env), true)) {
   1131         return -1;
   1132     }
   1133 
   1134     if (riscv_cpu_virt_enabled(env)) {
   1135         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
   1136                                  0, mmu_idx, false, true, true)) {
   1137             return -1;
   1138         }
   1139     }
   1140 
   1141     return phys_addr & TARGET_PAGE_MASK;
   1142 }
   1143 
   1144 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
   1145                                      vaddr addr, unsigned size,
   1146                                      MMUAccessType access_type,
   1147                                      int mmu_idx, MemTxAttrs attrs,
   1148                                      MemTxResult response, uintptr_t retaddr)
   1149 {
   1150     RISCVCPU *cpu = RISCV_CPU(cs);
   1151     CPURISCVState *env = &cpu->env;
   1152 
   1153     if (access_type == MMU_DATA_STORE) {
   1154         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
   1155     } else if (access_type == MMU_DATA_LOAD) {
   1156         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
   1157     } else {
   1158         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
   1159     }
   1160 
   1161     env->badaddr = addr;
   1162     env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
   1163                             riscv_cpu_two_stage_lookup(mmu_idx);
   1164     env->two_stage_indirect_lookup = false;
   1165     cpu_loop_exit_restore(cs, retaddr);
   1166 }
   1167 
   1168 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
   1169                                    MMUAccessType access_type, int mmu_idx,
   1170                                    uintptr_t retaddr)
   1171 {
   1172     RISCVCPU *cpu = RISCV_CPU(cs);
   1173     CPURISCVState *env = &cpu->env;
   1174     switch (access_type) {
   1175     case MMU_INST_FETCH:
   1176         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
   1177         break;
   1178     case MMU_DATA_LOAD:
   1179         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
   1180         break;
   1181     case MMU_DATA_STORE:
   1182         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
   1183         break;
   1184     default:
   1185         g_assert_not_reached();
   1186     }
   1187     env->badaddr = addr;
   1188     env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
   1189                             riscv_cpu_two_stage_lookup(mmu_idx);
   1190     env->two_stage_indirect_lookup = false;
   1191     cpu_loop_exit_restore(cs, retaddr);
   1192 }
   1193 
   1194 
   1195 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
   1196 {
   1197     enum riscv_pmu_event_idx pmu_event_type;
   1198 
   1199     switch (access_type) {
   1200     case MMU_INST_FETCH:
   1201         pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
   1202         break;
   1203     case MMU_DATA_LOAD:
   1204         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
   1205         break;
   1206     case MMU_DATA_STORE:
   1207         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
   1208         break;
   1209     default:
   1210         return;
   1211     }
   1212 
   1213     riscv_pmu_incr_ctr(cpu, pmu_event_type);
   1214 }
   1215 
   1216 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
   1217                         MMUAccessType access_type, int mmu_idx,
   1218                         bool probe, uintptr_t retaddr)
   1219 {
   1220     RISCVCPU *cpu = RISCV_CPU(cs);
   1221     CPURISCVState *env = &cpu->env;
   1222     vaddr im_address;
   1223     hwaddr pa = 0;
   1224     int prot, prot2, prot_pmp;
   1225     bool pmp_violation = false;
   1226     bool first_stage_error = true;
   1227     bool two_stage_lookup = false;
   1228     bool two_stage_indirect_error = false;
   1229     int ret = TRANSLATE_FAIL;
   1230     int mode = mmu_idx;
   1231     /* default TLB page size */
   1232     target_ulong tlb_size = TARGET_PAGE_SIZE;
   1233 
   1234     env->guest_phys_fault_addr = 0;
   1235 
   1236     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
   1237                   __func__, address, access_type, mmu_idx);
   1238 
   1239     /* MPRV does not affect the virtual-machine load/store
   1240        instructions, HLV, HLVX, and HSV. */
   1241     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
   1242         mode = get_field(env->hstatus, HSTATUS_SPVP);
   1243     } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
   1244                get_field(env->mstatus, MSTATUS_MPRV)) {
   1245         mode = get_field(env->mstatus, MSTATUS_MPP);
   1246         if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
   1247             two_stage_lookup = true;
   1248         }
   1249     }
   1250 
   1251     if (riscv_cpu_virt_enabled(env) ||
   1252         ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
   1253          access_type != MMU_INST_FETCH)) {
   1254         /* Two stage lookup */
   1255         ret = get_physical_address(env, &pa, &prot, address,
   1256                                    &env->guest_phys_fault_addr, access_type,
   1257                                    mmu_idx, true, true, false);
   1258 
   1259         /*
   1260          * A G-stage exception may be triggered during two state lookup.
