qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

kvm.c (81584B)


      1 /*
      2  * PowerPC implementation of KVM hooks
      3  *
      4  * Copyright IBM Corp. 2007
      5  * Copyright (C) 2011 Freescale Semiconductor, Inc.
      6  *
      7  * Authors:
      8  *  Jerone Young <jyoung5@us.ibm.com>
      9  *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
     10  *  Hollis Blanchard <hollisb@us.ibm.com>
     11  *
     12  * This work is licensed under the terms of the GNU GPL, version 2 or later.
     13  * See the COPYING file in the top-level directory.
     14  *
     15  */
     16 
     17 #include "qemu/osdep.h"
     18 #include <dirent.h>
     19 #include <sys/ioctl.h>
     20 #include <sys/vfs.h>
     21 
     22 #include <linux/kvm.h>
     23 
     24 #include "qapi/error.h"
     25 #include "qemu/error-report.h"
     26 #include "cpu.h"
     27 #include "cpu-models.h"
     28 #include "qemu/timer.h"
     29 #include "sysemu/hw_accel.h"
     30 #include "kvm_ppc.h"
     31 #include "sysemu/cpus.h"
     32 #include "sysemu/device_tree.h"
     33 #include "mmu-hash64.h"
     34 
     35 #include "hw/sysbus.h"
     36 #include "hw/ppc/spapr.h"
     37 #include "hw/ppc/spapr_cpu_core.h"
     38 #include "hw/hw.h"
     39 #include "hw/ppc/ppc.h"
     40 #include "migration/qemu-file-types.h"
     41 #include "sysemu/watchdog.h"
     42 #include "trace.h"
     43 #include "exec/gdbstub.h"
     44 #include "exec/memattrs.h"
     45 #include "exec/ram_addr.h"
     46 #include "sysemu/hostmem.h"
     47 #include "qemu/cutils.h"
     48 #include "qemu/main-loop.h"
     49 #include "qemu/mmap-alloc.h"
     50 #include "elf.h"
     51 #include "sysemu/kvm_int.h"
     52 
     53 #define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"
     54 
     55 #define DEBUG_RETURN_GUEST 0
     56 #define DEBUG_RETURN_GDB   1
     57 
     58 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
     59     KVM_CAP_LAST_INFO
     60 };
     61 
     62 static int cap_interrupt_unset;
     63 static int cap_segstate;
     64 static int cap_booke_sregs;
     65 static int cap_ppc_smt;
     66 static int cap_ppc_smt_possible;
     67 static int cap_spapr_tce;
     68 static int cap_spapr_tce_64;
     69 static int cap_spapr_multitce;
     70 static int cap_spapr_vfio;
     71 static int cap_hior;
     72 static int cap_one_reg;
     73 static int cap_epr;
     74 static int cap_ppc_watchdog;
     75 static int cap_papr;
     76 static int cap_htab_fd;
     77 static int cap_fixup_hcalls;
     78 static int cap_htm;             /* Hardware transactional memory support */
     79 static int cap_mmu_radix;
     80 static int cap_mmu_hash_v3;
     81 static int cap_xive;
     82 static int cap_resize_hpt;
     83 static int cap_ppc_pvr_compat;
     84 static int cap_ppc_safe_cache;
     85 static int cap_ppc_safe_bounds_check;
     86 static int cap_ppc_safe_indirect_branch;
     87 static int cap_ppc_count_cache_flush_assist;
     88 static int cap_ppc_nested_kvm_hv;
     89 static int cap_large_decr;
     90 static int cap_fwnmi;
     91 static int cap_rpt_invalidate;
     92 
     93 static uint32_t debug_inst_opcode;
     94 
     95 /*
     96  * Check whether we are running with KVM-PR (instead of KVM-HV).  This
     97  * should only be used for fallback tests - generally we should use
     98  * explicit capabilities for the features we want, rather than
     99  * assuming what is/isn't available depending on the KVM variant.
    100  */
    101 static bool kvmppc_is_pr(KVMState *ks)
    102 {
    103     /* Assume KVM-PR if the GET_PVINFO capability is available */
    104     return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
    105 }
    106 
    107 static int kvm_ppc_register_host_cpu_type(void);
    108 static void kvmppc_get_cpu_characteristics(KVMState *s);
    109 static int kvmppc_get_dec_bits(void);
    110 
    111 int kvm_arch_init(MachineState *ms, KVMState *s)
    112 {
    113     cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
    114     cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
    115     cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
    116     cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
    117     cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
    118     cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
    119     cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
    120     cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
    121     cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
    122     cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
    123     cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
    124     cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
    125     /*
    126      * Note: we don't set cap_papr here, because this capability is
    127      * only activated after this by kvmppc_set_papr()
    128      */
    129     cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
    130     cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
    131     cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
    132     cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
    133     cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
    134     cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
    135     cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
    136     cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
    137     kvmppc_get_cpu_characteristics(s);
    138     cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
    139     cap_large_decr = kvmppc_get_dec_bits();
    140     cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI);
    141     /*
    142      * Note: setting it to false because there is not such capability
    143      * in KVM at this moment.
    144      *
    145      * TODO: call kvm_vm_check_extension() with the right capability
    146      * after the kernel starts implementing it.
    147      */
    148     cap_ppc_pvr_compat = false;
    149 
    150     if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
    151         error_report("KVM: Host kernel doesn't have level irq capability");
    152         exit(1);
    153     }
    154 
    155     cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE);
    156     kvm_ppc_register_host_cpu_type();
    157 
    158     return 0;
    159 }
    160 
    161 int kvm_arch_irqchip_create(KVMState *s)
    162 {
    163     return 0;
    164 }
    165 
    166 static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
    167 {
    168     CPUPPCState *cenv = &cpu->env;
    169     CPUState *cs = CPU(cpu);
    170     struct kvm_sregs sregs;
    171     int ret;
    172 
    173     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
    174         /*
    175          * What we're really trying to say is "if we're on BookE, we
    176          * use the native PVR for now". This is the only sane way to
    177          * check it though, so we potentially confuse users that they
    178          * can run BookE guests on BookS. Let's hope nobody dares
    179          * enough :)
    180          */
    181         return 0;
    182     } else {
    183         if (!cap_segstate) {
    184             fprintf(stderr, "kvm error: missing PVR setting capability\n");
    185             return -ENOSYS;
    186         }
    187     }
    188 
    189     ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
    190     if (ret) {
    191         return ret;
    192     }
    193 
    194     sregs.pvr = cenv->spr[SPR_PVR];
    195     return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
    196 }
    197 
    198 /* Set up a shared TLB array with KVM */
    199 static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
    200 {
    201     CPUPPCState *env = &cpu->env;
    202     CPUState *cs = CPU(cpu);
    203     struct kvm_book3e_206_tlb_params params = {};
    204     struct kvm_config_tlb cfg = {};
    205     unsigned int entries = 0;
    206     int ret, i;
    207 
    208     if (!kvm_enabled() ||
    209         !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
    210         return 0;
    211     }
    212 
    213     assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
    214 
    215     for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
    216         params.tlb_sizes[i] = booke206_tlb_size(env, i);
    217         params.tlb_ways[i] = booke206_tlb_ways(env, i);
    218         entries += params.tlb_sizes[i];
    219     }
    220 
    221     assert(entries == env->nb_tlb);
    222     assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
    223 
    224     env->tlb_dirty = true;
    225 
    226     cfg.array = (uintptr_t)env->tlb.tlbm;
    227     cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
    228     cfg.params = (uintptr_t)&params;
    229     cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
    230 
    231     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
    232     if (ret < 0) {
    233         fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
    234                 __func__, strerror(-ret));
    235         return ret;
    236     }
    237 
    238     env->kvm_sw_tlb = true;
    239     return 0;
    240 }
    241 
    242 
    243 #if defined(TARGET_PPC64)
    244 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
    245 {
    246     int ret;
    247 
    248     assert(kvm_state != NULL);
    249 
    250     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
    251         error_setg(errp, "KVM doesn't expose the MMU features it supports");
    252         error_append_hint(errp, "Consider switching to a newer KVM\n");
    253         return;
    254     }
    255 
    256     ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
    257     if (ret == 0) {
    258         return;
    259     }
    260 
    261     error_setg_errno(errp, -ret,
    262                      "KVM failed to provide the MMU features it supports");
    263 }
    264 
    265 struct ppc_radix_page_info *kvm_get_radix_page_info(void)
    266 {
    267     KVMState *s = KVM_STATE(current_accel());
    268     struct ppc_radix_page_info *radix_page_info;
    269     struct kvm_ppc_rmmu_info rmmu_info = { };
    270     int i;
    271 
    272     if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
    273         return NULL;
    274     }
    275     if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
    276         return NULL;
    277     }
    278     radix_page_info = g_malloc0(sizeof(*radix_page_info));
    279     radix_page_info->count = 0;
    280     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
    281         if (rmmu_info.ap_encodings[i]) {
    282             radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
    283             radix_page_info->count++;
    284         }
    285     }
    286     return radix_page_info;
    287 }
    288 
    289 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
    290                                      bool radix, bool gtse,
    291                                      uint64_t proc_tbl)
    292 {
    293     CPUState *cs = CPU(cpu);
    294     int ret;
    295     uint64_t flags = 0;
    296     struct kvm_ppc_mmuv3_cfg cfg = {
    297         .process_table = proc_tbl,
    298     };
    299 
    300     if (radix) {
    301         flags |= KVM_PPC_MMUV3_RADIX;
    302     }
    303     if (gtse) {
    304         flags |= KVM_PPC_MMUV3_GTSE;
    305     }
    306     cfg.flags = flags;
    307     ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
    308     switch (ret) {
    309     case 0:
    310         return H_SUCCESS;
    311     case -EINVAL:
    312         return H_PARAMETER;
    313     case -ENODEV:
    314         return H_NOT_AVAILABLE;
    315     default:
    316         return H_HARDWARE;
    317     }
    318 }
    319 
    320 bool kvmppc_hpt_needs_host_contiguous_pages(void)
    321 {
    322     static struct kvm_ppc_smmu_info smmu_info;
    323 
    324     if (!kvm_enabled()) {
    325         return false;
    326     }
    327 
    328     kvm_get_smmu_info(&smmu_info, &error_fatal);
    329     return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
    330 }
    331 
    332 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
    333 {
    334     struct kvm_ppc_smmu_info smmu_info;
    335     int iq, ik, jq, jk;
    336     Error *local_err = NULL;
    337 
    338     /* For now, we only have anything to check on hash64 MMUs */
    339     if (!cpu->hash64_opts || !kvm_enabled()) {
    340         return;
    341     }
    342 
    343     kvm_get_smmu_info(&smmu_info, &local_err);
    344     if (local_err) {
    345         error_propagate(errp, local_err);
    346         return;
    347     }
    348 
    349     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
    350         && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
    351         error_setg(errp,
    352                    "KVM does not support 1TiB segments which guest expects");
    353         return;
    354     }
    355 
    356     if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
    357         error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
    358                    smmu_info.slb_size, cpu->hash64_opts->slb_size);
    359         return;
    360     }
    361 
    362     /*
    363      * Verify that every pagesize supported by the cpu model is
    364      * supported by KVM with the same encodings
    365      */
    366     for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
    367         PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
    368         struct kvm_ppc_one_seg_page_size *ksps;
    369 
    370         for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
    371             if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
    372                 break;
    373             }
    374         }
    375         if (ik >= ARRAY_SIZE(smmu_info.sps)) {
    376             error_setg(errp, "KVM doesn't support for base page shift %u",
    377                        qsps->page_shift);
    378             return;
    379         }
    380 
    381         ksps = &smmu_info.sps[ik];
    382         if (ksps->slb_enc != qsps->slb_enc) {
    383             error_setg(errp,
    384 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
    385                        ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
    386             return;
    387         }
    388 
    389         for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
    390             for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
    391                 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
    392                     break;
    393                 }
    394             }
    395 
    396             if (jk >= ARRAY_SIZE(ksps->enc)) {
    397                 error_setg(errp, "KVM doesn't support page shift %u/%u",
    398                            qsps->enc[jq].page_shift, qsps->page_shift);
    399                 return;
    400             }
    401             if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
    402                 error_setg(errp,
    403 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
    404                            ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
    405                            qsps->page_shift, qsps->enc[jq].pte_enc);
    406                 return;
    407             }
    408         }
    409     }
    410 
    411     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
    412         /*
    413          * Mostly what guest pagesizes we can use are related to the
    414          * host pages used to map guest RAM, which is handled in the
    415          * platform code. Cache-Inhibited largepages (64k) however are
    416          * used for I/O, so if they're mapped to the host at all it
    417          * will be a normal mapping, not a special hugepage one used
    418          * for RAM.
