qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

tlb_helper.c (45645B)


      1 /*
      2  * MIPS TLB (Translation lookaside buffer) helpers.
      3  *
      4  *  Copyright (c) 2004-2005 Jocelyn Mayer
      5  *
      6  * This library is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU Lesser General Public
      8  * License as published by the Free Software Foundation; either
      9  * version 2.1 of the License, or (at your option) any later version.
     10  *
     11  * This library is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14  * Lesser General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU Lesser General Public
     17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18  */
     19 #include "qemu/osdep.h"
     20 #include "qemu/bitops.h"
     21 
     22 #include "cpu.h"
     23 #include "internal.h"
     24 #include "exec/exec-all.h"
     25 #include "exec/cpu_ldst.h"
     26 #include "exec/log.h"
     27 #include "hw/mips/cpudevs.h"
     28 #include "exec/helper-proto.h"
     29 
     30 /* TLB management */
     31 static void r4k_mips_tlb_flush_extra(CPUMIPSState *env, int first)
     32 {
     33     /* Discard entries from env->tlb[first] onwards.  */
     34     while (env->tlb->tlb_in_use > first) {
     35         r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
     36     }
     37 }
     38 
     39 static inline uint64_t get_tlb_pfn_from_entrylo(uint64_t entrylo)
     40 {
     41 #if defined(TARGET_MIPS64)
     42     return extract64(entrylo, 6, 54);
     43 #else
     44     return extract64(entrylo, 6, 24) | /* PFN */
     45            (extract64(entrylo, 32, 32) << 24); /* PFNX */
     46 #endif
     47 }
     48 
     49 static void r4k_fill_tlb(CPUMIPSState *env, int idx)
     50 {
     51     r4k_tlb_t *tlb;
     52     uint64_t mask = env->CP0_PageMask >> (TARGET_PAGE_BITS + 1);
     53 
     54     /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
     55     tlb = &env->tlb->mmu.r4k.tlb[idx];
     56     if (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) {
     57         tlb->EHINV = 1;
     58         return;
     59     }
     60     tlb->EHINV = 0;
     61     tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
     62 #if defined(TARGET_MIPS64)
     63     tlb->VPN &= env->SEGMask;
     64 #endif
     65     tlb->ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
     66     tlb->MMID = env->CP0_MemoryMapID;
     67     tlb->PageMask = env->CP0_PageMask;
     68     tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
     69     tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
     70     tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
     71     tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
     72     tlb->XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) & 1;
     73     tlb->RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) & 1;
     74     tlb->PFN[0] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo0) & ~mask) << 12;
     75     tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
     76     tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
     77     tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
     78     tlb->XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) & 1;
     79     tlb->RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) & 1;
     80     tlb->PFN[1] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo1) & ~mask) << 12;
     81 }
     82 
     83 static void r4k_helper_tlbinv(CPUMIPSState *env)
     84 {
     85     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
     86     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
     87     uint32_t MMID = env->CP0_MemoryMapID;
     88     uint32_t tlb_mmid;
     89     r4k_tlb_t *tlb;
     90     int idx;
     91 
     92     MMID = mi ? MMID : (uint32_t) ASID;
     93     for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
     94         tlb = &env->tlb->mmu.r4k.tlb[idx];
     95         tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
     96         if (!tlb->G && tlb_mmid == MMID) {
     97             tlb->EHINV = 1;
     98         }
     99     }
    100     cpu_mips_tlb_flush(env);
    101 }
    102 
    103 static void r4k_helper_tlbinvf(CPUMIPSState *env)
    104 {
    105     int idx;
    106 
    107     for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
    108         env->tlb->mmu.r4k.tlb[idx].EHINV = 1;
    109     }
    110     cpu_mips_tlb_flush(env);
    111 }
    112 
    113 static void r4k_helper_tlbwi(CPUMIPSState *env)
    114 {
    115     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
    116     target_ulong VPN;
    117     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
    118     uint32_t MMID = env->CP0_MemoryMapID;
    119     uint32_t tlb_mmid;
    120     bool EHINV, G, V0, D0, V1, D1, XI0, XI1, RI0, RI1;
    121     r4k_tlb_t *tlb;
    122     int idx;
    123 
    124     MMID = mi ? MMID : (uint32_t) ASID;
    125 
    126     idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
    127     tlb = &env->tlb->mmu.r4k.tlb[idx];
    128     VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
    129 #if defined(TARGET_MIPS64)
    130     VPN &= env->SEGMask;
    131 #endif
    132     EHINV = (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) != 0;
    133     G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
    134     V0 = (env->CP0_EntryLo0 & 2) != 0;
    135     D0 = (env->CP0_EntryLo0 & 4) != 0;
    136     XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) &1;
    137     RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) &1;
    138     V1 = (env->CP0_EntryLo1 & 2) != 0;
    139     D1 = (env->CP0_EntryLo1 & 4) != 0;
    140     XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) &1;
    141     RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) &1;
    142 
    143     tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
    144     /*
    145      * Discard cached TLB entries, unless tlbwi is just upgrading access
    146      * permissions on the current entry.