   1261          * And the env->guest_phys_fault_addr has already been set in
   1262          * get_physical_address().
   1263          */
   1264         if (ret == TRANSLATE_G_STAGE_FAIL) {
   1265             first_stage_error = false;
   1266             two_stage_indirect_error = true;
   1267             access_type = MMU_DATA_LOAD;
   1268         }
   1269 
   1270         qemu_log_mask(CPU_LOG_MMU,
   1271                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
   1272                       TARGET_FMT_plx " prot %d\n",
   1273                       __func__, address, ret, pa, prot);
   1274 
   1275         if (ret == TRANSLATE_SUCCESS) {
   1276             /* Second stage lookup */
   1277             im_address = pa;
   1278 
   1279             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
   1280                                        access_type, mmu_idx, false, true,
   1281                                        false);
   1282 
   1283             qemu_log_mask(CPU_LOG_MMU,
   1284                     "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
   1285                     TARGET_FMT_plx " prot %d\n",
   1286                     __func__, im_address, ret, pa, prot2);
   1287 
   1288             prot &= prot2;
   1289 
   1290             if (ret == TRANSLATE_SUCCESS) {
   1291                 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
   1292                                                size, access_type, mode);
   1293 
   1294                 qemu_log_mask(CPU_LOG_MMU,
   1295                               "%s PMP address=" TARGET_FMT_plx " ret %d prot"
   1296                               " %d tlb_size " TARGET_FMT_lu "\n",
   1297                               __func__, pa, ret, prot_pmp, tlb_size);
   1298 
   1299                 prot &= prot_pmp;
   1300             }
   1301 
   1302             if (ret != TRANSLATE_SUCCESS) {
   1303                 /*
   1304                  * Guest physical address translation failed, this is a HS
   1305                  * level exception
   1306                  */
   1307                 first_stage_error = false;
   1308                 env->guest_phys_fault_addr = (im_address |
   1309                                               (address &
   1310                                                (TARGET_PAGE_SIZE - 1))) >> 2;
   1311             }
   1312         }
   1313     } else {
   1314         pmu_tlb_fill_incr_ctr(cpu, access_type);
   1315         /* Single stage lookup */
   1316         ret = get_physical_address(env, &pa, &prot, address, NULL,
   1317                                    access_type, mmu_idx, true, false, false);
   1318 
   1319         qemu_log_mask(CPU_LOG_MMU,
   1320                       "%s address=%" VADDR_PRIx " ret %d physical "
   1321                       TARGET_FMT_plx " prot %d\n",
   1322                       __func__, address, ret, pa, prot);
   1323 
   1324         if (ret == TRANSLATE_SUCCESS) {
   1325             ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
   1326                                            size, access_type, mode);
   1327 
   1328             qemu_log_mask(CPU_LOG_MMU,
   1329                           "%s PMP address=" TARGET_FMT_plx " ret %d prot"
   1330                           " %d tlb_size " TARGET_FMT_lu "\n",
   1331                           __func__, pa, ret, prot_pmp, tlb_size);
   1332 
   1333             prot &= prot_pmp;
   1334         }
   1335     }
   1336 
   1337     if (ret == TRANSLATE_PMP_FAIL) {
   1338         pmp_violation = true;
   1339     }
   1340 
   1341     if (ret == TRANSLATE_SUCCESS) {
   1342         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
   1343                      prot, mmu_idx, tlb_size);
   1344         return true;
   1345     } else if (probe) {
   1346         return false;
   1347     } else {
   1348         raise_mmu_exception(env, address, access_type, pmp_violation,
   1349                             first_stage_error,
   1350                             riscv_cpu_virt_enabled(env) ||
   1351                                 riscv_cpu_two_stage_lookup(mmu_idx),
   1352                             two_stage_indirect_error);
   1353         cpu_loop_exit_restore(cs, retaddr);
   1354     }
   1355 
   1356     return true;
   1357 }
   1358 
   1359 static target_ulong riscv_transformed_insn(CPURISCVState *env,
   1360                                            target_ulong insn,
   1361                                            target_ulong taddr)
   1362 {
   1363     target_ulong xinsn = 0;
   1364     target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
   1365 
   1366     /*
   1367      * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
   1368      * be uncompressed. The Quadrant 1 of RVC instruction space need
   1369      * not be transformed because these instructions won't generate
   1370      * any load/store trap.