    419          */
    420         if (qemu_real_host_page_size() < 0x10000) {
    421             error_setg(errp,
    422                        "KVM can't supply 64kiB CI pages, which guest expects");
    423         }
    424     }
    425 }
    426 #endif /* !defined (TARGET_PPC64) */
    427 
    428 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
    429 {
    430     return POWERPC_CPU(cpu)->vcpu_id;
    431 }
    432 
    433 /*
    434  * e500 supports 2 h/w breakpoint and 2 watchpoint.  book3s supports
    435  * only 1 watchpoint, so array size of 4 is sufficient for now.
    436  */
    437 #define MAX_HW_BKPTS 4
    438 
    439 static struct HWBreakpoint {
    440     target_ulong addr;
    441     int type;
    442 } hw_debug_points[MAX_HW_BKPTS];
    443 
    444 static CPUWatchpoint hw_watchpoint;
    445 
    446 /* Default there is no breakpoint and watchpoint supported */
    447 static int max_hw_breakpoint;
    448 static int max_hw_watchpoint;
    449 static int nb_hw_breakpoint;
    450 static int nb_hw_watchpoint;
    451 
    452 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
    453 {
    454     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
    455         max_hw_breakpoint = 2;
    456         max_hw_watchpoint = 2;
    457     }
    458 
    459     if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
    460         fprintf(stderr, "Error initializing h/w breakpoints\n");
    461         return;
    462     }
    463 }
    464 
    465 int kvm_arch_init_vcpu(CPUState *cs)
    466 {
    467     PowerPCCPU *cpu = POWERPC_CPU(cs);
    468     CPUPPCState *cenv = &cpu->env;
    469     int ret;
    470 
    471     /* Synchronize sregs with kvm */
    472     ret = kvm_arch_sync_sregs(cpu);
    473     if (ret) {
    474         if (ret == -EINVAL) {
    475             error_report("Register sync failed... If you're using kvm-hv.ko,"
    476                          " only \"-cpu host\" is possible");
    477         }
    478         return ret;
    479     }
    480 
    481     switch (cenv->mmu_model) {
    482     case POWERPC_MMU_BOOKE206:
    483         /* This target supports access to KVM's guest TLB */
    484         ret = kvm_booke206_tlb_init(cpu);
    485         break;
    486     case POWERPC_MMU_2_07:
    487         if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
    488             /*
    489              * KVM-HV has transactional memory on POWER8 also without
    490              * the KVM_CAP_PPC_HTM extension, so enable it here
    491              * instead as long as it's available to userspace on the
    492              * host.
    493              */
    494             if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
    495                 cap_htm = true;
    496             }
    497         }
    498         break;
    499     default:
    500         break;
    501     }
    502 
    503     kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
    504     kvmppc_hw_debug_points_init(cenv);
    505 
    506     return ret;
    507 }
    508 
    509 int kvm_arch_destroy_vcpu(CPUState *cs)
    510 {
    511     return 0;
    512 }
    513 
    514 static void kvm_sw_tlb_put(PowerPCCPU *cpu)
    515 {
    516     CPUPPCState *env = &cpu->env;
    517     CPUState *cs = CPU(cpu);
    518     struct kvm_dirty_tlb dirty_tlb;
    519     unsigned char *bitmap;
    520     int ret;
    521 
    522     if (!env->kvm_sw_tlb) {
    523         return;
    524     }
    525 
    526     bitmap = g_malloc((env->nb_tlb + 7) / 8);
    527     memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
    528 
    529     dirty_tlb.bitmap = (uintptr_t)bitmap;
    530     dirty_tlb.num_dirty = env->nb_tlb;
    531 
    532     ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
    533     if (ret) {
    534         fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
    535                 __func__, strerror(-ret));
    536     }
    537 
    538     g_free(bitmap);
    539 }
    540 
    541 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
    542 {
    543     PowerPCCPU *cpu = POWERPC_CPU(cs);
    544     CPUPPCState *env = &cpu->env;
    545     /* Init 'val' to avoid "uninitialised value" Valgrind warnings */
    546     union {
    547         uint32_t u32;
    548         uint64_t u64;
    549     } val = { };
    550     struct kvm_one_reg reg = {
    551         .id = id,
    552         .addr = (uintptr_t) &val,
    553     };
    554     int ret;
    555 
    556     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    557     if (ret != 0) {
    558         trace_kvm_failed_spr_get(spr, strerror(errno));
    559     } else {
    560         switch (id & KVM_REG_SIZE_MASK) {
    561         case KVM_REG_SIZE_U32:
    562             env->spr[spr] = val.u32;
    563             break;
    564 
    565         case KVM_REG_SIZE_U64:
    566             env->spr[spr] = val.u64;
    567             break;
    568 
    569         default:
    570             /* Don't handle this size yet */
    571             abort();
    572         }
    573     }
    574 }
    575 
    576 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
    577 {
    578     PowerPCCPU *cpu = POWERPC_CPU(cs);
    579     CPUPPCState *env = &cpu->env;
    580     union {
    581         uint32_t u32;
    582         uint64_t u64;
    583     } val;
    584     struct kvm_one_reg reg = {
    585         .id = id,
    586         .addr = (uintptr_t) &val,
    587     };
    588     int ret;
    589 
    590     switch (id & KVM_REG_SIZE_MASK) {
    591     case KVM_REG_SIZE_U32:
    592         val.u32 = env->spr[spr];
    593         break;
    594 
    595     case KVM_REG_SIZE_U64:
    596         val.u64 = env->spr[spr];
    597         break;
    598 
    599     default:
    600         /* Don't handle this size yet */
    601         abort();
    602     }
    603 
    604     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    605     if (ret != 0) {
    606         trace_kvm_failed_spr_set(spr, strerror(errno));
    607     }
    608 }
    609 
    610 static int kvm_put_fp(CPUState *cs)
    611 {
    612     PowerPCCPU *cpu = POWERPC_CPU(cs);
    613     CPUPPCState *env = &cpu->env;
    614     struct kvm_one_reg reg;
    615     int i;
    616     int ret;
    617 
    618     if (env->insns_flags & PPC_FLOAT) {
    619         uint64_t fpscr = env->fpscr;
    620         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
    621 
    622         reg.id = KVM_REG_PPC_FPSCR;
    623         reg.addr = (uintptr_t)&fpscr;
    624         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    625         if (ret < 0) {
    626             trace_kvm_failed_fpscr_set(strerror(errno));
    627             return ret;
    628         }
    629 
    630         for (i = 0; i < 32; i++) {
    631             uint64_t vsr[2];
    632             uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
    633             uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
    634 
    635 #if HOST_BIG_ENDIAN
    636             vsr[0] = float64_val(*fpr);
    637             vsr[1] = *vsrl;
    638 #else
    639             vsr[0] = *vsrl;
    640             vsr[1] = float64_val(*fpr);
    641 #endif
    642             reg.addr = (uintptr_t) &vsr;
    643             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
    644 
    645             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    646             if (ret < 0) {
    647                 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
    648                                         strerror(errno));
    649                 return ret;
    650             }
    651         }
    652     }
    653 
    654     if (env->insns_flags & PPC_ALTIVEC) {
    655         reg.id = KVM_REG_PPC_VSCR;
    656         reg.addr = (uintptr_t)&env->vscr;
    657         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    658         if (ret < 0) {
    659             trace_kvm_failed_vscr_set(strerror(errno));
    660             return ret;
    661         }
    662 
    663         for (i = 0; i < 32; i++) {
    664             reg.id = KVM_REG_PPC_VR(i);
    665             reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
    666             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    667             if (ret < 0) {
    668                 trace_kvm_failed_vr_set(i, strerror(errno));
    669                 return ret;
    670             }
    671         }
    672     }
    673 
    674     return 0;
    675 }
    676 
    677 static int kvm_get_fp(CPUState *cs)
    678 {
    679     PowerPCCPU *cpu = POWERPC_CPU(cs);
    680     CPUPPCState *env = &cpu->env;
    681     struct kvm_one_reg reg;
    682     int i;
    683     int ret;
    684 
    685     if (env->insns_flags & PPC_FLOAT) {
    686         uint64_t fpscr;
    687         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
    688 
    689         reg.id = KVM_REG_PPC_FPSCR;
    690         reg.addr = (uintptr_t)&fpscr;
    691         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    692         if (ret < 0) {
    693             trace_kvm_failed_fpscr_get(strerror(errno));
    694             return ret;
    695         } else {
    696             env->fpscr = fpscr;
    697         }
    698 
    699         for (i = 0; i < 32; i++) {
    700             uint64_t vsr[2];
    701             uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
    702             uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
    703 
    704             reg.addr = (uintptr_t) &vsr;
    705             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
    706 
    707             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    708             if (ret < 0) {
    709                 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
    710                                         strerror(errno));
    711                 return ret;
    712             } else {
    713 #if HOST_BIG_ENDIAN
    714                 *fpr = vsr[0];
    715                 if (vsx) {
    716                     *vsrl = vsr[1];
    717                 }
    718 #else
    719                 *fpr = vsr[1];
    720                 if (vsx) {
    721                     *vsrl = vsr[0];
    722                 }
    723 #endif
    724             }
    725         }
    726     }
    727 
    728     if (env->insns_flags & PPC_ALTIVEC) {
    729         reg.id = KVM_REG_PPC_VSCR;
    730         reg.addr = (uintptr_t)&env->vscr;
    731         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    732         if (ret < 0) {
    733             trace_kvm_failed_vscr_get(strerror(errno));
    734             return ret;
    735         }
    736 
    737         for (i = 0; i < 32; i++) {
    738             reg.id = KVM_REG_PPC_VR(i);
    739             reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
    740             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    741             if (ret < 0) {
    742                 trace_kvm_failed_vr_get(i, strerror(errno));
    743                 return ret;
    744             }
    745         }
    746     }
    747 
    748     return 0;
    749 }
    750 
    751 #if defined(TARGET_PPC64)
    752 static int kvm_get_vpa(CPUState *cs)
    753 {
    754     PowerPCCPU *cpu = POWERPC_CPU(cs);
    755     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
    756     struct kvm_one_reg reg;
    757     int ret;
    758 
    759     reg.id = KVM_REG_PPC_VPA_ADDR;
    760     reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
    761     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    762     if (ret < 0) {
    763         trace_kvm_failed_vpa_addr_get(strerror(errno));
    764         return ret;
    765     }
    766 
    767     assert((uintptr_t)&spapr_cpu->slb_shadow_size
    768            == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
    769     reg.id = KVM_REG_PPC_VPA_SLB;
    770     reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
    771     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    772     if (ret < 0) {
    773         trace_kvm_failed_slb_get(strerror(errno));
    774         return ret;
    775     }
    776 
    777     assert((uintptr_t)&spapr_cpu->dtl_size
    778            == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
    779     reg.id = KVM_REG_PPC_VPA_DTL;
    780     reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
    781     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    782     if (ret < 0) {
    783         trace_kvm_failed_dtl_get(strerror(errno));
    784         return ret;
    785     }
    786 
    787     return 0;
    788 }
    789 
    790 static int kvm_put_vpa(CPUState *cs)
    791 {
    792     PowerPCCPU *cpu = POWERPC_CPU(cs);
    793     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
    794     struct kvm_one_reg reg;
    795     int ret;
    796 
    797     /*
    798      * SLB shadow or DTL can't be registered unless a master VPA is
    799      * registered.  That means when restoring state, if a VPA *is*
    800      * registered, we need to set that up first.  If not, we need to
    801      * deregister the others before deregistering the master VPA
    802      */
    803     assert(spapr_cpu->vpa_addr
    804            || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
    805 
    806     if (spapr_cpu->vpa_addr) {
    807         reg.id = KVM_REG_PPC_VPA_ADDR;
    808         reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
    809         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    810         if (ret < 0) {
    811             trace_kvm_failed_vpa_addr_set(strerror(errno));
    812             return ret;
    813         }
    814     }
    815 
    816     assert((uintptr_t)&spapr_cpu->slb_shadow_size
    817            == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
    818     reg.id = KVM_REG_PPC_VPA_SLB;
    819     reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
    820     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    821     if (ret < 0) {
    822         trace_kvm_failed_slb_set(strerror(errno));
    823         return ret;
    824     }
    825 
    826     assert((uintptr_t)&spapr_cpu->dtl_size
    827            == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
    828     reg.id = KVM_REG_PPC_VPA_DTL;
    829     reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
    830     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    831     if (ret < 0) {
    832         trace_kvm_failed_dtl_set(strerror(errno));