    147      */
    148     if (tlb->VPN != VPN || tlb_mmid != MMID || tlb->G != G ||
    149         (!tlb->EHINV && EHINV) ||
    150         (tlb->V0 && !V0) || (tlb->D0 && !D0) ||
    151         (!tlb->XI0 && XI0) || (!tlb->RI0 && RI0) ||
    152         (tlb->V1 && !V1) || (tlb->D1 && !D1) ||
    153         (!tlb->XI1 && XI1) || (!tlb->RI1 && RI1)) {
    154         r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
    155     }
    156 
    157     r4k_invalidate_tlb(env, idx, 0);
    158     r4k_fill_tlb(env, idx);
    159 }
    160 
    161 static void r4k_helper_tlbwr(CPUMIPSState *env)
    162 {
    163     int r = cpu_mips_get_random(env);
    164 
    165     r4k_invalidate_tlb(env, r, 1);
    166     r4k_fill_tlb(env, r);
    167 }
    168 
    169 static void r4k_helper_tlbp(CPUMIPSState *env)
    170 {
    171     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
    172     r4k_tlb_t *tlb;
    173     target_ulong mask;
    174     target_ulong tag;
    175     target_ulong VPN;
    176     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
    177     uint32_t MMID = env->CP0_MemoryMapID;
    178     uint32_t tlb_mmid;
    179     int i;
    180 
    181     MMID = mi ? MMID : (uint32_t) ASID;
    182     for (i = 0; i < env->tlb->nb_tlb; i++) {
    183         tlb = &env->tlb->mmu.r4k.tlb[i];
    184         /* 1k pages are not supported. */
    185         mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
    186         tag = env->CP0_EntryHi & ~mask;
    187         VPN = tlb->VPN & ~mask;
    188 #if defined(TARGET_MIPS64)
    189         tag &= env->SEGMask;
    190 #endif
    191         tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
    192         /* Check ASID/MMID, virtual page number & size */
    193         if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) {
    194             /* TLB match */
    195             env->CP0_Index = i;
    196             break;
    197         }
    198     }
    199     if (i == env->tlb->nb_tlb) {
    200         /* No match.  Discard any shadow entries, if any of them match.  */
    201         for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
    202             tlb = &env->tlb->mmu.r4k.tlb[i];
    203             /* 1k pages are not supported. */
    204             mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
    205             tag = env->CP0_EntryHi & ~mask;
    206             VPN = tlb->VPN & ~mask;
    207 #if defined(TARGET_MIPS64)
    208             tag &= env->SEGMask;
    209 #endif
    210             tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
    211             /* Check ASID/MMID, virtual page number & size */
    212             if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag) {
    213                 r4k_mips_tlb_flush_extra(env, i);
    214                 break;
    215             }
    216         }
    217 
    218         env->CP0_Index |= 0x80000000;
    219     }
    220 }
    221 
    222 static inline uint64_t get_entrylo_pfn_from_tlb(uint64_t tlb_pfn)
    223 {
    224 #if defined(TARGET_MIPS64)
    225     return tlb_pfn << 6;
    226 #else
    227     return (extract64(tlb_pfn, 0, 24) << 6) | /* PFN */
    228            (extract64(tlb_pfn, 24, 32) << 32); /* PFNX */
    229 #endif
    230 }
    231 
    232 static void r4k_helper_tlbr(CPUMIPSState *env)
    233 {
    234     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
    235     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
    236     uint32_t MMID = env->CP0_MemoryMapID;
    237     uint32_t tlb_mmid;
    238     r4k_tlb_t *tlb;
    239     int idx;
    240 
    241     MMID = mi ? MMID : (uint32_t) ASID;
    242     idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
    243     tlb = &env->tlb->mmu.r4k.tlb[idx];
    244 
    245     tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
    246     /* If this will change the current ASID/MMID, flush qemu's TLB.  */
    247     if (MMID != tlb_mmid) {
    248         cpu_mips_tlb_flush(env);
    249     }
    250 
    251     r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
    252 
    253     if (tlb->EHINV) {
    254         env->CP0_EntryHi = 1 << CP0EnHi_EHINV;
    255         env->CP0_PageMask = 0;
    256         env->CP0_EntryLo0 = 0;
    257         env->CP0_EntryLo1 = 0;
    258     } else {
    259         env->CP0_EntryHi = mi ? tlb->VPN : tlb->VPN | tlb->ASID;
    260         env->CP0_MemoryMapID = tlb->MMID;
    261         env->CP0_PageMask = tlb->PageMask;
    262         env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
    263                         ((uint64_t)tlb->RI0 << CP0EnLo_RI) |
    264                         ((uint64_t)tlb->XI0 << CP0EnLo_XI) | (tlb->C0 << 3) |
    265                         get_entrylo_pfn_from_tlb(tlb->PFN[0] >> 12);
    266         env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
    267                         ((uint64_t)tlb->RI1 << CP0EnLo_RI) |
    268                         ((uint64_t)tlb->XI1 << CP0EnLo_XI) | (tlb->C1 << 3) |
    269                         get_entrylo_pfn_from_tlb(tlb->PFN[1] >> 12);
    270     }
    271 }
    272 
    273 void helper_tlbwi(CPUMIPSState *env)
    274 {
    275     env->tlb->helper_tlbwi(env);
    276 }
    277 
    278 void helper_tlbwr(CPUMIPSState *env)
    279 {
    280     env->tlb->helper_tlbwr(env);
    281 }
    282 
    283 void helper_tlbp(CPUMIPSState *env)
    284 {
    285     env->tlb->helper_tlbp(env);
    286 }
    287 
    288 void helper_tlbr(CPUMIPSState *env)
    289 {
    290     env->tlb->helper_tlbr(env);
    291 }
    292 
    293 void helper_tlbinv(CPUMIPSState *env)
    294 {
    295     env->tlb->helper_tlbinv(env);
    296 }
    297 
    298 void helper_tlbinvf(CPUMIPSState *env)
    299 {
    300     env->tlb->helper_tlbinvf(env);
    301 }
    302 
    303 static void global_invalidate_tlb(CPUMIPSState *env,
    304                            uint32_t invMsgVPN2,
    305                            uint8_t invMsgR,
    306                            uint32_t invMsgMMid,
    307                            bool invAll,
    308                            bool invVAMMid,
    309                            bool invMMid,
    310                            bool invVA)
    311 {
    312 
    313     int idx;
    314     r4k_tlb_t *tlb;
    315     bool VAMatch;
    316     bool MMidMatch;
    317 
    318     for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
    319         tlb = &env->tlb->mmu.r4k.tlb[idx];
    320         VAMatch =
    321             (((tlb->VPN & ~tlb->PageMask) == (invMsgVPN2 & ~tlb->PageMask))
    322 #ifdef TARGET_MIPS64
    323             &&
    324             (extract64(env->CP0_EntryHi, 62, 2) == invMsgR)
    325 #endif
    326             );
    327         MMidMatch = tlb->MMID == invMsgMMid;
    328         if ((invAll && (idx > env->CP0_Wired)) ||
    329             (VAMatch && invVAMMid && (tlb->G || MMidMatch)) ||
    330             (VAMatch && invVA) ||
    331             (MMidMatch && !(tlb->G) && invMMid)) {
    332             tlb->EHINV = 1;
    333         }
    334     }
    335     cpu_mips_tlb_flush(env);
    336 }
    337 
    338 void helper_ginvt(CPUMIPSState *env, target_ulong arg, uint32_t type)
    339 {
    340     bool invAll = type == 0;
    341     bool invVA = type == 1;
    342     bool invMMid = type == 2;
    343     bool invVAMMid = type == 3;
    344     uint32_t invMsgVPN2 = arg & (TARGET_PAGE_MASK << 1);
    345     uint8_t invMsgR = 0;
    346     uint32_t invMsgMMid = env->CP0_MemoryMapID;
    347     CPUState *other_cs = first_cpu;
    348 
    349 #ifdef TARGET_MIPS64
    350     invMsgR = extract64(arg, 62, 2);
    351 #endif
    352 
    353     CPU_FOREACH(other_cs) {
    354         MIPSCPU *other_cpu = MIPS_CPU(other_cs);
    355         global_invalidate_tlb(&other_cpu->env, invMsgVPN2, invMsgR, invMsgMMid,
    356                               invAll, invVAMMid, invMMid, invVA);
    357     }
    358 }
    359 
    360 /* no MMU emulation */
    361 static int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
    362                               target_ulong address, MMUAccessType access_type)
    363 {
    364     *physical = address;
    365     *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    366     return TLBRET_MATCH;
    367 }
    368 
    369 /* fixed mapping MMU emulation */