   1371      */
   1372 
   1373     if ((insn & 0x3) != 0x3) {
   1374         /* Transform 16bit instruction into 32bit instruction */
   1375         switch (GET_C_OP(insn)) {
   1376         case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
   1377             switch (GET_C_FUNC(insn)) {
   1378             case OPC_RISC_C_FUNC_FLD_LQ:
   1379                 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
   1380                     xinsn = OPC_RISC_FLD;
   1381                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
   1382                     access_rs1 = GET_C_RS1S(insn);
   1383                     access_imm = GET_C_LD_IMM(insn);
   1384                     access_size = 8;
   1385                 }
   1386                 break;
   1387             case OPC_RISC_C_FUNC_LW: /* C.LW */
   1388                 xinsn = OPC_RISC_LW;
   1389                 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
   1390                 access_rs1 = GET_C_RS1S(insn);
   1391                 access_imm = GET_C_LW_IMM(insn);
   1392                 access_size = 4;
   1393                 break;
   1394             case OPC_RISC_C_FUNC_FLW_LD:
   1395                 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
   1396                     xinsn = OPC_RISC_FLW;
   1397                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
   1398                     access_rs1 = GET_C_RS1S(insn);
   1399                     access_imm = GET_C_LW_IMM(insn);
   1400                     access_size = 4;
   1401                 } else { /* C.LD (RV64/RV128) */
   1402                     xinsn = OPC_RISC_LD;
   1403                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
   1404                     access_rs1 = GET_C_RS1S(insn);
   1405                     access_imm = GET_C_LD_IMM(insn);
   1406                     access_size = 8;
   1407                 }
   1408                 break;
   1409             case OPC_RISC_C_FUNC_FSD_SQ:
   1410                 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
   1411                     xinsn = OPC_RISC_FSD;
   1412                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
   1413                     access_rs1 = GET_C_RS1S(insn);
   1414                     access_imm = GET_C_SD_IMM(insn);
   1415                     access_size = 8;
   1416                 }
   1417                 break;
   1418             case OPC_RISC_C_FUNC_SW: /* C.SW */
   1419                 xinsn = OPC_RISC_SW;
   1420                 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
   1421                 access_rs1 = GET_C_RS1S(insn);
   1422                 access_imm = GET_C_SW_IMM(insn);
   1423                 access_size = 4;
   1424                 break;
   1425             case OPC_RISC_C_FUNC_FSW_SD:
   1426                 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
   1427                     xinsn = OPC_RISC_FSW;
   1428                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
   1429                     access_rs1 = GET_C_RS1S(insn);
   1430                     access_imm = GET_C_SW_IMM(insn);
   1431                     access_size = 4;
   1432                 } else { /* C.SD (RV64/RV128) */
   1433                     xinsn = OPC_RISC_SD;
   1434                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
   1435                     access_rs1 = GET_C_RS1S(insn);
   1436                     access_imm = GET_C_SD_IMM(insn);
   1437                     access_size = 8;
   1438                 }
   1439                 break;
   1440             default:
   1441                 break;
   1442             }
   1443             break;
   1444         case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
   1445             switch (GET_C_FUNC(insn)) {
   1446             case OPC_RISC_C_FUNC_FLDSP_LQSP:
   1447                 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
   1448                     xinsn = OPC_RISC_FLD;
   1449                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
   1450                     access_rs1 = 2;
   1451                     access_imm = GET_C_LDSP_IMM(insn);
   1452                     access_size = 8;
   1453                 }
   1454                 break;
   1455             case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
   1456                 xinsn = OPC_RISC_LW;
   1457                 xinsn = SET_RD(xinsn, GET_C_RD(insn));
   1458                 access_rs1 = 2;
   1459                 access_imm = GET_C_LWSP_IMM(insn);
   1460                 access_size = 4;