    833         return ret;
    834     }
    835 
    836     if (!spapr_cpu->vpa_addr) {
    837         reg.id = KVM_REG_PPC_VPA_ADDR;
    838         reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
    839         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    840         if (ret < 0) {
    841             trace_kvm_failed_null_vpa_addr_set(strerror(errno));
    842             return ret;
    843         }
    844     }
    845 
    846     return 0;
    847 }
    848 #endif /* TARGET_PPC64 */
    849 
    850 int kvmppc_put_books_sregs(PowerPCCPU *cpu)
    851 {
    852     CPUPPCState *env = &cpu->env;
    853     struct kvm_sregs sregs = { };
    854     int i;
    855 
    856     sregs.pvr = env->spr[SPR_PVR];
    857 
    858     if (cpu->vhyp) {
    859         PPCVirtualHypervisorClass *vhc =
    860             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
    861         sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
    862     } else {
    863         sregs.u.s.sdr1 = env->spr[SPR_SDR1];
    864     }
    865 
    866     /* Sync SLB */
    867 #ifdef TARGET_PPC64
    868     for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
    869         sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
    870         if (env->slb[i].esid & SLB_ESID_V) {
    871             sregs.u.s.ppc64.slb[i].slbe |= i;
    872         }
    873         sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
    874     }
    875 #endif
    876 
    877     /* Sync SRs */
    878     for (i = 0; i < 16; i++) {
    879         sregs.u.s.ppc32.sr[i] = env->sr[i];
    880     }
    881 
    882     /* Sync BATs */
    883     for (i = 0; i < 8; i++) {
    884         /* Beware. We have to swap upper and lower bits here */
    885         sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
    886             | env->DBAT[1][i];
    887         sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
    888             | env->IBAT[1][i];
    889     }
    890 
    891     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
    892 }
    893 
    894 int kvm_arch_put_registers(CPUState *cs, int level)
    895 {
    896     PowerPCCPU *cpu = POWERPC_CPU(cs);
    897     CPUPPCState *env = &cpu->env;
    898     struct kvm_regs regs;
    899     int ret;
    900     int i;
    901 
    902     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
    903     if (ret < 0) {
    904         return ret;
    905     }
    906 
    907     regs.ctr = env->ctr;
    908     regs.lr  = env->lr;
    909     regs.xer = cpu_read_xer(env);
    910     regs.msr = env->msr;
    911     regs.pc = env->nip;
    912 
    913     regs.srr0 = env->spr[SPR_SRR0];
    914     regs.srr1 = env->spr[SPR_SRR1];
    915 
    916     regs.sprg0 = env->spr[SPR_SPRG0];
    917     regs.sprg1 = env->spr[SPR_SPRG1];
    918     regs.sprg2 = env->spr[SPR_SPRG2];
    919     regs.sprg3 = env->spr[SPR_SPRG3];
    920     regs.sprg4 = env->spr[SPR_SPRG4];
    921     regs.sprg5 = env->spr[SPR_SPRG5];
    922     regs.sprg6 = env->spr[SPR_SPRG6];
    923     regs.sprg7 = env->spr[SPR_SPRG7];
    924 
    925     regs.pid = env->spr[SPR_BOOKE_PID];
    926 
    927     for (i = 0; i < 32; i++) {
    928         regs.gpr[i] = env->gpr[i];
    929     }
    930 
    931     regs.cr = 0;
    932     for (i = 0; i < 8; i++) {
    933         regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
    934     }
    935 
    936     ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
    937     if (ret < 0) {
    938         return ret;
    939     }
    940 
    941     kvm_put_fp(cs);
    942 
    943     if (env->tlb_dirty) {
    944         kvm_sw_tlb_put(cpu);
    945         env->tlb_dirty = false;
    946     }
    947 
    948     if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
    949         ret = kvmppc_put_books_sregs(cpu);
    950         if (ret < 0) {
    951             return ret;
    952         }
    953     }
    954 
    955     if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
    956         kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
    957     }
    958 
    959     if (cap_one_reg) {
    960         int i;
    961 
    962         /*
    963          * We deliberately ignore errors here, for kernels which have
    964          * the ONE_REG calls, but don't support the specific
    965          * registers, there's a reasonable chance things will still
    966          * work, at least until we try to migrate.
    967          */
    968         for (i = 0; i < 1024; i++) {
    969             uint64_t id = env->spr_cb[i].one_reg_id;
    970 
    971             if (id != 0) {
    972                 kvm_put_one_spr(cs, id, i);
    973             }
    974         }
    975 
    976 #ifdef TARGET_PPC64
    977         if (FIELD_EX64(env->msr, MSR, TS)) {
    978             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
    979                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
    980             }
    981             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
    982                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
    983             }
    984             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
    985             kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
    986             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
    987             kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
    988             kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
    989             kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
    990             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
    991             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
    992             kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
    993             kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
    994         }
    995 
    996         if (cap_papr) {
    997             if (kvm_put_vpa(cs) < 0) {
    998                 trace_kvm_failed_put_vpa();
    999             }
   1000         }
   1001 
   1002         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
   1003 
   1004         if (level > KVM_PUT_RUNTIME_STATE) {
   1005             kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
   1006         }
   1007 #endif /* TARGET_PPC64 */
   1008     }
   1009 
   1010     return ret;
   1011 }
   1012 
   1013 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
   1014 {
   1015      env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
   1016 }
   1017 
   1018 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
   1019 {
   1020     CPUPPCState *env = &cpu->env;
   1021     struct kvm_sregs sregs;
   1022     int ret;
   1023 
   1024     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
   1025     if (ret < 0) {
   1026         return ret;
   1027     }
   1028 
   1029     if (sregs.u.e.features & KVM_SREGS_E_BASE) {
   1030         env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
   1031         env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
   1032         env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
   1033         env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
   1034         env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
   1035         env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
   1036         env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
   1037         env->spr[SPR_DECR] = sregs.u.e.dec;
   1038         env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
   1039         env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
   1040         env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
   1041     }
   1042 
   1043     if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
   1044         env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
   1045         env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
   1046         env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
   1047         env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
   1048         env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
   1049     }
   1050 
   1051     if (sregs.u.e.features & KVM_SREGS_E_64) {
   1052         env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
   1053     }
   1054 
   1055     if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
   1056         env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
   1057     }
   1058 
   1059     if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
   1060         env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
   1061         kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
   1062         env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
   1063         kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
   1064         env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
   1065         kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
   1066         env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
   1067         kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
   1068         env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
   1069         kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
   1070         env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
   1071         kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
   1072         env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
   1073         kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
   1074         env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
   1075         kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
   1076         env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
   1077         kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
   1078         env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
   1079         kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
   1080         env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
   1081         kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
   1082         env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
   1083         kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
   1084         env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
   1085         kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
   1086         env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
   1087         kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
   1088         env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
   1089         kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
   1090         env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
   1091         kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);
   1092 
   1093         if (sregs.u.e.features & KVM_SREGS_E_SPE) {
   1094             env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
   1095             kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
   1096             env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
   1097             kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
   1098             env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
   1099             kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
   1100         }
   1101 
   1102         if (sregs.u.e.features & KVM_SREGS_E_PM) {
   1103             env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
   1104             kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
   1105         }
   1106 
   1107         if (sregs.u.e.features & KVM_SREGS_E_PC) {
   1108             env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
   1109             kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
   1110             env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
   1111             kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
   1112         }
   1113     }
   1114 
   1115     if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
   1116         env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
   1117         env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
   1118         env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
   1119         env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
   1120         env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
   1121         env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
   1122         env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
   1123         env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
   1124         env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
   1125         env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
   1126     }
   1127 
   1128     if (sregs.u.e.features & KVM_SREGS_EXP) {
   1129         env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
   1130     }
   1131 
   1132     if (sregs.u.e.features & KVM_SREGS_E_PD) {
   1133         env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
   1134         env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
   1135     }
   1136 
   1137     if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
   1138         env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
   1139         env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
   1140         env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
   1141 
   1142         if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
   1143             env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
   1144             env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
   1145         }
   1146     }
   1147 
   1148     return 0;
   1149 }
   1150 
   1151 static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
   1152 {
   1153     CPUPPCState *env = &cpu->env;
   1154     struct kvm_sregs sregs;
   1155     int ret;
   1156     int i;
   1157 
   1158     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
   1159     if (ret < 0) {
   1160         return ret;
   1161     }
   1162 
   1163     if (!cpu->vhyp) {
   1164         ppc_store_sdr1(env, sregs.u.s.sdr1);
   1165     }
   1166 
   1167     /* Sync SLB */
   1168 #ifdef TARGET_PPC64
   1169     /*
   1170      * The packed SLB array we get from KVM_GET_SREGS only contains
   1171      * information about valid entries. So we flush our internal copy
   1172      * to get rid of stale ones, then put all valid SLB entries back
   1173      * in.