    370 static int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical,
    371                                  int *prot, target_ulong address,
    372                                  MMUAccessType access_type)
    373 {
    374     if (address <= (int32_t)0x7FFFFFFFUL) {
    375         if (!(env->CP0_Status & (1 << CP0St_ERL))) {
    376             *physical = address + 0x40000000UL;
    377         } else {
    378             *physical = address;
    379         }
    380     } else if (address <= (int32_t)0xBFFFFFFFUL) {
    381         *physical = address & 0x1FFFFFFF;
    382     } else {
    383         *physical = address;
    384     }
    385 
    386     *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    387     return TLBRET_MATCH;
    388 }
    389 
    390 /* MIPS32/MIPS64 R4000-style MMU emulation */
    391 static int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
    392                            target_ulong address, MMUAccessType access_type)
    393 {
    394     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
    395     uint32_t MMID = env->CP0_MemoryMapID;
    396     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
    397     uint32_t tlb_mmid;
    398     int i;
    399 
    400     MMID = mi ? MMID : (uint32_t) ASID;
    401 
    402     for (i = 0; i < env->tlb->tlb_in_use; i++) {
    403         r4k_tlb_t *tlb = &env->tlb->mmu.r4k.tlb[i];
    404         /* 1k pages are not supported. */
    405         target_ulong mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
    406         target_ulong tag = address & ~mask;
    407         target_ulong VPN = tlb->VPN & ~mask;
    408 #if defined(TARGET_MIPS64)
    409         tag &= env->SEGMask;
    410 #endif
    411 
    412         /* Check ASID/MMID, virtual page number & size */
    413         tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
    414         if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) {
    415             /* TLB match */
    416             int n = !!(address & mask & ~(mask >> 1));
    417             /* Check access rights */
    418             if (!(n ? tlb->V1 : tlb->V0)) {
    419                 return TLBRET_INVALID;
    420             }
    421             if (access_type == MMU_INST_FETCH && (n ? tlb->XI1 : tlb->XI0)) {
    422                 return TLBRET_XI;
    423             }
    424             if (access_type == MMU_DATA_LOAD && (n ? tlb->RI1 : tlb->RI0)) {
    425                 return TLBRET_RI;
    426             }
    427             if (access_type != MMU_DATA_STORE || (n ? tlb->D1 : tlb->D0)) {
    428                 *physical = tlb->PFN[n] | (address & (mask >> 1));
    429                 *prot = PAGE_READ;
    430                 if (n ? tlb->D1 : tlb->D0) {
    431                     *prot |= PAGE_WRITE;
    432                 }
    433                 if (!(n ? tlb->XI1 : tlb->XI0)) {
    434                     *prot |= PAGE_EXEC;
    435                 }
    436                 return TLBRET_MATCH;
    437             }
    438             return TLBRET_DIRTY;
    439         }
    440     }
    441     return TLBRET_NOMATCH;
    442 }
    443 
    444 static void no_mmu_init(CPUMIPSState *env, const mips_def_t *def)
    445 {
    446     env->tlb->nb_tlb = 1;
    447     env->tlb->map_address = &no_mmu_map_address;
    448 }
    449 
    450 static void fixed_mmu_init(CPUMIPSState *env, const mips_def_t *def)
    451 {
    452     env->tlb->nb_tlb = 1;
    453     env->tlb->map_address = &fixed_mmu_map_address;
    454 }
    455 
    456 static void r4k_mmu_init(CPUMIPSState *env, const mips_def_t *def)
    457 {
    458     env->tlb->nb_tlb = 1 + ((def->CP0_Config1 >> CP0C1_MMU) & 63);
    459     env->tlb->map_address = &r4k_map_address;
    460     env->tlb->helper_tlbwi = r4k_helper_tlbwi;
    461     env->tlb->helper_tlbwr = r4k_helper_tlbwr;
    462     env->tlb->helper_tlbp = r4k_helper_tlbp;
    463     env->tlb->helper_tlbr = r4k_helper_tlbr;
    464     env->tlb->helper_tlbinv = r4k_helper_tlbinv;
    465     env->tlb->helper_tlbinvf = r4k_helper_tlbinvf;
    466 }
    467 
    468 void mmu_init(CPUMIPSState *env, const mips_def_t *def)
    469 {
    470     env->tlb = g_malloc0(sizeof(CPUMIPSTLBContext));
    471 
    472     switch (def->mmu_type) {
    473     case MMU_TYPE_NONE:
    474         no_mmu_init(env, def);
    475         break;
    476     case MMU_TYPE_R4000:
    477         r4k_mmu_init(env, def);
    478         break;
    479     case MMU_TYPE_FMT:
    480         fixed_mmu_init(env, def);
    481         break;
    482     case MMU_TYPE_R3000:
    483     case MMU_TYPE_R6000:
    484     case MMU_TYPE_R8000:
    485     default:
    486         cpu_abort(env_cpu(env), "MMU type not supported\n");
    487     }
    488 }
    489 
    490 void cpu_mips_tlb_flush(CPUMIPSState *env)
    491 {
    492     /* Flush qemu's TLB and discard all shadowed entries.  */
    493     tlb_flush(env_cpu(env));
    494     env->tlb->tlb_in_use = env->tlb->nb_tlb;
    495 }
    496 
    497 static void raise_mmu_exception(CPUMIPSState *env, target_ulong address,
    498                                 MMUAccessType access_type, int tlb_error)
    499 {
    500     CPUState *cs = env_cpu(env);
    501     int exception = 0, error_code = 0;
    502 
    503     if (access_type == MMU_INST_FETCH) {
    504         error_code |= EXCP_INST_NOTAVAIL;
    505     }
    506 
    507     switch (tlb_error) {
    508     default:
    509     case TLBRET_BADADDR:
    510         /* Reference to kernel address from user mode or supervisor mode */
    511         /* Reference to supervisor address from user mode */
    512         if (access_type == MMU_DATA_STORE) {
    513             exception = EXCP_AdES;
    514         } else {
    515             exception = EXCP_AdEL;
    516         }
    517         break;
    518     case TLBRET_NOMATCH:
    519         /* No TLB match for a mapped address */
    520         if (access_type == MMU_DATA_STORE) {
    521             exception = EXCP_TLBS;
    522         } else {
    523             exception = EXCP_TLBL;
    524         }
    525         error_code |= EXCP_TLB_NOMATCH;
    526         break;
    527     case TLBRET_INVALID:
    528         /* TLB match with no valid bit */
    529         if (access_type == MMU_DATA_STORE) {
    530             exception = EXCP_TLBS;
    531         } else {
    532             exception = EXCP_TLBL;
    533         }
    534         break;
    535     case TLBRET_DIRTY:
    536         /* TLB match but 'D' bit is cleared */
    537         exception = EXCP_LTLBL;
    538         break;
    539     case TLBRET_XI:
    540         /* Execute-Inhibit Exception */
    541         if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
    542             exception = EXCP_TLBXI;
    543         } else {
    544             exception = EXCP_TLBL;
    545         }
    546         break;
    547     case TLBRET_RI:
    548         /* Read-Inhibit Exception */
    549         if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
    550             exception = EXCP_TLBRI;
    551         } else {
    552             exception = EXCP_TLBL;
    553         }
    554         break;
    555     }
    556     /* Raise exception */
    557     if (!(env->hflags & MIPS_HFLAG_DM)) {
    558         env->CP0_BadVAddr = address;
    559     }
    560     env->CP0_Context = (env->CP0_Context & ~0x007fffff) |
    561                        ((address >> 9) & 0x007ffff0);
    562     env->CP0_EntryHi = (env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask) |
    563                        (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) |
    564                        (address & (TARGET_PAGE_MASK << 1));
    565 #if defined(TARGET_MIPS64)
    566     env->CP0_EntryHi &= env->SEGMask;
    567     env->CP0_XContext =
    568         (env->CP0_XContext & ((~0ULL) << (env->SEGBITS - 7))) | /* PTEBase */
    569         (extract64(address, 62, 2) << (env->SEGBITS - 9)) |     /* R       */
    570         (extract64(address, 13, env->SEGBITS - 13) << 4);       /* BadVPN2 */
    571 #endif
    572     cs->exception_index = exception;
    573     env->error_code = error_code;
    574 }
    575 
    576 #if !defined(TARGET_MIPS64)
    577 
    578 /*
    579  * Perform hardware page table walk
    580  *
    581  * Memory accesses are performed using the KERNEL privilege level.