   1461                 break;
   1462             case OPC_RISC_C_FUNC_FLWSP_LDSP:
   1463                 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
   1464                     xinsn = OPC_RISC_FLW;
   1465                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
   1466                     access_rs1 = 2;
   1467                     access_imm = GET_C_LWSP_IMM(insn);
   1468                     access_size = 4;
   1469                 } else { /* C.LDSP (RV64/RV128) */
   1470                     xinsn = OPC_RISC_LD;
   1471                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
   1472                     access_rs1 = 2;
   1473                     access_imm = GET_C_LDSP_IMM(insn);
   1474                     access_size = 8;
   1475                 }
   1476                 break;
   1477             case OPC_RISC_C_FUNC_FSDSP_SQSP:
   1478                 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
   1479                     xinsn = OPC_RISC_FSD;
   1480                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
   1481                     access_rs1 = 2;
   1482                     access_imm = GET_C_SDSP_IMM(insn);
   1483                     access_size = 8;
   1484                 }
   1485                 break;
   1486             case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
   1487                 xinsn = OPC_RISC_SW;
   1488                 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
   1489                 access_rs1 = 2;
   1490                 access_imm = GET_C_SWSP_IMM(insn);
   1491                 access_size = 4;
   1492                 break;
   1493             case 7:
   1494                 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
   1495                     xinsn = OPC_RISC_FSW;
   1496                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
   1497                     access_rs1 = 2;
   1498                     access_imm = GET_C_SWSP_IMM(insn);
   1499                     access_size = 4;
   1500                 } else { /* C.SDSP (RV64/RV128) */
   1501                     xinsn = OPC_RISC_SD;
   1502                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
   1503                     access_rs1 = 2;
   1504                     access_imm = GET_C_SDSP_IMM(insn);
   1505                     access_size = 8;
   1506                 }
   1507                 break;
   1508             default:
   1509                 break;
   1510             }
   1511             break;
   1512         default:
   1513             break;
   1514         }
   1515 
   1516         /*
   1517          * Clear Bit1 of transformed instruction to indicate that
   1518          * original insruction was a 16bit instruction
   1519          */
   1520         xinsn &= ~((target_ulong)0x2);
   1521     } else {
   1522         /* Transform 32bit (or wider) instructions */
   1523         switch (MASK_OP_MAJOR(insn)) {
   1524         case OPC_RISC_ATOMIC:
   1525             xinsn = insn;
   1526             access_rs1 = GET_RS1(insn);
   1527             access_size = 1 << GET_FUNCT3(insn);
   1528             break;
   1529         case OPC_RISC_LOAD:
   1530         case OPC_RISC_FP_LOAD:
   1531             xinsn = SET_I_IMM(insn, 0);
   1532             access_rs1 = GET_RS1(insn);
   1533             access_imm = GET_IMM(insn);
   1534             access_size = 1 << GET_FUNCT3(insn);
   1535             break;
   1536         case OPC_RISC_STORE:
   1537         case OPC_RISC_FP_STORE:
   1538             xinsn = SET_S_IMM(insn, 0);
   1539             access_rs1 = GET_RS1(insn);
   1540             access_imm = GET_STORE_IMM(insn);
   1541             access_size = 1 << GET_FUNCT3(insn);
   1542             break;
   1543         case OPC_RISC_SYSTEM:
   1544             if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
   1545                 xinsn = insn;
   1546                 access_rs1 = GET_RS1(insn);
   1547                 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
   1548                 access_size = 1 << access_size;
   1549             }
   1550             break;
   1551         default:
   1552             break;
   1553         }
   1554     }
   1555 
   1556     if (access_size) {
   1557         xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
   1558                                (access_size - 1));
   1559     }
   1560 
   1561     return xinsn;
   1562 }
   1563 #endif /* !CONFIG_USER_ONLY */
   1564 
   1565 /*
   1566  * Handle Traps
   1567  *
   1568  * Adapted from Spike's processor_t::take_trap.