   1174      */
   1175     memset(env->slb, 0, sizeof(env->slb));
   1176     for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
   1177         target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
   1178         target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
   1179         /*
   1180          * Only restore valid entries
   1181          */
   1182         if (rb & SLB_ESID_V) {
   1183             ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
   1184         }
   1185     }
   1186 #endif
   1187 
   1188     /* Sync SRs */
   1189     for (i = 0; i < 16; i++) {
   1190         env->sr[i] = sregs.u.s.ppc32.sr[i];
   1191     }
   1192 
   1193     /* Sync BATs */
   1194     for (i = 0; i < 8; i++) {
   1195         env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
   1196         env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
   1197         env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
   1198         env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
   1199     }
   1200 
   1201     return 0;
   1202 }
   1203 
   1204 int kvm_arch_get_registers(CPUState *cs)
   1205 {
   1206     PowerPCCPU *cpu = POWERPC_CPU(cs);
   1207     CPUPPCState *env = &cpu->env;
   1208     struct kvm_regs regs;
   1209     uint32_t cr;
   1210     int i, ret;
   1211 
   1212     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
   1213     if (ret < 0) {
   1214         return ret;
   1215     }
   1216 
   1217     cr = regs.cr;
   1218     for (i = 7; i >= 0; i--) {
   1219         env->crf[i] = cr & 15;
   1220         cr >>= 4;
   1221     }
   1222 
   1223     env->ctr = regs.ctr;
   1224     env->lr = regs.lr;
   1225     cpu_write_xer(env, regs.xer);
   1226     env->msr = regs.msr;
   1227     env->nip = regs.pc;
   1228 
   1229     env->spr[SPR_SRR0] = regs.srr0;
   1230     env->spr[SPR_SRR1] = regs.srr1;
   1231 
   1232     env->spr[SPR_SPRG0] = regs.sprg0;
   1233     env->spr[SPR_SPRG1] = regs.sprg1;
   1234     env->spr[SPR_SPRG2] = regs.sprg2;
   1235     env->spr[SPR_SPRG3] = regs.sprg3;
   1236     env->spr[SPR_SPRG4] = regs.sprg4;
   1237     env->spr[SPR_SPRG5] = regs.sprg5;
   1238     env->spr[SPR_SPRG6] = regs.sprg6;
   1239     env->spr[SPR_SPRG7] = regs.sprg7;
   1240 
   1241     env->spr[SPR_BOOKE_PID] = regs.pid;
   1242 
   1243     for (i = 0; i < 32; i++) {
   1244         env->gpr[i] = regs.gpr[i];
   1245     }
   1246 
   1247     kvm_get_fp(cs);
   1248 
   1249     if (cap_booke_sregs) {
   1250         ret = kvmppc_get_booke_sregs(cpu);
   1251         if (ret < 0) {
   1252             return ret;
   1253         }
   1254     }
   1255 
   1256     if (cap_segstate) {
   1257         ret = kvmppc_get_books_sregs(cpu);
   1258         if (ret < 0) {
   1259             return ret;
   1260         }
   1261     }
   1262 
   1263     if (cap_hior) {
   1264         kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
   1265     }
   1266 
   1267     if (cap_one_reg) {
   1268         int i;
   1269 
   1270         /*
   1271          * We deliberately ignore errors here, for kernels which have
   1272          * the ONE_REG calls, but don't support the specific
   1273          * registers, there's a reasonable chance things will still
   1274          * work, at least until we try to migrate.
   1275          */
   1276         for (i = 0; i < 1024; i++) {
   1277             uint64_t id = env->spr_cb[i].one_reg_id;
   1278 
   1279             if (id != 0) {
   1280                 kvm_get_one_spr(cs, id, i);
   1281             }
   1282         }
   1283 
   1284 #ifdef TARGET_PPC64
   1285         if (FIELD_EX64(env->msr, MSR, TS)) {
   1286             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
   1287                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
   1288             }
   1289             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
   1290                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
   1291             }
   1292             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
   1293             kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
   1294             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
   1295             kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
   1296             kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
   1297             kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
   1298             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
   1299             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
   1300             kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
   1301             kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
   1302         }
   1303 
   1304         if (cap_papr) {
   1305             if (kvm_get_vpa(cs) < 0) {
   1306                 trace_kvm_failed_get_vpa();
   1307             }
   1308         }
   1309 
   1310         kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
   1311         kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
   1312 #endif
   1313     }
   1314 
   1315     return 0;
   1316 }
   1317 
   1318 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
   1319 {
   1320     unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
   1321 
   1322     if (irq != PPC_INTERRUPT_EXT) {
   1323         return 0;
   1324     }
   1325 
   1326     if (!kvm_enabled() || !cap_interrupt_unset) {
   1327         return 0;
   1328     }
   1329 
   1330     kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
   1331 
   1332     return 0;
   1333 }
   1334 
   1335 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
   1336 {
   1337     return;
   1338 }
   1339 
   1340 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
   1341 {
   1342     return MEMTXATTRS_UNSPECIFIED;
   1343 }
   1344 
   1345 int kvm_arch_process_async_events(CPUState *cs)
   1346 {
   1347     return cs->halted;
   1348 }
   1349 
   1350 static int kvmppc_handle_halt(PowerPCCPU *cpu)
   1351 {
   1352     CPUState *cs = CPU(cpu);
   1353     CPUPPCState *env = &cpu->env;
   1354 
   1355     if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) &&
   1356         FIELD_EX64(env->msr, MSR, EE)) {
   1357         cs->halted = 1;
   1358         cs->exception_index = EXCP_HLT;
   1359     }
   1360 
   1361     return 0;
   1362 }
   1363 
   1364 /* map dcr access to existing qemu dcr emulation */
   1365 static int kvmppc_handle_dcr_read(CPUPPCState *env,
   1366                                   uint32_t dcrn, uint32_t *data)
   1367 {
   1368     if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
   1369         fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
   1370     }
   1371 
   1372     return 0;
   1373 }
   1374 
   1375 static int kvmppc_handle_dcr_write(CPUPPCState *env,
   1376                                    uint32_t dcrn, uint32_t data)
   1377 {
   1378     if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
   1379         fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
   1380     }
   1381 
   1382     return 0;
   1383 }
   1384 
   1385 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
   1386 {
   1387     /* Mixed endian case is not handled */
   1388     uint32_t sc = debug_inst_opcode;
   1389 
   1390     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
   1391                             sizeof(sc), 0) ||
   1392         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
   1393         return -EINVAL;
   1394     }
   1395 
   1396     return 0;
   1397 }
   1398 
   1399 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
   1400 {
   1401     uint32_t sc;
   1402 
   1403     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
   1404         sc != debug_inst_opcode ||
   1405         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
   1406                             sizeof(sc), 1)) {
   1407         return -EINVAL;
   1408     }
   1409 
   1410     return 0;
   1411 }
   1412 
   1413 static int find_hw_breakpoint(target_ulong addr, int type)
   1414 {
   1415     int n;
   1416 
   1417     assert((nb_hw_breakpoint + nb_hw_watchpoint)
   1418            <= ARRAY_SIZE(hw_debug_points));
   1419 
   1420     for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
   1421         if (hw_debug_points[n].addr == addr &&
   1422              hw_debug_points[n].type == type) {
   1423             return n;
   1424         }
   1425     }
   1426 
   1427     return -1;
   1428 }
   1429 
   1430 static int find_hw_watchpoint(target_ulong addr, int *flag)
   1431 {
   1432     int n;
   1433 
   1434     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
   1435     if (n >= 0) {
   1436         *flag = BP_MEM_ACCESS;
   1437         return n;
   1438     }
   1439 
   1440     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
   1441     if (n >= 0) {
   1442         *flag = BP_MEM_WRITE;
   1443         return n;
   1444     }
   1445 
   1446     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
   1447     if (n >= 0) {
   1448         *flag = BP_MEM_READ;
   1449         return n;
   1450     }
   1451 
   1452     return -1;
   1453 }
   1454 
   1455 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
   1456                                   target_ulong len, int type)
   1457 {
   1458     if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
   1459         return -ENOBUFS;
   1460     }
   1461 
   1462     hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
   1463     hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
   1464 
   1465     switch (type) {
   1466     case GDB_BREAKPOINT_HW:
   1467         if (nb_hw_breakpoint >= max_hw_breakpoint) {
   1468             return -ENOBUFS;
   1469         }
   1470 
   1471         if (find_hw_breakpoint(addr, type) >= 0) {
   1472             return -EEXIST;
   1473         }
   1474 
   1475         nb_hw_breakpoint++;
   1476         break;
   1477 
   1478     case GDB_WATCHPOINT_WRITE:
   1479     case GDB_WATCHPOINT_READ:
   1480     case GDB_WATCHPOINT_ACCESS:
   1481         if (nb_hw_watchpoint >= max_hw_watchpoint) {
   1482             return -ENOBUFS;
   1483         }
   1484 
   1485         if (find_hw_breakpoint(addr, type) >= 0) {
   1486             return -EEXIST;
   1487         }
   1488 
   1489         nb_hw_watchpoint++;
   1490         break;
   1491 
   1492     default:
   1493         return -ENOSYS;
   1494     }
   1495 
   1496     return 0;
   1497 }
   1498 
   1499 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
   1500                                   target_ulong len, int type)
   1501 {
   1502     int n;
   1503 
   1504     n = find_hw_breakpoint(addr, type);
   1505     if (n < 0) {
   1506         return -ENOENT;
   1507     }
   1508 
   1509     switch (type) {
   1510     case GDB_BREAKPOINT_HW:
   1511         nb_hw_breakpoint--;
   1512         break;
   1513 
   1514     case GDB_WATCHPOINT_WRITE:
   1515     case GDB_WATCHPOINT_READ:
   1516     case GDB_WATCHPOINT_ACCESS:
   1517         nb_hw_watchpoint--;
   1518         break;
   1519 
   1520     default:
   1521         return -ENOSYS;
   1522     }
   1523     hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
   1524 
   1525     return 0;
   1526 }
   1527 
   1528 void kvm_arch_remove_all_hw_breakpoints(void)
   1529 {
   1530     nb_hw_breakpoint = nb_hw_watchpoint = 0;
   1531 }
   1532 
   1533 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
   1534 {
   1535     int n;
   1536 
   1537     /* Software Breakpoint updates */
   1538     if (kvm_sw_breakpoints_active(cs)) {
   1539         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
   1540     }
   1541 
   1542     assert((nb_hw_breakpoint + nb_hw_watchpoint)
   1543            <= ARRAY_SIZE(hw_debug_points));
   1544     assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
   1545 
   1546     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
   1547         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
   1548         memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
   1549         for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