    582  * Synchronous exceptions detected on memory accesses cause a silent exit
    583  * from page table walking, resulting in a TLB or XTLB Refill exception.
    584  *
    585  * Implementations are not required to support page table walk memory
    586  * accesses from mapped memory regions. When an unsupported access is
    587  * attempted, a silent exit is taken, resulting in a TLB or XTLB Refill
    588  * exception.
    589  *
    590  * Note that if an exception is caused by AddressTranslation or LoadMemory
    591  * functions, the exception is not taken, a silent exit is taken,
    592  * resulting in a TLB or XTLB Refill exception.
    593  */
    594 
    595 static bool get_pte(CPUMIPSState *env, uint64_t vaddr, int entry_size,
    596         uint64_t *pte)
    597 {
    598     if ((vaddr & ((entry_size >> 3) - 1)) != 0) {
    599         return false;
    600     }
    601     if (entry_size == 64) {
    602         *pte = cpu_ldq_code(env, vaddr);
    603     } else {
    604         *pte = cpu_ldl_code(env, vaddr);
    605     }
    606     return true;
    607 }
    608 
    609 static uint64_t get_tlb_entry_layout(CPUMIPSState *env, uint64_t entry,
    610         int entry_size, int ptei)
    611 {
    612     uint64_t result = entry;
    613     uint64_t rixi;
    614     if (ptei > entry_size) {
    615         ptei -= 32;
    616     }
    617     result >>= (ptei - 2);
    618     rixi = result & 3;
    619     result >>= 2;
    620     result |= rixi << CP0EnLo_XI;
    621     return result;
    622 }
    623 
    624 static int walk_directory(CPUMIPSState *env, uint64_t *vaddr,
    625         int directory_index, bool *huge_page, bool *hgpg_directory_hit,
    626         uint64_t *pw_entrylo0, uint64_t *pw_entrylo1)
    627 {
    628     int dph = (env->CP0_PWCtl >> CP0PC_DPH) & 0x1;
    629     int psn = (env->CP0_PWCtl >> CP0PC_PSN) & 0x3F;
    630     int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
    631     int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
    632     int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
    633     int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
    634     int directory_shift = (ptew > 1) ? -1 :
    635             (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
    636     int leaf_shift = (ptew > 1) ? -1 :
    637             (ptew == 1) ? native_shift + 1 : native_shift;
    638     uint32_t direntry_size = 1 << (directory_shift + 3);
    639     uint32_t leafentry_size = 1 << (leaf_shift + 3);
    640     uint64_t entry;
    641     uint64_t paddr;
    642     int prot;
    643     uint64_t lsb = 0;
    644     uint64_t w = 0;
    645 
    646     if (get_physical_address(env, &paddr, &prot, *vaddr, MMU_DATA_LOAD,
    647                              cpu_mmu_index(env, false)) !=
    648                              TLBRET_MATCH) {
    649         /* wrong base address */
    650         return 0;
    651     }
    652     if (!get_pte(env, *vaddr, direntry_size, &entry)) {
    653         return 0;
    654     }
    655 
    656     if ((entry & (1 << psn)) && hugepg) {
    657         *huge_page = true;
    658         *hgpg_directory_hit = true;
    659         entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
    660         w = directory_index - 1;
    661         if (directory_index & 0x1) {
    662             /* Generate adjacent page from same PTE for odd TLB page */
    663             lsb = BIT_ULL(w) >> 6;
    664             *pw_entrylo0 = entry & ~lsb; /* even page */
    665             *pw_entrylo1 = entry | lsb; /* odd page */
    666         } else if (dph) {
    667             int oddpagebit = 1 << leaf_shift;
    668             uint64_t vaddr2 = *vaddr ^ oddpagebit;
    669             if (*vaddr & oddpagebit) {
    670                 *pw_entrylo1 = entry;
    671             } else {
    672                 *pw_entrylo0 = entry;
    673             }
    674             if (get_physical_address(env, &paddr, &prot, vaddr2, MMU_DATA_LOAD,
    675                                      cpu_mmu_index(env, false)) !=
    676                                      TLBRET_MATCH) {
    677                 return 0;
    678             }
    679             if (!get_pte(env, vaddr2, leafentry_size, &entry)) {
    680                 return 0;
    681             }
    682             entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
    683             if (*vaddr & oddpagebit) {
    684                 *pw_entrylo0 = entry;
    685             } else {
    686                 *pw_entrylo1 = entry;
    687             }
    688         } else {
    689             return 0;
    690         }
    691         return 1;
    692     } else {
    693         *vaddr = entry;
    694         return 2;
    695     }
    696 }
    697 
    698 static bool page_table_walk_refill(CPUMIPSState *env, vaddr address,
    699                                    int mmu_idx)
    700 {
    701     int gdw = (env->CP0_PWSize >> CP0PS_GDW) & 0x3F;
    702     int udw = (env->CP0_PWSize >> CP0PS_UDW) & 0x3F;
    703     int mdw = (env->CP0_PWSize >> CP0PS_MDW) & 0x3F;
    704     int ptw = (env->CP0_PWSize >> CP0PS_PTW) & 0x3F;
    705     int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
    706 
    707     /* Initial values */
    708     bool huge_page = false;
    709     bool hgpg_bdhit = false;
    710     bool hgpg_gdhit = false;
    711     bool hgpg_udhit = false;
    712     bool hgpg_mdhit = false;
    713 
    714     int32_t pw_pagemask = 0;
    715     target_ulong pw_entryhi = 0;
    716     uint64_t pw_entrylo0 = 0;
    717     uint64_t pw_entrylo1 = 0;
    718 
    719     /* Native pointer size */
    720     /*For the 32-bit architectures, this bit is fixed to 0.*/
    721     int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
    722 
    723     /* Indices from PWField */
    724     int pf_gdw = (env->CP0_PWField >> CP0PF_GDW) & 0x3F;
    725     int pf_udw = (env->CP0_PWField >> CP0PF_UDW) & 0x3F;
    726     int pf_mdw = (env->CP0_PWField >> CP0PF_MDW) & 0x3F;
    727     int pf_ptw = (env->CP0_PWField >> CP0PF_PTW) & 0x3F;
    728     int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
    729 
    730     /* Indices computed from faulting address */
    731     int gindex = (address >> pf_gdw) & ((1 << gdw) - 1);
    732     int uindex = (address >> pf_udw) & ((1 << udw) - 1);
    733     int mindex = (address >> pf_mdw) & ((1 << mdw) - 1);
    734     int ptindex = (address >> pf_ptw) & ((1 << ptw) - 1);
    735 
    736     /* Other HTW configs */
    737     int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
    738 
    739     /* HTW Shift values (depend on entry size) */
    740     int directory_shift = (ptew > 1) ? -1 :
    741             (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
    742     int leaf_shift = (ptew > 1) ? -1 :
    743             (ptew == 1) ? native_shift + 1 : native_shift;
    744 
    745     /* Offsets into tables */
    746     int goffset = gindex << directory_shift;
    747     int uoffset = uindex << directory_shift;
    748     int moffset = mindex << directory_shift;
    749     int ptoffset0 = (ptindex >> 1) << (leaf_shift + 1);