   1569  *
   1570  */
   1571 void riscv_cpu_do_interrupt(CPUState *cs)
   1572 {
   1573 #if !defined(CONFIG_USER_ONLY)
   1574 
   1575     RISCVCPU *cpu = RISCV_CPU(cs);
   1576     CPURISCVState *env = &cpu->env;
   1577     bool write_gva = false;
   1578     uint64_t s;
   1579 
   1580     /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
   1581      * so we mask off the MSB and separate into trap type and cause.
   1582      */
   1583     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
   1584     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
   1585     uint64_t deleg = async ? env->mideleg : env->medeleg;
   1586     target_ulong tval = 0;
   1587     target_ulong tinst = 0;
   1588     target_ulong htval = 0;
   1589     target_ulong mtval2 = 0;
   1590 
   1591     if  (cause == RISCV_EXCP_SEMIHOST) {
   1592         do_common_semihosting(cs);
   1593         env->pc += 4;
   1594         return;
   1595     }
   1596 
   1597     if (!async) {
   1598         /* set tval to badaddr for traps with address information */
   1599         switch (cause) {
   1600         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
   1601         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
   1602         case RISCV_EXCP_LOAD_ADDR_MIS:
   1603         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
   1604         case RISCV_EXCP_LOAD_ACCESS_FAULT:
   1605         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
   1606         case RISCV_EXCP_LOAD_PAGE_FAULT:
   1607         case RISCV_EXCP_STORE_PAGE_FAULT:
   1608             write_gva = env->two_stage_lookup;
   1609             tval = env->badaddr;
   1610             if (env->two_stage_indirect_lookup) {
   1611                 /*
   1612                  * special pseudoinstruction for G-stage fault taken while
   1613                  * doing VS-stage page table walk.
   1614                  */
   1615                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
   1616             } else {
   1617                 /*
   1618                  * The "Addr. Offset" field in transformed instruction is
   1619                  * non-zero only for misaligned access.
   1620                  */
   1621                 tinst = riscv_transformed_insn(env, env->bins, tval);
   1622             }
   1623             break;
   1624         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
   1625         case RISCV_EXCP_INST_ADDR_MIS:
   1626         case RISCV_EXCP_INST_ACCESS_FAULT:
   1627         case RISCV_EXCP_INST_PAGE_FAULT:
   1628             write_gva = env->two_stage_lookup;
   1629             tval = env->badaddr;
   1630             if (env->two_stage_indirect_lookup) {
   1631                 /*
   1632                  * special pseudoinstruction for G-stage fault taken while
   1633                  * doing VS-stage page table walk.