   1550             switch (hw_debug_points[n].type) {
   1551             case GDB_BREAKPOINT_HW:
   1552                 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
   1553                 break;
   1554             case GDB_WATCHPOINT_WRITE:
   1555                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
   1556                 break;
   1557             case GDB_WATCHPOINT_READ:
   1558                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
   1559                 break;
   1560             case GDB_WATCHPOINT_ACCESS:
   1561                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
   1562                                         KVMPPC_DEBUG_WATCH_READ;
   1563                 break;
   1564             default:
   1565                 cpu_abort(cs, "Unsupported breakpoint type\n");
   1566             }
   1567             dbg->arch.bp[n].addr = hw_debug_points[n].addr;
   1568         }
   1569     }
   1570 }
   1571 
   1572 static int kvm_handle_hw_breakpoint(CPUState *cs,
   1573                                     struct kvm_debug_exit_arch *arch_info)
   1574 {
   1575     int handle = DEBUG_RETURN_GUEST;
   1576     int n;
   1577     int flag = 0;
   1578 
   1579     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
   1580         if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
   1581             n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
   1582             if (n >= 0) {
   1583                 handle = DEBUG_RETURN_GDB;
   1584             }
   1585         } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
   1586                                         KVMPPC_DEBUG_WATCH_WRITE)) {
   1587             n = find_hw_watchpoint(arch_info->address,  &flag);
   1588             if (n >= 0) {
   1589                 handle = DEBUG_RETURN_GDB;
   1590                 cs->watchpoint_hit = &hw_watchpoint;
   1591                 hw_watchpoint.vaddr = hw_debug_points[n].addr;
   1592                 hw_watchpoint.flags = flag;
   1593             }
   1594         }
   1595     }
   1596     return handle;
   1597 }
   1598 
   1599 static int kvm_handle_singlestep(void)
   1600 {
   1601     return DEBUG_RETURN_GDB;
   1602 }
   1603 
   1604 static int kvm_handle_sw_breakpoint(void)
   1605 {
   1606     return DEBUG_RETURN_GDB;
   1607 }
   1608 
   1609 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
   1610 {
   1611     CPUState *cs = CPU(cpu);
   1612     CPUPPCState *env = &cpu->env;
   1613     struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
   1614 
   1615     if (cs->singlestep_enabled) {
   1616         return kvm_handle_singlestep();
   1617     }
   1618 
   1619     if (arch_info->status) {
   1620         return kvm_handle_hw_breakpoint(cs, arch_info);
   1621     }
   1622 
   1623     if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
   1624         return kvm_handle_sw_breakpoint();
   1625     }
   1626 
   1627     /*
   1628      * QEMU is not able to handle debug exception, so inject
   1629      * program exception to guest;
   1630      * Yes program exception NOT debug exception !!
   1631      * When QEMU is using debug resources then debug exception must
   1632      * be always set. To achieve this we set MSR_DE and also set
   1633      * MSRP_DEP so guest cannot change MSR_DE.
   1634      * When emulating debug resource for guest we want guest
   1635      * to control MSR_DE (enable/disable debug interrupt on need).
   1636      * Supporting both configurations are NOT possible.
   1637      * So the result is that we cannot share debug resources
   1638      * between QEMU and Guest on BOOKE architecture.
   1639      * In the current design QEMU gets the priority over guest,
   1640      * this means that if QEMU is using debug resources then guest
   1641      * cannot use them;
   1642      * For software breakpoint QEMU uses a privileged instruction;
   1643      * So there cannot be any reason that we are here for guest
   1644      * set debug exception, only possibility is guest executed a
   1645      * privileged / illegal instruction and that's why we are
   1646      * injecting a program interrupt.
   1647      */
   1648     cpu_synchronize_state(cs);
   1649     /*
   1650      * env->nip is PC, so increment this by 4 to use
   1651      * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
   1652      */
   1653     env->nip += 4;
   1654     cs->exception_index = POWERPC_EXCP_PROGRAM;
   1655     env->error_code = POWERPC_EXCP_INVAL;
   1656     ppc_cpu_do_interrupt(cs);
   1657 
   1658     return DEBUG_RETURN_GUEST;
   1659 }
   1660 
   1661 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
   1662 {
   1663     PowerPCCPU *cpu = POWERPC_CPU(cs);
   1664     CPUPPCState *env = &cpu->env;
   1665     int ret;
   1666 
   1667     qemu_mutex_lock_iothread();
   1668 
   1669     switch (run->exit_reason) {
   1670     case KVM_EXIT_DCR:
   1671         if (run->dcr.is_write) {
   1672             trace_kvm_handle_dcr_write();
   1673             ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
   1674         } else {
   1675             trace_kvm_handle_dcr_read();
   1676             ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
   1677         }
   1678         break;
   1679     case KVM_EXIT_HLT:
   1680         trace_kvm_handle_halt();
   1681         ret = kvmppc_handle_halt(cpu);
   1682         break;
   1683 #if defined(TARGET_PPC64)
   1684     case KVM_EXIT_PAPR_HCALL:
   1685         trace_kvm_handle_papr_hcall(run->papr_hcall.nr);
   1686         run->papr_hcall.ret = spapr_hypercall(cpu,
   1687                                               run->papr_hcall.nr,
   1688                                               run->papr_hcall.args);
   1689         ret = 0;
   1690         break;
   1691 #endif
   1692     case KVM_EXIT_EPR:
   1693         trace_kvm_handle_epr();
   1694         run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
   1695         ret = 0;
   1696         break;
   1697     case KVM_EXIT_WATCHDOG:
   1698         trace_kvm_handle_watchdog_expiry();
   1699         watchdog_perform_action();
   1700         ret = 0;
   1701         break;
   1702 
   1703     case KVM_EXIT_DEBUG:
   1704         trace_kvm_handle_debug_exception();
   1705         if (kvm_handle_debug(cpu, run)) {
   1706             ret = EXCP_DEBUG;
   1707             break;
   1708         }
   1709         /* re-enter, this exception was guest-internal */
   1710         ret = 0;
   1711         break;
   1712 
   1713 #if defined(TARGET_PPC64)
   1714     case KVM_EXIT_NMI:
   1715         trace_kvm_handle_nmi_exception();
   1716         ret = kvm_handle_nmi(cpu, run);
   1717         break;
   1718 #endif
   1719 
   1720     default:
   1721         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
   1722         ret = -1;
   1723         break;
   1724     }
   1725 
   1726     qemu_mutex_unlock_iothread();
   1727     return ret;
   1728 }
   1729 
   1730 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
   1731 {
   1732     CPUState *cs = CPU(cpu);
   1733     uint32_t bits = tsr_bits;
   1734     struct kvm_one_reg reg = {
   1735         .id = KVM_REG_PPC_OR_TSR,
   1736         .addr = (uintptr_t) &bits,
   1737     };
   1738 
   1739     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
   1740 }
   1741 
   1742 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
   1743 {
   1744 
   1745     CPUState *cs = CPU(cpu);
   1746     uint32_t bits = tsr_bits;
   1747     struct kvm_one_reg reg = {
   1748         .id = KVM_REG_PPC_CLEAR_TSR,
   1749         .addr = (uintptr_t) &bits,
   1750     };
   1751 
   1752     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
   1753 }
   1754 
   1755 int kvmppc_set_tcr(PowerPCCPU *cpu)
   1756 {
   1757     CPUState *cs = CPU(cpu);
   1758     CPUPPCState *env = &cpu->env;
   1759     uint32_t tcr = env->spr[SPR_BOOKE_TCR];
   1760 
   1761     struct kvm_one_reg reg = {
   1762         .id = KVM_REG_PPC_TCR,
   1763         .addr = (uintptr_t) &tcr,
   1764     };
   1765 
   1766     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
   1767 }
   1768 
   1769 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
   1770 {
   1771     CPUState *cs = CPU(cpu);
   1772     int ret;
   1773 
   1774     if (!kvm_enabled()) {
   1775         return -1;
   1776     }
   1777 
   1778     if (!cap_ppc_watchdog) {
   1779         printf("warning: KVM does not support watchdog");
   1780         return -1;
   1781     }
   1782 
   1783     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
   1784     if (ret < 0) {
   1785         fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
   1786                 __func__, strerror(-ret));
   1787         return ret;
   1788     }
   1789 
   1790     return ret;
   1791 }
   1792 
   1793 static int read_cpuinfo(const char *field, char *value, int len)
   1794 {
   1795     FILE *f;
   1796     int ret = -1;
   1797     int field_len = strlen(field);
   1798     char line[512];
   1799 
   1800     f = fopen("/proc/cpuinfo", "r");
   1801     if (!f) {
   1802         return -1;
   1803     }
   1804 
   1805     do {
   1806         if (!fgets(line, sizeof(line), f)) {
   1807             break;
   1808         }
   1809         if (!strncmp(line, field, field_len)) {
   1810             pstrcpy(value, len, line);
   1811             ret = 0;
   1812             break;
   1813         }
   1814     } while (*line);
   1815 
   1816     fclose(f);
   1817 
   1818     return ret;
   1819 }
   1820 
   1821 static uint32_t kvmppc_get_tbfreq_procfs(void)
   1822 {
   1823     char line[512];
   1824     char *ns;
   1825     uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND;
   1826     uint32_t tbfreq_procfs;
   1827 
   1828     if (read_cpuinfo("timebase", line, sizeof(line))) {
   1829         return tbfreq_fallback;
   1830     }
   1831 
   1832     ns = strchr(line, ':');
   1833     if (!ns) {
   1834         return tbfreq_fallback;
   1835     }
   1836 
   1837     tbfreq_procfs = atoi(++ns);
   1838 
   1839     /* 0 is certainly not acceptable by the guest, return fallback value */
   1840     return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback;
   1841 }
   1842 
   1843 uint32_t kvmppc_get_tbfreq(void)
   1844 {
   1845     static uint32_t cached_tbfreq;
   1846 
   1847     if (!cached_tbfreq) {
   1848         cached_tbfreq = kvmppc_get_tbfreq_procfs();
   1849     }
   1850 
   1851     return cached_tbfreq;
   1852 }
   1853 
   1854 bool kvmppc_get_host_serial(char **value)
   1855 {
   1856     return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
   1857                                NULL);
   1858 }
   1859 
   1860 bool kvmppc_get_host_model(char **value)
   1861 {
   1862     return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
   1863 }
   1864 
   1865 /* Try to find a device tree node for a CPU with clock-frequency property */
   1866 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
   1867 {
   1868     struct dirent *dirp;
   1869     DIR *dp;
   1870 
   1871     dp = opendir(PROC_DEVTREE_CPU);
   1872     if (!dp) {
   1873         printf("Can't open directory " PROC_DEVTREE_CPU "\n");
   1874         return -1;
   1875     }
   1876 
   1877     buf[0] = '\0';
   1878     while ((dirp = readdir(dp)) != NULL) {
   1879         FILE *f;
   1880 
   1881         /* Don't accidentally read from the current and parent directories */
   1882         if (strcmp(dirp->d_name, ".") == 0 || strcmp(dirp->d_name, "..") == 0) {
   1883             continue;
   1884         }
   1885 
   1886         snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
   1887                  dirp->d_name);
   1888         f = fopen(buf, "r");
   1889         if (f) {
   1890             snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
   1891             fclose(f);
   1892             break;
   1893         }
   1894         buf[0] = '\0';
   1895     }
   1896     closedir(dp);
   1897     if (buf[0] == '\0') {
   1898         printf("Unknown host!\n");
   1899         return -1;
   1900     }
   1901 
   1902     return 0;
   1903 }
   1904 
   1905 static uint64_t kvmppc_read_int_dt(const char *filename)
   1906 {