    750     int ptoffset1 = ptoffset0 | (1 << (leaf_shift));
    751 
    752     uint32_t leafentry_size = 1 << (leaf_shift + 3);
    753 
    754     /* Starting address - Page Table Base */
    755     uint64_t vaddr = env->CP0_PWBase;
    756 
    757     uint64_t dir_entry;
    758     uint64_t paddr;
    759     int prot;
    760     int m;
    761 
    762     if (!(env->CP0_Config3 & (1 << CP0C3_PW))) {
    763         /* walker is unimplemented */
    764         return false;
    765     }
    766     if (!(env->CP0_PWCtl & (1 << CP0PC_PWEN))) {
    767         /* walker is disabled */
    768         return false;
    769     }
    770     if (!(gdw > 0 || udw > 0 || mdw > 0)) {
    771         /* no structure to walk */
    772         return false;
    773     }
    774     if ((directory_shift == -1) || (leaf_shift == -1)) {
    775         return false;
    776     }
    777 
    778     /* Global Directory */
    779     if (gdw > 0) {
    780         vaddr |= goffset;
    781         switch (walk_directory(env, &vaddr, pf_gdw, &huge_page, &hgpg_gdhit,
    782                                &pw_entrylo0, &pw_entrylo1))
    783         {
    784         case 0:
    785             return false;
    786         case 1:
    787             goto refill;
    788         case 2:
    789         default:
    790             break;
    791         }
    792     }
    793 
    794     /* Upper directory */
    795     if (udw > 0) {
    796         vaddr |= uoffset;
    797         switch (walk_directory(env, &vaddr, pf_udw, &huge_page, &hgpg_udhit,
    798                                &pw_entrylo0, &pw_entrylo1))
    799         {
    800         case 0:
    801             return false;
    802         case 1:
    803             goto refill;
    804         case 2:
    805         default:
    806             break;
    807         }
    808     }
    809 
    810     /* Middle directory */
    811     if (mdw > 0) {
    812         vaddr |= moffset;
    813         switch (walk_directory(env, &vaddr, pf_mdw, &huge_page, &hgpg_mdhit,
    814                                &pw_entrylo0, &pw_entrylo1))
    815         {
    816         case 0:
    817             return false;
    818         case 1:
    819             goto refill;
    820         case 2:
    821         default:
    822             break;
    823         }
    824     }
    825 
    826     /* Leaf Level Page Table - First half of PTE pair */
    827     vaddr |= ptoffset0;
    828     if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
    829                              cpu_mmu_index(env, false)) !=
    830                              TLBRET_MATCH) {
    831         return false;
    832     }
    833     if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
    834         return false;
    835     }
    836     dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
    837     pw_entrylo0 = dir_entry;
    838 
    839     /* Leaf Level Page Table - Second half of PTE pair */
    840     vaddr |= ptoffset1;
    841     if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
    842                              cpu_mmu_index(env, false)) !=
    843                              TLBRET_MATCH) {
    844         return false;
    845     }
    846     if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
    847         return false;
    848     }
    849     dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
    850     pw_entrylo1 = dir_entry;
    851 
    852 refill:
    853 
    854     m = (1 << pf_ptw) - 1;
    855 
    856     if (huge_page) {
    857         switch (hgpg_bdhit << 3 | hgpg_gdhit << 2 | hgpg_udhit << 1 |
    858                 hgpg_mdhit)
    859         {
    860         case 4:
    861             m = (1 << pf_gdw) - 1;
    862             if (pf_gdw & 1) {
    863                 m >>= 1;
    864             }
    865             break;
    866         case 2:
    867             m = (1 << pf_udw) - 1;
    868             if (pf_udw & 1) {
    869                 m >>= 1;
    870             }
    871             break;
    872         case 1:
    873             m = (1 << pf_mdw) - 1;
    874             if (pf_mdw & 1) {
    875                 m >>= 1;
    876             }
    877             break;
    878         }
    879     }
    880     pw_pagemask = m >> TARGET_PAGE_BITS_MIN;
    881     update_pagemask(env, pw_pagemask << CP0PM_MASK, &pw_pagemask);
    882     pw_entryhi = (address & ~0x1fff) | (env->CP0_EntryHi & 0xFF);
    883     {
    884         target_ulong tmp_entryhi = env->CP0_EntryHi;
    885         int32_t tmp_pagemask = env->CP0_PageMask;
    886         uint64_t tmp_entrylo0 = env->CP0_EntryLo0;
    887         uint64_t tmp_entrylo1 = env->CP0_EntryLo1;
    888 
    889         env->CP0_EntryHi = pw_entryhi;
    890         env->CP0_PageMask = pw_pagemask;
    891         env->CP0_EntryLo0 = pw_entrylo0;
    892         env->CP0_EntryLo1 = pw_entrylo1;
    893 
    894         /*
    895          * The hardware page walker inserts a page into the TLB in a manner
    896          * identical to a TLBWR instruction as executed by the software refill
    897          * handler.
    898          */
    899         r4k_helper_tlbwr(env);
    900 
    901         env->CP0_EntryHi = tmp_entryhi;
    902         env->CP0_PageMask = tmp_pagemask;
    903         env->CP0_EntryLo0 = tmp_entrylo0;
    904         env->CP0_EntryLo1 = tmp_entrylo1;
    905     }
    906     return true;
    907 }
    908 #endif
    909 
    910 bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
    911                        MMUAccessType access_type, int mmu_idx,
    912                        bool probe, uintptr_t retaddr)
    913 {
    914     MIPSCPU *cpu = MIPS_CPU(cs);
    915     CPUMIPSState *env = &cpu->env;
    916     hwaddr physical;
    917     int prot;
    918     int ret = TLBRET_BADADDR;
    919 
    920     /* data access */
    921     /* XXX: put correct access by using cpu_restore_state() correctly */
    922     ret = get_physical_address(env, &physical, &prot, address,
    923                                access_type, mmu_idx);
    924     switch (ret) {
    925     case TLBRET_MATCH:
    926         qemu_log_mask(CPU_LOG_MMU,
    927                       "%s address=%" VADDR_PRIx " physical " TARGET_FMT_plx
    928                       " prot %d\n", __func__, address, physical, prot);
    929         break;
    930     default:
    931         qemu_log_mask(CPU_LOG_MMU,
    932                       "%s address=%" VADDR_PRIx " ret %d\n", __func__, address,
    933                       ret);
    934         break;
    935     }
    936     if (ret == TLBRET_MATCH) {
    937         tlb_set_page(cs, address & TARGET_PAGE_MASK,
    938                      physical & TARGET_PAGE_MASK, prot,
    939                      mmu_idx, TARGET_PAGE_SIZE);
    940         return true;
    941     }
    942 #if !defined(TARGET_MIPS64)
    943     if ((ret == TLBRET_NOMATCH) && (env->tlb->nb_tlb > 1)) {
    944         /*
    945          * Memory reads during hardware page table walking are performed
    946          * as if they were kernel-mode load instructions.