   1634                  */
   1635                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
   1636             }
   1637             break;
   1638         case RISCV_EXCP_ILLEGAL_INST:
   1639         case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
   1640             tval = env->bins;
   1641             break;
   1642         default:
   1643             break;
   1644         }
   1645         /* ecall is dispatched as one cause so translate based on mode */
   1646         if (cause == RISCV_EXCP_U_ECALL) {
   1647             assert(env->priv <= 3);
   1648 
   1649             if (env->priv == PRV_M) {
   1650                 cause = RISCV_EXCP_M_ECALL;
   1651             } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
   1652                 cause = RISCV_EXCP_VS_ECALL;
   1653             } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
   1654                 cause = RISCV_EXCP_S_ECALL;
   1655             } else if (env->priv == PRV_U) {
   1656                 cause = RISCV_EXCP_U_ECALL;
   1657             }
   1658         }
   1659     }
   1660 
   1661     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
   1662                      riscv_cpu_get_trap_name(cause, async));
   1663 
   1664     qemu_log_mask(CPU_LOG_INT,
   1665                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
   1666                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
   1667                   __func__, env->mhartid, async, cause, env->pc, tval,
   1668                   riscv_cpu_get_trap_name(cause, async));
   1669 
   1670     if (env->priv <= PRV_S &&
   1671             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
   1672         /* handle the trap in S-mode */
   1673         if (riscv_has_ext(env, RVH)) {
   1674             uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
   1675 
   1676             if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) {
   1677                 /* Trap to VS mode */
   1678                 /*
   1679                  * See if we need to adjust cause. Yes if its VS mode interrupt
   1680                  * no if hypervisor has delegated one of hs mode's interrupt
   1681                  */
   1682                 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
   1683                     cause == IRQ_VS_EXT) {
   1684                     cause = cause - 1;
   1685                 }
   1686                 write_gva = false;
   1687             } else if (riscv_cpu_virt_enabled(env)) {
   1688                 /* Trap into HS mode, from virt */
   1689                 riscv_cpu_swap_hypervisor_regs(env);
   1690                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
   1691                                          env->priv);
   1692                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
   1693                                          riscv_cpu_virt_enabled(env));
   1694 
   1695 
   1696                 htval = env->guest_phys_fault_addr;
   1697 
   1698                 riscv_cpu_set_virt_enabled(env, 0);
   1699             } else {
   1700                 /* Trap into HS mode */
   1701                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
   1702                 htval = env->guest_phys_fault_addr;
   1703             }
   1704             env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
   1705         }
   1706 
   1707         s = env->mstatus;
   1708         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
   1709         s = set_field(s, MSTATUS_SPP, env->priv);
   1710         s = set_field(s, MSTATUS_SIE, 0);
   1711         env->mstatus = s;
   1712         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
   1713         env->sepc = env->pc;
   1714         env->stval = tval;
   1715         env->htval = htval;
   1716         env->htinst = tinst;
   1717         env->pc = (env->stvec >> 2 << 2) +
   1718             ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
   1719         riscv_cpu_set_mode(env, PRV_S);
   1720     } else {
   1721         /* handle the trap in M-mode */
   1722         if (riscv_has_ext(env, RVH)) {
   1723             if (riscv_cpu_virt_enabled(env)) {
   1724                 riscv_cpu_swap_hypervisor_regs(env);
   1725             }
   1726             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
   1727                                      riscv_cpu_virt_enabled(env));
   1728             if (riscv_cpu_virt_enabled(env) && tval) {
   1729                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
   1730             }
   1731 
   1732             mtval2 = env->guest_phys_fault_addr;
   1733 
   1734             /* Trapping to M mode, virt is disabled */
   1735             riscv_cpu_set_virt_enabled(env, 0);
   1736         }
   1737 
   1738         s = env->mstatus;
   1739         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
   1740         s = set_field(s, MSTATUS_MPP, env->priv);
   1741         s = set_field(s, MSTATUS_MIE, 0);
   1742         env->mstatus = s;
   1743         env->mcause = cause | ~(((target_ulong)-1) >> async);
   1744         env->mepc = env->pc;
   1745         env->mtval = tval;
   1746         env->mtval2 = mtval2;
   1747         env->mtinst = tinst;
   1748         env->pc = (env->mtvec >> 2 << 2) +
   1749             ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
   1750         riscv_cpu_set_mode(env, PRV_M);
   1751     }
   1752 
   1753     /* NOTE: it is not necessary to yield load reservations here. It is only
   1754      * necessary for an SC from "another hart" to cause a load reservation
   1755      * to be yielded. Refer to the memory consistency model section of the
   1756      * RISC-V ISA Specification.
   1757      */
   1758 
   1759     env->two_stage_lookup = false;
   1760     env->two_stage_indirect_lookup = false;
   1761 #endif
   1762     cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
   1763 }