   1907     union {
   1908         uint32_t v32;
   1909         uint64_t v64;
   1910     } u;
   1911     FILE *f;
   1912     int len;
   1913 
   1914     f = fopen(filename, "rb");
   1915     if (!f) {
   1916         return -1;
   1917     }
   1918 
   1919     len = fread(&u, 1, sizeof(u), f);
   1920     fclose(f);
   1921     switch (len) {
   1922     case 4:
   1923         /* property is a 32-bit quantity */
   1924         return be32_to_cpu(u.v32);
   1925     case 8:
   1926         return be64_to_cpu(u.v64);
   1927     }
   1928 
   1929     return 0;
   1930 }
   1931 
   1932 /*
   1933  * Read a CPU node property from the host device tree that's a single
   1934  * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
   1935  * (can't find or open the property, or doesn't understand the format)
   1936  */
   1937 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
   1938 {
   1939     char buf[PATH_MAX], *tmp;
   1940     uint64_t val;
   1941 
   1942     if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
   1943         return -1;
   1944     }
   1945 
   1946     tmp = g_strdup_printf("%s/%s", buf, propname);
   1947     val = kvmppc_read_int_dt(tmp);
   1948     g_free(tmp);
   1949 
   1950     return val;
   1951 }
   1952 
   1953 uint64_t kvmppc_get_clockfreq(void)
   1954 {
   1955     return kvmppc_read_int_cpu_dt("clock-frequency");
   1956 }
   1957 
   1958 static int kvmppc_get_dec_bits(void)
   1959 {
   1960     int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
   1961 
   1962     if (nr_bits > 0) {
   1963         return nr_bits;
   1964     }
   1965     return 0;
   1966 }
   1967 
   1968 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
   1969 {
   1970     CPUState *cs = env_cpu(env);
   1971 
   1972     if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
   1973         !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
   1974         return 0;
   1975     }
   1976 
   1977     return 1;
   1978 }
   1979 
   1980 int kvmppc_get_hasidle(CPUPPCState *env)
   1981 {
   1982     struct kvm_ppc_pvinfo pvinfo;
   1983 
   1984     if (!kvmppc_get_pvinfo(env, &pvinfo) &&
   1985         (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
   1986         return 1;
   1987     }
   1988 
   1989     return 0;
   1990 }
   1991 
   1992 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
   1993 {
   1994     uint32_t *hc = (uint32_t *)buf;
   1995     struct kvm_ppc_pvinfo pvinfo;
   1996 
   1997     if (!kvmppc_get_pvinfo(env, &pvinfo)) {
   1998         memcpy(buf, pvinfo.hcall, buf_len);
   1999         return 0;
   2000     }
   2001 
   2002     /*
   2003      * Fallback to always fail hypercalls regardless of endianness:
   2004      *
   2005      *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
   2006      *     li r3, -1
   2007      *     b .+8       (becomes nop in wrong endian)
   2008      *     bswap32(li r3, -1)
   2009      */
   2010 
   2011     hc[0] = cpu_to_be32(0x08000048);
   2012     hc[1] = cpu_to_be32(0x3860ffff);
   2013     hc[2] = cpu_to_be32(0x48000008);
   2014     hc[3] = cpu_to_be32(bswap32(0x3860ffff));
   2015 
   2016     return 1;
   2017 }
   2018 
   2019 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
   2020 {
   2021     return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
   2022 }
   2023 
   2024 void kvmppc_enable_logical_ci_hcalls(void)
   2025 {
   2026     /*
   2027      * FIXME: it would be nice if we could detect the cases where
   2028      * we're using a device which requires the in kernel
   2029      * implementation of these hcalls, but the kernel lacks them and
   2030      * produce a warning.
   2031      */
   2032     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
   2033     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
   2034 }
   2035 
   2036 void kvmppc_enable_set_mode_hcall(void)
   2037 {
   2038     kvmppc_enable_hcall(kvm_state, H_SET_MODE);
   2039 }
   2040 
   2041 void kvmppc_enable_clear_ref_mod_hcalls(void)
   2042 {
   2043     kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
   2044     kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
   2045 }
   2046 
   2047 void kvmppc_enable_h_page_init(void)
   2048 {
   2049     kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
   2050 }
   2051 
   2052 void kvmppc_enable_h_rpt_invalidate(void)
   2053 {
   2054     kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE);
   2055 }
   2056 
   2057 void kvmppc_set_papr(PowerPCCPU *cpu)
   2058 {
   2059     CPUState *cs = CPU(cpu);
   2060     int ret;
   2061 
   2062     if (!kvm_enabled()) {
   2063         return;
   2064     }
   2065 
   2066     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
   2067     if (ret) {
   2068         error_report("This vCPU type or KVM version does not support PAPR");
   2069         exit(1);
   2070     }
   2071 
   2072     /*
   2073      * Update the capability flag so we sync the right information
   2074      * with kvm
   2075      */
   2076     cap_papr = 1;
   2077 }
   2078 
   2079 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
   2080 {
   2081     return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
   2082 }
   2083 
   2084 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
   2085 {
   2086     CPUState *cs = CPU(cpu);
   2087     int ret;
   2088 
   2089     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
   2090     if (ret && mpic_proxy) {
   2091         error_report("This KVM version does not support EPR");
   2092         exit(1);
   2093     }
   2094 }
   2095 
   2096 bool kvmppc_get_fwnmi(void)
   2097 {
   2098     return cap_fwnmi;
   2099 }
   2100 
   2101 int kvmppc_set_fwnmi(PowerPCCPU *cpu)
   2102 {
   2103     CPUState *cs = CPU(cpu);
   2104 
   2105     return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0);
   2106 }
   2107 
   2108 int kvmppc_smt_threads(void)
   2109 {
   2110     return cap_ppc_smt ? cap_ppc_smt : 1;
   2111 }
   2112 
   2113 int kvmppc_set_smt_threads(int smt)
   2114 {
   2115     int ret;
   2116 
   2117     ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
   2118     if (!ret) {
   2119         cap_ppc_smt = smt;
   2120     }
   2121     return ret;
   2122 }
   2123 
   2124 void kvmppc_error_append_smt_possible_hint(Error *const *errp)
   2125 {
   2126     int i;
   2127     GString *g;
   2128     char *s;
   2129 
   2130     assert(kvm_enabled());
   2131     if (cap_ppc_smt_possible) {
   2132         g = g_string_new("Available VSMT modes:");
   2133         for (i = 63; i >= 0; i--) {
   2134             if ((1UL << i) & cap_ppc_smt_possible) {
   2135                 g_string_append_printf(g, " %lu", (1UL << i));
   2136             }
   2137         }
   2138         s = g_string_free(g, false);
   2139         error_append_hint(errp, "%s.\n", s);
   2140         g_free(s);
   2141     } else {
   2142         error_append_hint(errp,
   2143                           "This KVM seems to be too old to support VSMT.\n");
   2144     }
   2145 }
   2146 
   2147 
   2148 #ifdef TARGET_PPC64
   2149 uint64_t kvmppc_vrma_limit(unsigned int hash_shift)
   2150 {
   2151     struct kvm_ppc_smmu_info info;
   2152     long rampagesize, best_page_shift;
   2153     int i;
   2154 
   2155     /*
   2156      * Find the largest hardware supported page size that's less than
   2157      * or equal to the (logical) backing page size of guest RAM
   2158      */
   2159     kvm_get_smmu_info(&info, &error_fatal);
   2160     rampagesize = qemu_minrampagesize();
   2161     best_page_shift = 0;
   2162 
   2163     for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
   2164         struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
   2165 
   2166         if (!sps->page_shift) {
   2167             continue;
   2168         }
   2169 
   2170         if ((sps->page_shift > best_page_shift)
   2171             && ((1UL << sps->page_shift) <= rampagesize)) {
   2172             best_page_shift = sps->page_shift;
   2173         }
   2174     }
   2175 
   2176     return 1ULL << (best_page_shift + hash_shift - 7);
   2177 }
   2178 #endif
   2179 
   2180 bool kvmppc_spapr_use_multitce(void)
   2181 {
   2182     return cap_spapr_multitce;
   2183 }
   2184 
   2185 int kvmppc_spapr_enable_inkernel_multitce(void)
   2186 {
   2187     int ret;
   2188 
   2189     ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
   2190                             H_PUT_TCE_INDIRECT, 1);
   2191     if (!ret) {
   2192         ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
   2193                                 H_STUFF_TCE, 1);
   2194     }
   2195 
   2196     return ret;
   2197 }
   2198 
   2199 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
   2200                               uint64_t bus_offset, uint32_t nb_table,
   2201                               int *pfd, bool need_vfio)
   2202 {
   2203     long len;
   2204     int fd;
   2205     void *table;
   2206 
   2207     /*
   2208      * Must set fd to -1 so we don't try to munmap when called for
   2209      * destroying the table, which the upper layers -will- do
   2210      */
   2211     *pfd = -1;
   2212     if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
   2213         return NULL;
   2214     }
   2215 
   2216     if (cap_spapr_tce_64) {
   2217         struct kvm_create_spapr_tce_64 args = {
   2218             .liobn = liobn,
   2219             .page_shift = page_shift,
   2220             .offset = bus_offset >> page_shift,
   2221             .size = nb_table,
   2222             .flags = 0
   2223         };
   2224         fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
   2225         if (fd < 0) {
   2226             fprintf(stderr,
   2227                     "KVM: Failed to create TCE64 table for liobn 0x%x\n",
   2228                     liobn);
   2229             return NULL;
   2230         }
   2231     } else if (cap_spapr_tce) {
   2232         uint64_t window_size = (uint64_t) nb_table << page_shift;
   2233         struct kvm_create_spapr_tce args = {
   2234             .liobn = liobn,
   2235             .window_size = window_size,
   2236         };
   2237         if ((window_size != args.window_size) || bus_offset) {
   2238             return NULL;
   2239         }
   2240         fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
   2241         if (fd < 0) {
   2242             fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
   2243                     liobn);
   2244             return NULL;
   2245         }
   2246     } else {
   2247         return NULL;
   2248     }
   2249 
   2250     len = nb_table * sizeof(uint64_t);
   2251     /* FIXME: round this up to page size */
   2252 
   2253     table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
   2254     if (table == MAP_FAILED) {
   2255         fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
   2256                 liobn);
   2257         close(fd);
   2258         return NULL;
   2259     }
   2260 
   2261     *pfd = fd;
   2262     return table;
   2263 }
   2264 
   2265 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
   2266 {
   2267     long len;
   2268 
   2269     if (fd < 0) {
   2270         return -1;
   2271     }
   2272 
   2273     len = nb_table * sizeof(uint64_t);
   2274     if ((munmap(table, len) < 0) ||
   2275         (close(fd) < 0)) {
   2276         fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
   2277                 strerror(errno));
   2278         /* Leak the table */
   2279     }
   2280 
   2281     return 0;
   2282 }
   2283 
   2284 int kvmppc_reset_htab(int shift_hint)
   2285 {
   2286     uint32_t shift = shift_hint;
   2287 
   2288     if (!kvm_enabled()) {
   2289         /* Full emulation, tell caller to allocate htab itself */
   2290         return 0;
   2291     }
   2292     if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
   2293         int ret;
   2294         ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
   2295         if (ret == -ENOTTY) {
   2296             /*
   2297              * At least some versions of PR KVM advertise the
   2298              * capability, but don't implement the ioctl().  Oops.