    947          */
    948         int mode = (env->hflags & MIPS_HFLAG_KSU);
    949         bool ret_walker;
    950         env->hflags &= ~MIPS_HFLAG_KSU;
    951         ret_walker = page_table_walk_refill(env, address, mmu_idx);
    952         env->hflags |= mode;
    953         if (ret_walker) {
    954             ret = get_physical_address(env, &physical, &prot, address,
    955                                        access_type, mmu_idx);
    956             if (ret == TLBRET_MATCH) {
    957                 tlb_set_page(cs, address & TARGET_PAGE_MASK,
    958                              physical & TARGET_PAGE_MASK, prot,
    959                              mmu_idx, TARGET_PAGE_SIZE);
    960                 return true;
    961             }
    962         }
    963     }
    964 #endif
    965     if (probe) {
    966         return false;
    967     }
    968 
    969     raise_mmu_exception(env, address, access_type, ret);
    970     do_raise_exception_err(env, cs->exception_index, env->error_code, retaddr);
    971 }
    972 
    973 hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
    974                                   MMUAccessType access_type, uintptr_t retaddr)
    975 {
    976     hwaddr physical;
    977     int prot;
    978     int ret = 0;
    979     CPUState *cs = env_cpu(env);
    980 
    981     /* data access */
    982     ret = get_physical_address(env, &physical, &prot, address, access_type,
    983                                cpu_mmu_index(env, false));
    984     if (ret == TLBRET_MATCH) {
    985         return physical;
    986     }
    987 
    988     raise_mmu_exception(env, address, access_type, ret);
    989     cpu_loop_exit_restore(cs, retaddr);
    990 }
    991 
    992 static void set_hflags_for_handler(CPUMIPSState *env)
    993 {
    994     /* Exception handlers are entered in 32-bit mode.  */
    995     env->hflags &= ~(MIPS_HFLAG_M16);
    996     /* ...except that microMIPS lets you choose.  */
    997     if (env->insn_flags & ASE_MICROMIPS) {
    998         env->hflags |= (!!(env->CP0_Config3 &
    999                            (1 << CP0C3_ISA_ON_EXC))
   1000                         << MIPS_HFLAG_M16_SHIFT);
   1001     }
   1002 }
   1003 
   1004 static inline void set_badinstr_registers(CPUMIPSState *env)
   1005 {
   1006     if (env->insn_flags & ISA_NANOMIPS32) {
   1007         if (env->CP0_Config3 & (1 << CP0C3_BI)) {
   1008             uint32_t instr = (cpu_lduw_code(env, env->active_tc.PC)) << 16;
   1009             if ((instr & 0x10000000) == 0) {
   1010                 instr |= cpu_lduw_code(env, env->active_tc.PC + 2);
   1011             }
   1012             env->CP0_BadInstr = instr;
   1013 
   1014             if ((instr & 0xFC000000) == 0x60000000) {
   1015                 instr = cpu_lduw_code(env, env->active_tc.PC + 4) << 16;
   1016                 env->CP0_BadInstrX = instr;
   1017             }
   1018         }
   1019         return;
   1020     }
   1021 
   1022     if (env->hflags & MIPS_HFLAG_M16) {
   1023         /* TODO: add BadInstr support for microMIPS */
   1024         return;
   1025     }
   1026     if (env->CP0_Config3 & (1 << CP0C3_BI)) {
   1027         env->CP0_BadInstr = cpu_ldl_code(env, env->active_tc.PC);
   1028     }
   1029     if ((env->CP0_Config3 & (1 << CP0C3_BP)) &&
   1030         (env->hflags & MIPS_HFLAG_BMASK)) {
   1031         env->CP0_BadInstrP = cpu_ldl_code(env, env->active_tc.PC - 4);
   1032     }
   1033 }
   1034 
   1035 void mips_cpu_do_interrupt(CPUState *cs)
   1036 {
   1037     MIPSCPU *cpu = MIPS_CPU(cs);
   1038     CPUMIPSState *env = &cpu->env;
   1039     bool update_badinstr = 0;
   1040     target_ulong offset;
   1041     int cause = -1;
   1042 
   1043     if (qemu_loglevel_mask(CPU_LOG_INT)
   1044         && cs->exception_index != EXCP_EXT_INTERRUPT) {
   1045         qemu_log("%s enter: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx
   1046                  " %s exception\n",
   1047                  __func__, env->active_tc.PC, env->CP0_EPC,
   1048                  mips_exception_name(cs->exception_index));
   1049     }
   1050     if (cs->exception_index == EXCP_EXT_INTERRUPT &&
   1051         (env->hflags & MIPS_HFLAG_DM)) {
   1052         cs->exception_index = EXCP_DINT;
   1053     }
   1054     offset = 0x180;
   1055     switch (cs->exception_index) {
   1056     case EXCP_SEMIHOST:
   1057         cs->exception_index = EXCP_NONE;
   1058         mips_semihosting(env);
   1059         env->active_tc.PC += env->error_code;
   1060         return;
   1061     case EXCP_DSS:
   1062         env->CP0_Debug |= 1 << CP0DB_DSS;
   1063         /*
   1064          * Debug single step cannot be raised inside a delay slot and
   1065          * resume will always occur on the next instruction
   1066          * (but we assume the pc has always been updated during
   1067          * code translation).