   2299              * Return 0 so that we allocate the htab in qemu, as is
   2300              * correct for PR.
   2301              */
   2302             return 0;
   2303         } else if (ret < 0) {
   2304             return ret;
   2305         }
   2306         return shift;
   2307     }
   2308 
   2309     /*
   2310      * We have a kernel that predates the htab reset calls.  For PR
   2311      * KVM, we need to allocate the htab ourselves, for an HV KVM of
   2312      * this era, it has allocated a 16MB fixed size hash table
   2313      * already.
   2314      */
   2315     if (kvmppc_is_pr(kvm_state)) {
   2316         /* PR - tell caller to allocate htab */
   2317         return 0;
   2318     } else {
   2319         /* HV - assume 16MB kernel allocated htab */
   2320         return 24;
   2321     }
   2322 }
   2323 
   2324 static inline uint32_t mfpvr(void)
   2325 {
   2326     uint32_t pvr;
   2327 
   2328     asm ("mfpvr %0"
   2329          : "=r"(pvr));
   2330     return pvr;
   2331 }
   2332 
   2333 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
   2334 {
   2335     if (on) {
   2336         *word |= flags;
   2337     } else {
   2338         *word &= ~flags;
   2339     }
   2340 }
   2341 
   2342 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
   2343 {
   2344     PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
   2345     uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
   2346     uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
   2347 
   2348     /* Now fix up the class with information we can query from the host */
   2349     pcc->pvr = mfpvr();
   2350 
   2351     alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
   2352                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
   2353     alter_insns(&pcc->insns_flags2, PPC2_VSX,
   2354                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
   2355     alter_insns(&pcc->insns_flags2, PPC2_DFP,
   2356                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
   2357 
   2358     if (dcache_size != -1) {
   2359         pcc->l1_dcache_size = dcache_size;
   2360     }
   2361 
   2362     if (icache_size != -1) {
   2363         pcc->l1_icache_size = icache_size;
   2364     }
   2365 
   2366 #if defined(TARGET_PPC64)
   2367     pcc->radix_page_info = kvm_get_radix_page_info();
   2368 
   2369     if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
   2370         /*
   2371          * POWER9 DD1 has some bugs which make it not really ISA 3.00
   2372          * compliant.  More importantly, advertising ISA 3.00
   2373          * architected mode may prevent guests from activating
   2374          * necessary DD1 workarounds.
   2375          */
   2376         pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
   2377                                 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
   2378     }
   2379 #endif /* defined(TARGET_PPC64) */
   2380 }
   2381 
   2382 bool kvmppc_has_cap_epr(void)
   2383 {
   2384     return cap_epr;
   2385 }
   2386 
   2387 bool kvmppc_has_cap_fixup_hcalls(void)
   2388 {
   2389     return cap_fixup_hcalls;
   2390 }
   2391 
   2392 bool kvmppc_has_cap_htm(void)
   2393 {
   2394     return cap_htm;
   2395 }
   2396 
   2397 bool kvmppc_has_cap_mmu_radix(void)
   2398 {
   2399     return cap_mmu_radix;
   2400 }
   2401 
   2402 bool kvmppc_has_cap_mmu_hash_v3(void)
   2403 {
   2404     return cap_mmu_hash_v3;
   2405 }
   2406 
   2407 static bool kvmppc_power8_host(void)
   2408 {
   2409     bool ret = false;
   2410 #ifdef TARGET_PPC64
   2411     {
   2412         uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
   2413         ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
   2414               (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
   2415               (base_pvr == CPU_POWERPC_POWER8_BASE);
   2416     }
   2417 #endif /* TARGET_PPC64 */
   2418     return ret;
   2419 }
   2420 
   2421 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
   2422 {
   2423     bool l1d_thread_priv_req = !kvmppc_power8_host();
   2424 
   2425     if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
   2426         return 2;
   2427     } else if ((!l1d_thread_priv_req ||
   2428                 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
   2429                (c.character & c.character_mask
   2430                 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
   2431         return 1;
   2432     }
   2433 
   2434     return 0;
   2435 }
   2436 
   2437 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
   2438 {
   2439     if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
   2440         return 2;
   2441     } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
   2442         return 1;
   2443     }
   2444 
   2445     return 0;
   2446 }
   2447 
   2448 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
   2449 {
   2450     if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
   2451         (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
   2452         (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
   2453         return SPAPR_CAP_FIXED_NA;
   2454     } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
   2455         return SPAPR_CAP_WORKAROUND;
   2456     } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
   2457         return  SPAPR_CAP_FIXED_CCD;
   2458     } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
   2459         return SPAPR_CAP_FIXED_IBS;
   2460     }
   2461 
   2462     return 0;
   2463 }
   2464 
   2465 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
   2466 {
   2467     if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
   2468         return 1;
   2469     }
   2470     return 0;
   2471 }
   2472 
   2473 bool kvmppc_has_cap_xive(void)
   2474 {
   2475     return cap_xive;
   2476 }
   2477 
   2478 static void kvmppc_get_cpu_characteristics(KVMState *s)
   2479 {
   2480     struct kvm_ppc_cpu_char c;
   2481     int ret;
   2482 
   2483     /* Assume broken */
   2484     cap_ppc_safe_cache = 0;
   2485     cap_ppc_safe_bounds_check = 0;
   2486     cap_ppc_safe_indirect_branch = 0;
   2487 
   2488     ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
   2489     if (!ret) {
   2490         return;
   2491     }
   2492     ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
   2493     if (ret < 0) {
   2494         return;
   2495     }
   2496 
   2497     cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
   2498     cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
   2499     cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
   2500     cap_ppc_count_cache_flush_assist =
   2501         parse_cap_ppc_count_cache_flush_assist(c);
   2502 }
   2503 
   2504 int kvmppc_get_cap_safe_cache(void)
   2505 {
   2506     return cap_ppc_safe_cache;
   2507 }
   2508 
   2509 int kvmppc_get_cap_safe_bounds_check(void)
   2510 {
   2511     return cap_ppc_safe_bounds_check;
   2512 }
   2513 
   2514 int kvmppc_get_cap_safe_indirect_branch(void)
   2515 {
   2516     return cap_ppc_safe_indirect_branch;
   2517 }
   2518 
   2519 int kvmppc_get_cap_count_cache_flush_assist(void)
   2520 {
   2521     return cap_ppc_count_cache_flush_assist;
   2522 }
   2523 
   2524 bool kvmppc_has_cap_nested_kvm_hv(void)
   2525 {
   2526     return !!cap_ppc_nested_kvm_hv;
   2527 }
   2528 
   2529 int kvmppc_set_cap_nested_kvm_hv(int enable)
   2530 {
   2531     return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
   2532 }
   2533 
   2534 bool kvmppc_has_cap_spapr_vfio(void)
   2535 {
   2536     return cap_spapr_vfio;
   2537 }
   2538 
   2539 int kvmppc_get_cap_large_decr(void)
   2540 {
   2541     return cap_large_decr;
   2542 }
   2543 
   2544 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
   2545 {
   2546     CPUState *cs = CPU(cpu);
   2547     uint64_t lpcr = 0;
   2548 
   2549     kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
   2550     /* Do we need to modify the LPCR? */
   2551     if (!!(lpcr & LPCR_LD) != !!enable) {
   2552         if (enable) {
   2553             lpcr |= LPCR_LD;
   2554         } else {
   2555             lpcr &= ~LPCR_LD;
   2556         }
   2557         kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
   2558         kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
   2559 
   2560         if (!!(lpcr & LPCR_LD) != !!enable) {
   2561             return -1;
   2562         }
   2563     }
   2564 
   2565     return 0;
   2566 }
   2567 
   2568 int kvmppc_has_cap_rpt_invalidate(void)
   2569 {
   2570     return cap_rpt_invalidate;
   2571 }
   2572 
   2573 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
   2574 {
   2575     uint32_t host_pvr = mfpvr();
   2576     PowerPCCPUClass *pvr_pcc;
   2577 
   2578     pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
   2579     if (pvr_pcc == NULL) {
   2580         pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
   2581     }
   2582 
   2583     return pvr_pcc;
   2584 }
   2585 
   2586 static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
   2587 {
   2588     MachineClass *mc = MACHINE_CLASS(oc);
   2589 
   2590     mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
   2591 }
   2592 
   2593 static int kvm_ppc_register_host_cpu_type(void)
   2594 {
   2595     TypeInfo type_info = {
   2596         .name = TYPE_HOST_POWERPC_CPU,
   2597         .class_init = kvmppc_host_cpu_class_init,
   2598     };
   2599     PowerPCCPUClass *pvr_pcc;
   2600     ObjectClass *oc;
   2601     DeviceClass *dc;
   2602     int i;
   2603 
   2604     pvr_pcc = kvm_ppc_get_host_cpu_class();
   2605     if (pvr_pcc == NULL) {
   2606         return -1;
   2607     }
   2608     type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
   2609     type_register(&type_info);
   2610     /* override TCG default cpu type with 'host' cpu model */
   2611     object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
   2612                          false, NULL);
   2613 
   2614     oc = object_class_by_name(type_info.name);
   2615     g_assert(oc);
   2616 
   2617     /*
   2618      * Update generic CPU family class alias (e.g. on a POWER8NVL host,
   2619      * we want "POWER8" to be a "family" alias that points to the current
   2620      * host CPU type, too)
   2621      */
   2622     dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
   2623     for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
   2624         if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
   2625             char *suffix;
   2626 
   2627             ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
   2628             suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
   2629             if (suffix) {
   2630                 *suffix = 0;
   2631             }
   2632             break;
   2633         }
   2634     }
   2635 
   2636     return 0;
   2637 }
   2638 
   2639 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
   2640 {
   2641     struct kvm_rtas_token_args args = {
   2642         .token = token,
   2643     };
   2644 
   2645     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
   2646         return -ENOENT;
   2647     }
   2648 
   2649     strncpy(args.name, function, sizeof(args.name) - 1);
   2650 
   2651     return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
   2652 }
   2653 
   2654 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
   2655 {
   2656     struct kvm_get_htab_fd s = {
   2657         .flags = write ? KVM_GET_HTAB_WRITE : 0,
   2658         .start_index = index,
   2659     };
   2660     int ret;
   2661 
   2662     if (!cap_htab_fd) {
   2663         error_setg(errp, "KVM version doesn't support %s the HPT",
   2664                    write ? "writing" : "reading");
   2665         return -ENOTSUP;
   2666     }
   2667 
   2668     ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
   2669     if (ret < 0) {
   2670         error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
   2671                    write ? "writing" : "reading", write ? "to" : "from",
   2672                    strerror(errno));
   2673         return -errno;
   2674     }
   2675 
   2676     return ret;
   2677 }
   2678 
   2679 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
   2680 {
   2681     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
   2682     uint8_t buf[bufsize];
   2683     ssize_t rc;
   2684 
   2685     do {
   2686         rc = read(fd, buf, bufsize);
   2687         if (rc < 0) {
   2688             fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
   2689                     strerror(errno));
   2690             return rc;
   2691         } else if (rc) {
   2692             uint8_t *buffer = buf;
   2693             ssize_t n = rc;
   2694             while (n) {
   2695                 struct kvm_get_htab_header *head =
   2696                     (struct kvm_get_htab_header *) buffer;
   2697                 size_t chunksize = sizeof(*head) +
   2698                      HASH_PTE_SIZE_64 * head->n_valid;
   2699 
   2700                 qemu_put_be32(f, head->index);
   2701                 qemu_put_be16(f, head->n_valid);
   2702                 qemu_put_be16(f, head->n_invalid);
   2703                 qemu_put_buffer(f, (void *)(head + 1),
   2704                                 HASH_PTE_SIZE_64 * head->n_valid);
   2705 
   2706                 buffer += chunksize;
   2707                 n -= chunksize;
   2708             }
   2709         }
   2710     } while ((rc != 0)
   2711              && ((max_ns < 0) ||
   2712                  ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
   2713 
   2714     return (rc == 0) ? 1 : 0;
   2715 }
   2716 
   2717 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
   2718                            uint16_t n_valid, uint16_t n_invalid, Error **errp)
   2719 {
   2720     struct kvm_get_htab_header *buf;
   2721     size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
   2722     ssize_t rc;
   2723 
   2724     buf = alloca(chunksize);
   2725     buf->index = index;
   2726     buf->n_valid = n_valid;
   2727     buf->n_invalid = n_invalid;
   2728 
   2729     qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
   2730 
   2731     rc = write(fd, buf, chunksize);
   2732     if (rc < 0) {
   2733         error_setg_errno(errp, errno, "Error writing the KVM hash table");
   2734         return -errno;
   2735     }
   2736     if (rc != chunksize) {
   2737         /* We should never get a short write on a single chunk */
   2738         error_setg(errp, "Short write while restoring the KVM hash table");
   2739         return -ENOSPC;
   2740     }
   2741     return 0;
   2742 }
   2743 
   2744 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
   2745 {
   2746     return true;
   2747 }
   2748 
   2749 void kvm_arch_init_irq_routing(KVMState *s)
   2750 {
   2751 }
   2752 
   2753 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
   2754 {
   2755     int fd, rc;
   2756     int i;
   2757 
   2758     fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
   2759 
   2760     i = 0;
   2761     while (i < n) {
   2762         struct kvm_get_htab_header *hdr;
   2763         int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
   2764         char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
   2765 
   2766         rc = read(fd, buf, sizeof(buf));
   2767         if (rc < 0) {
   2768             hw_error("kvmppc_read_hptes: Unable to read HPTEs");
   2769         }
   2770 
   2771         hdr = (struct kvm_get_htab_header *)buf;
   2772         while ((i < n) && ((char *)hdr < (buf + rc))) {
   2773             int invalid = hdr->n_invalid, valid = hdr->n_valid;
   2774 
   2775             if (hdr->index != (ptex + i)) {
   2776                 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
   2777                          " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
   2778             }
   2779 
   2780             if (n - i < valid) {
   2781                 valid = n - i;
   2782             }
   2783             memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
   2784             i += valid;
   2785 
   2786             if ((n - i) < invalid) {
   2787                 invalid = n - i;
   2788             }
   2789             memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
   2790             i += invalid;
   2791 
   2792             hdr = (struct kvm_get_htab_header *)
   2793                 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
   2794         }
   2795     }
   2796 
   2797     close(fd);
   2798 }
   2799 
   2800 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
   2801 {
   2802     int fd, rc;
   2803     struct {
   2804         struct kvm_get_htab_header hdr;
   2805         uint64_t pte0;
   2806         uint64_t pte1;
   2807     } buf;
   2808 
   2809     fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
   2810 
   2811     buf.hdr.n_valid = 1;
   2812     buf.hdr.n_invalid = 0;
   2813     buf.hdr.index = ptex;
   2814     buf.pte0 = cpu_to_be64(pte0);
   2815     buf.pte1 = cpu_to_be64(pte1);
   2816 
   2817     rc = write(fd, &buf, sizeof(buf));
   2818     if (rc != sizeof(buf)) {
   2819         hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
   2820     }
   2821     close(fd);
   2822 }
   2823 
   2824 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
   2825                              uint64_t address, uint32_t data, PCIDevice *dev)
   2826 {
   2827     return 0;
   2828 }
   2829 
   2830 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
   2831                                 int vector, PCIDevice *dev)
   2832 {
   2833     return 0;
   2834 }
   2835 
   2836 int kvm_arch_release_virq_post(int virq)
   2837 {
   2838     return 0;
   2839 }
   2840 
   2841 int kvm_arch_msi_data_to_gsi(uint32_t data)
   2842 {
   2843     return data & 0xffff;
   2844 }
   2845 
   2846 #if defined(TARGET_PPC64)
   2847 int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run)
   2848 {
   2849     uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK;
   2850 
   2851     cpu_synchronize_state(CPU(cpu));
   2852 
   2853     spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV);
   2854 
   2855     return 0;
   2856 }
   2857 #endif
   2858 
   2859 int kvmppc_enable_hwrng(void)
   2860 {
   2861     if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
   2862         return -1;
   2863     }
   2864 
   2865     return kvmppc_enable_hcall(kvm_state, H_RANDOM);
   2866 }
   2867 
   2868 void kvmppc_check_papr_resize_hpt(Error **errp)
   2869 {
   2870     if (!kvm_enabled()) {
   2871         return; /* No KVM, we're good */
   2872     }
   2873 
   2874     if (cap_resize_hpt) {
   2875         return; /* Kernel has explicit support, we're good */
   2876     }
   2877 
   2878     /* Otherwise fallback on looking for PR KVM */
   2879     if (kvmppc_is_pr(kvm_state)) {
   2880         return;
   2881     }
   2882 
   2883     error_setg(errp,
   2884                "Hash page table resizing not available with this KVM version");
   2885 }
   2886 
   2887 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
   2888 {
   2889     CPUState *cs = CPU(cpu);
   2890     struct kvm_ppc_resize_hpt rhpt = {
   2891         .flags = flags,
   2892         .shift = shift,
   2893     };
   2894 
   2895     if (!cap_resize_hpt) {
   2896         return -ENOSYS;
   2897     }
   2898 
   2899     return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
   2900 }
   2901 
   2902 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
   2903 {
   2904     CPUState *cs = CPU(cpu);
   2905     struct kvm_ppc_resize_hpt rhpt = {
   2906         .flags = flags,
   2907         .shift = shift,
   2908     };
   2909 
   2910     if (!cap_resize_hpt) {
   2911         return -ENOSYS;
   2912     }
   2913 
   2914     return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
   2915 }
   2916 
   2917 /*
   2918  * This is a helper function to detect a post migration scenario
   2919  * in which a guest, running as KVM-HV, freezes in cpu_post_load because
   2920  * the guest kernel can't handle a PVR value other than the actual host
   2921  * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
   2922  *
   2923  * If we don't have cap_ppc_pvr_compat and we're not running in PR
   2924  * (so, we're HV), return true. The workaround itself is done in
   2925  * cpu_post_load.
   2926  *
   2927  * The order here is important: we'll only check for KVM PR as a
   2928  * fallback if the guest kernel can't handle the situation itself.
   2929  * We need to avoid as much as possible querying the running KVM type
   2930  * in QEMU level.
   2931  */
   2932 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
   2933 {
   2934     CPUState *cs = CPU(cpu);
   2935 
   2936     if (!kvm_enabled()) {
   2937         return false;
   2938     }
   2939 
   2940     if (cap_ppc_pvr_compat) {
   2941         return false;
   2942     }
   2943 
   2944     return !kvmppc_is_pr(cs->kvm_state);
   2945 }
   2946 
   2947 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
   2948 {
   2949     CPUState *cs = CPU(cpu);
   2950 
   2951     if (kvm_enabled()) {
   2952         kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
   2953     }
   2954 }
   2955 
   2956 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
   2957 {
   2958     CPUState *cs = CPU(cpu);
   2959 
   2960     if (kvm_enabled()) {
   2961         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
   2962     }
   2963 }
   2964 
   2965 bool kvm_arch_cpu_check_are_resettable(void)
   2966 {
   2967     return true;
   2968 }
   2969 
   2970 void kvm_arch_accel_class_init(ObjectClass *oc)
   2971 {
   2972 }