   1068          */
   1069         env->CP0_DEPC = env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16);
   1070         goto enter_debug_mode;
   1071     case EXCP_DINT:
   1072         env->CP0_Debug |= 1 << CP0DB_DINT;
   1073         goto set_DEPC;
   1074     case EXCP_DIB:
   1075         env->CP0_Debug |= 1 << CP0DB_DIB;
   1076         goto set_DEPC;
   1077     case EXCP_DBp:
   1078         env->CP0_Debug |= 1 << CP0DB_DBp;
   1079         /* Setup DExcCode - SDBBP instruction */
   1080         env->CP0_Debug = (env->CP0_Debug & ~(0x1fULL << CP0DB_DEC)) |
   1081                          (9 << CP0DB_DEC);
   1082         goto set_DEPC;
   1083     case EXCP_DDBS:
   1084         env->CP0_Debug |= 1 << CP0DB_DDBS;
   1085         goto set_DEPC;
   1086     case EXCP_DDBL:
   1087         env->CP0_Debug |= 1 << CP0DB_DDBL;
   1088     set_DEPC:
   1089         env->CP0_DEPC = exception_resume_pc(env);
   1090         env->hflags &= ~MIPS_HFLAG_BMASK;
   1091  enter_debug_mode:
   1092         if (env->insn_flags & ISA_MIPS3) {
   1093             env->hflags |= MIPS_HFLAG_64;
   1094             if (!(env->insn_flags & ISA_MIPS_R6) ||
   1095                 env->CP0_Status & (1 << CP0St_KX)) {
   1096                 env->hflags &= ~MIPS_HFLAG_AWRAP;
   1097             }
   1098         }
   1099         env->hflags |= MIPS_HFLAG_DM | MIPS_HFLAG_CP0;
   1100         env->hflags &= ~(MIPS_HFLAG_KSU);
   1101         /* EJTAG probe trap enable is not implemented... */
   1102         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
   1103             env->CP0_Cause &= ~(1U << CP0Ca_BD);
   1104         }
   1105         env->active_tc.PC = env->exception_base + 0x480;
   1106         set_hflags_for_handler(env);
   1107         break;
   1108     case EXCP_RESET:
   1109         cpu_reset(CPU(cpu));
   1110         break;
   1111     case EXCP_SRESET:
   1112         env->CP0_Status |= (1 << CP0St_SR);
   1113         memset(env->CP0_WatchLo, 0, sizeof(env->CP0_WatchLo));
   1114         goto set_error_EPC;
   1115     case EXCP_NMI:
   1116         env->CP0_Status |= (1 << CP0St_NMI);
   1117  set_error_EPC:
   1118         env->CP0_ErrorEPC = exception_resume_pc(env);
   1119         env->hflags &= ~MIPS_HFLAG_BMASK;
   1120         env->CP0_Status |= (1 << CP0St_ERL) | (1 << CP0St_BEV);
   1121         if (env->insn_flags & ISA_MIPS3) {
   1122             env->hflags |= MIPS_HFLAG_64;
   1123             if (!(env->insn_flags & ISA_MIPS_R6) ||
   1124                 env->CP0_Status & (1 << CP0St_KX)) {
   1125                 env->hflags &= ~MIPS_HFLAG_AWRAP;
   1126             }
   1127         }
   1128         env->hflags |= MIPS_HFLAG_CP0;
   1129         env->hflags &= ~(MIPS_HFLAG_KSU);
   1130         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
   1131             env->CP0_Cause &= ~(1U << CP0Ca_BD);
   1132         }
   1133         env->active_tc.PC = env->exception_base;
   1134         set_hflags_for_handler(env);
   1135         break;
   1136     case EXCP_EXT_INTERRUPT:
   1137         cause = 0;
   1138         if (env->CP0_Cause & (1 << CP0Ca_IV)) {
   1139             uint32_t spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & 0x1f;
   1140 
   1141             if ((env->CP0_Status & (1 << CP0St_BEV)) || spacing == 0) {
   1142                 offset = 0x200;
   1143             } else {
   1144                 uint32_t vector = 0;
   1145                 uint32_t pending = (env->CP0_Cause & CP0Ca_IP_mask) >> CP0Ca_IP;
   1146 
   1147                 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
   1148                     /*
   1149                      * For VEIC mode, the external interrupt controller feeds
   1150                      * the vector through the CP0Cause IP lines.
   1151                      */
   1152                     vector = pending;
   1153                 } else {
   1154                     /*
   1155                      * Vectored Interrupts
   1156                      * Mask with Status.IM7-IM0 to get enabled interrupts.
   1157                      */
   1158                     pending &= (env->CP0_Status >> CP0St_IM) & 0xff;
   1159                     /* Find the highest-priority interrupt. */
   1160                     while (pending >>= 1) {
   1161                         vector++;
   1162                     }
   1163                 }
   1164                 offset = 0x200 + (vector * (spacing << 5));
   1165             }
   1166         }
   1167         goto set_EPC;
   1168     case EXCP_LTLBL:
   1169         cause = 1;
   1170         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
   1171         goto set_EPC;
   1172     case EXCP_TLBL:
   1173         cause = 2;
   1174         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
   1175         if ((env->error_code & EXCP_TLB_NOMATCH) &&
   1176             !(env->CP0_Status & (1 << CP0St_EXL))) {
   1177 #if defined(TARGET_MIPS64)
   1178             int R = env->CP0_BadVAddr >> 62;
   1179             int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
   1180             int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
   1181 
   1182             if ((R != 0 || UX) && (R != 3 || KX) &&
   1183                 (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
   1184                 offset = 0x080;
   1185             } else {
   1186 #endif
   1187                 offset = 0x000;
   1188 #if defined(TARGET_MIPS64)
   1189             }
   1190 #endif
   1191         }
   1192         goto set_EPC;
   1193     case EXCP_TLBS:
   1194         cause = 3;
   1195         update_badinstr = 1;
   1196         if ((env->error_code & EXCP_TLB_NOMATCH) &&
   1197             !(env->CP0_Status & (1 << CP0St_EXL))) {
   1198 #if defined(TARGET_MIPS64)
   1199             int R = env->CP0_BadVAddr >> 62;
   1200             int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
   1201             int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
   1202 
   1203             if ((R != 0 || UX) && (R != 3 || KX) &&
   1204                 (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
   1205                 offset = 0x080;
   1206             } else {
   1207 #endif
   1208                 offset = 0x000;
   1209 #if defined(TARGET_MIPS64)
   1210             }
   1211 #endif
   1212         }
   1213         goto set_EPC;
   1214     case EXCP_AdEL:
   1215         cause = 4;
   1216         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
   1217         goto set_EPC;
   1218     case EXCP_AdES:
   1219         cause = 5;
   1220         update_badinstr = 1;
   1221         goto set_EPC;
   1222     case EXCP_IBE:
   1223         cause = 6;
   1224         goto set_EPC;
   1225     case EXCP_DBE:
   1226         cause = 7;
   1227         goto set_EPC;
   1228     case EXCP_SYSCALL:
   1229         cause = 8;
   1230         update_badinstr = 1;
   1231         goto set_EPC;
   1232     case EXCP_BREAK:
   1233         cause = 9;
   1234         update_badinstr = 1;
   1235         goto set_EPC;
   1236     case EXCP_RI:
   1237         cause = 10;
   1238         update_badinstr = 1;
   1239         goto set_EPC;
   1240     case EXCP_CpU:
   1241         cause = 11;
   1242         update_badinstr = 1;
   1243         env->CP0_Cause = (env->CP0_Cause & ~(0x3 << CP0Ca_CE)) |
   1244                          (env->error_code << CP0Ca_CE);
   1245         goto set_EPC;
   1246     case EXCP_OVERFLOW:
   1247         cause = 12;
   1248         update_badinstr = 1;
   1249         goto set_EPC;
   1250     case EXCP_TRAP:
   1251         cause = 13;
   1252         update_badinstr = 1;
   1253         goto set_EPC;
   1254     case EXCP_MSAFPE:
   1255         cause = 14;
   1256         update_badinstr = 1;
   1257         goto set_EPC;
   1258     case EXCP_FPE:
   1259         cause = 15;
   1260         update_badinstr = 1;
   1261         goto set_EPC;
   1262     case EXCP_C2E:
   1263         cause = 18;
   1264         goto set_EPC;
   1265     case EXCP_TLBRI:
   1266         cause = 19;
   1267         update_badinstr = 1;
   1268         goto set_EPC;
   1269     case EXCP_TLBXI:
   1270         cause = 20;
   1271         goto set_EPC;
   1272     case EXCP_MSADIS:
   1273         cause = 21;
   1274         update_badinstr = 1;
   1275         goto set_EPC;
   1276     case EXCP_MDMX:
   1277         cause = 22;
   1278         goto set_EPC;
   1279     case EXCP_DWATCH:
   1280         cause = 23;
   1281         /* XXX: TODO: manage deferred watch exceptions */
   1282         goto set_EPC;
   1283     case EXCP_MCHECK:
   1284         cause = 24;
   1285         goto set_EPC;
   1286     case EXCP_THREAD:
   1287         cause = 25;
   1288         goto set_EPC;
   1289     case EXCP_DSPDIS:
   1290         cause = 26;
   1291         goto set_EPC;
   1292     case EXCP_CACHE:
   1293         cause = 30;
   1294         offset = 0x100;
   1295  set_EPC:
   1296         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
   1297             env->CP0_EPC = exception_resume_pc(env);
   1298             if (update_badinstr) {
   1299                 set_badinstr_registers(env);
   1300             }
   1301             if (env->hflags & MIPS_HFLAG_BMASK) {
   1302                 env->CP0_Cause |= (1U << CP0Ca_BD);
   1303             } else {
   1304                 env->CP0_Cause &= ~(1U << CP0Ca_BD);
   1305             }
   1306             env->CP0_Status |= (1 << CP0St_EXL);
   1307             if (env->insn_flags & ISA_MIPS3) {
   1308                 env->hflags |= MIPS_HFLAG_64;
   1309                 if (!(env->insn_flags & ISA_MIPS_R6) ||
   1310                     env->CP0_Status & (1 << CP0St_KX)) {
   1311                     env->hflags &= ~MIPS_HFLAG_AWRAP;
   1312                 }
   1313             }
   1314             env->hflags |= MIPS_HFLAG_CP0;
   1315             env->hflags &= ~(MIPS_HFLAG_KSU);
   1316         }
   1317         env->hflags &= ~MIPS_HFLAG_BMASK;
   1318         if (env->CP0_Status & (1 << CP0St_BEV)) {
   1319             env->active_tc.PC = env->exception_base + 0x200;
   1320         } else if (cause == 30 && !(env->CP0_Config3 & (1 << CP0C3_SC) &&
   1321                                     env->CP0_Config5 & (1 << CP0C5_CV))) {
   1322             /* Force KSeg1 for cache errors */
   1323             env->active_tc.PC = KSEG1_BASE | (env->CP0_EBase & 0x1FFFF000);
   1324         } else {
   1325             env->active_tc.PC = env->CP0_EBase & ~0xfff;
   1326         }
   1327 
   1328         env->active_tc.PC += offset;
   1329         set_hflags_for_handler(env);
   1330         env->CP0_Cause = (env->CP0_Cause & ~(0x1f << CP0Ca_EC)) |
   1331                          (cause << CP0Ca_EC);
   1332         break;
   1333     default:
   1334         abort();
   1335     }
   1336     if (qemu_loglevel_mask(CPU_LOG_INT)
   1337         && cs->exception_index != EXCP_EXT_INTERRUPT) {
   1338         qemu_log("%s: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " cause %d\n"
   1339                  "    S %08x C %08x A " TARGET_FMT_lx " D " TARGET_FMT_lx "\n",
   1340                  __func__, env->active_tc.PC, env->CP0_EPC, cause,
   1341                  env->CP0_Status, env->CP0_Cause, env->CP0_BadVAddr,
   1342                  env->CP0_DEPC);
   1343     }
   1344     cs->exception_index = EXCP_NONE;
   1345 }
   1346 
   1347 bool mips_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
   1348 {
   1349     if (interrupt_request & CPU_INTERRUPT_HARD) {
   1350         MIPSCPU *cpu = MIPS_CPU(cs);
   1351         CPUMIPSState *env = &cpu->env;
   1352 
   1353         if (cpu_mips_hw_interrupts_enabled(env) &&
   1354             cpu_mips_hw_interrupts_pending(env)) {
   1355             /* Raise it */
   1356             cs->exception_index = EXCP_EXT_INTERRUPT;
   1357             env->error_code = 0;
   1358             mips_cpu_do_interrupt(cs);
   1359             return true;
   1360         }
   1361     }
   1362     return false;
   1363 }
   1364 
   1365 void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra)
   1366 {
   1367     CPUState *cs = env_cpu(env);
   1368     r4k_tlb_t *tlb;
   1369     target_ulong addr;
   1370     target_ulong end;
   1371     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
   1372     uint32_t MMID = env->CP0_MemoryMapID;
   1373     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
   1374     uint32_t tlb_mmid;
   1375     target_ulong mask;
   1376 
   1377     MMID = mi ? MMID : (uint32_t) ASID;
   1378 
   1379     tlb = &env->tlb->mmu.r4k.tlb[idx];
   1380     /*
   1381      * The qemu TLB is flushed when the ASID/MMID changes, so no need to
   1382      * flush these entries again.
   1383      */
   1384     tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
   1385     if (tlb->G == 0 && tlb_mmid != MMID) {
   1386         return;
   1387     }
   1388 
   1389     if (use_extra && env->tlb->tlb_in_use < MIPS_TLB_MAX) {
   1390         /*
   1391          * For tlbwr, we can shadow the discarded entry into
   1392          * a new (fake) TLB entry, as long as the guest can not
   1393          * tell that it's there.
   1394          */
   1395         env->tlb->mmu.r4k.tlb[env->tlb->tlb_in_use] = *tlb;
   1396         env->tlb->tlb_in_use++;
   1397         return;
   1398     }
   1399 
   1400     /* 1k pages are not supported. */
   1401     mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
   1402     if (tlb->V0) {
   1403         addr = tlb->VPN & ~mask;
   1404 #if defined(TARGET_MIPS64)
   1405         if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
   1406             addr |= 0x3FFFFF0000000000ULL;
   1407         }
   1408 #endif
   1409         end = addr | (mask >> 1);
   1410         while (addr < end) {
   1411             tlb_flush_page(cs, addr);
   1412             addr += TARGET_PAGE_SIZE;
   1413         }
   1414     }
   1415     if (tlb->V1) {
   1416         addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1);
   1417 #if defined(TARGET_MIPS64)
   1418         if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
   1419             addr |= 0x3FFFFF0000000000ULL;
   1420         }
   1421 #endif
   1422         end = addr | mask;
   1423         while (addr - 1 < end) {
   1424             tlb_flush_page(cs, addr);
   1425             addr += TARGET_PAGE_SIZE;
   1426         }
   1427     }
   1428 }