qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

internal.h (12939B)


      1 /*
      2  * MIPS internal definitions and helpers
      3  *
      4  * This work is licensed under the terms of the GNU GPL, version 2 or later.
      5  * See the COPYING file in the top-level directory.
      6  */
      7 
      8 #ifndef MIPS_INTERNAL_H
      9 #define MIPS_INTERNAL_H
     10 
     11 #include "exec/memattrs.h"
     12 #ifdef CONFIG_TCG
     13 #include "tcg/tcg-internal.h"
     14 #endif
     15 #include "cpu.h"
     16 
     17 /*
     18  * MMU types, the first four entries have the same layout as the
     19  * CP0C0_MT field.
     20  */
     21 enum mips_mmu_types {
     22     MMU_TYPE_NONE       = 0,
     23     MMU_TYPE_R4000      = 1,    /* Standard TLB */
     24     MMU_TYPE_BAT        = 2,    /* Block Address Translation */
     25     MMU_TYPE_FMT        = 3,    /* Fixed Mapping */
     26     MMU_TYPE_DVF        = 4,    /* Dual VTLB and FTLB */
     27     MMU_TYPE_R3000,
     28     MMU_TYPE_R6000,
     29     MMU_TYPE_R8000
     30 };
     31 
     32 struct mips_def_t {
     33     const char *name;
     34     int32_t CP0_PRid;
     35     int32_t CP0_Config0;
     36     int32_t CP0_Config1;
     37     int32_t CP0_Config2;
     38     int32_t CP0_Config3;
     39     int32_t CP0_Config4;
     40     int32_t CP0_Config4_rw_bitmask;
     41     int32_t CP0_Config5;
     42     int32_t CP0_Config5_rw_bitmask;
     43     int32_t CP0_Config6;
     44     int32_t CP0_Config6_rw_bitmask;
     45     int32_t CP0_Config7;
     46     int32_t CP0_Config7_rw_bitmask;
     47     target_ulong CP0_LLAddr_rw_bitmask;
     48     int CP0_LLAddr_shift;
     49     int32_t SYNCI_Step;
     50     /*
     51      * @CCRes: rate at which the coprocessor 0 counter increments
     52      *
     53      * The Count register acts as a timer, incrementing at a constant rate,
     54      * whether or not an instruction is executed, retired, or any forward
     55      * progress is made through the pipeline. The rate at which the counter
     56      * increments is implementation dependent, and is a function of the
     57      * pipeline clock of the processor, not the issue width of the processor.
     58      */
     59     int32_t CCRes;
     60     int32_t CP0_Status_rw_bitmask;
     61     int32_t CP0_TCStatus_rw_bitmask;
     62     int32_t CP0_SRSCtl;
     63     int32_t CP1_fcr0;
     64     int32_t CP1_fcr31_rw_bitmask;
     65     int32_t CP1_fcr31;
     66     int32_t MSAIR;
     67     int32_t SEGBITS;
     68     int32_t PABITS;
     69     int32_t CP0_SRSConf0_rw_bitmask;
     70     int32_t CP0_SRSConf0;
     71     int32_t CP0_SRSConf1_rw_bitmask;
     72     int32_t CP0_SRSConf1;
     73     int32_t CP0_SRSConf2_rw_bitmask;
     74     int32_t CP0_SRSConf2;
     75     int32_t CP0_SRSConf3_rw_bitmask;
     76     int32_t CP0_SRSConf3;
     77     int32_t CP0_SRSConf4_rw_bitmask;
     78     int32_t CP0_SRSConf4;
     79     int32_t CP0_PageGrain_rw_bitmask;
     80     int32_t CP0_PageGrain;
     81     target_ulong CP0_EBaseWG_rw_bitmask;
     82     uint64_t insn_flags;
     83     enum mips_mmu_types mmu_type;
     84     int32_t SAARP;
     85 };
     86 
     87 extern const char regnames[32][3];
     88 extern const char fregnames[32][4];
     89 
     90 extern const struct mips_def_t mips_defs[];
     91 extern const int mips_defs_number;
     92 
     93 int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
     94 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
     95 
     96 #define USEG_LIMIT      ((target_ulong)(int32_t)0x7FFFFFFFUL)
     97 #define KSEG0_BASE      ((target_ulong)(int32_t)0x80000000UL)
     98 #define KSEG1_BASE      ((target_ulong)(int32_t)0xA0000000UL)
     99 #define KSEG2_BASE      ((target_ulong)(int32_t)0xC0000000UL)
    100 #define KSEG3_BASE      ((target_ulong)(int32_t)0xE0000000UL)
    101 
    102 #define KVM_KSEG0_BASE  ((target_ulong)(int32_t)0x40000000UL)
    103 #define KVM_KSEG2_BASE  ((target_ulong)(int32_t)0x60000000UL)
    104 
    105 #if !defined(CONFIG_USER_ONLY)
    106 
    107 enum {
    108     TLBRET_XI = -6,
    109     TLBRET_RI = -5,
    110     TLBRET_DIRTY = -4,
    111     TLBRET_INVALID = -3,
    112     TLBRET_NOMATCH = -2,
    113     TLBRET_BADADDR = -1,
    114     TLBRET_MATCH = 0
    115 };
    116 
    117 int get_physical_address(CPUMIPSState *env, hwaddr *physical,
    118                          int *prot, target_ulong real_address,
    119                          MMUAccessType access_type, int mmu_idx);
    120 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
    121 
    122 typedef struct r4k_tlb_t r4k_tlb_t;
    123 struct r4k_tlb_t {
    124     target_ulong VPN;
    125     uint32_t PageMask;
    126     uint16_t ASID;
    127     uint32_t MMID;
    128     unsigned int G:1;
    129     unsigned int C0:3;
    130     unsigned int C1:3;
    131     unsigned int V0:1;
    132     unsigned int V1:1;
    133     unsigned int D0:1;
    134     unsigned int D1:1;
    135     unsigned int XI0:1;
    136     unsigned int XI1:1;
    137     unsigned int RI0:1;
    138     unsigned int RI1:1;
    139     unsigned int EHINV:1;
    140     uint64_t PFN[2];
    141 };
    142 
    143 struct CPUMIPSTLBContext {
    144     uint32_t nb_tlb;
    145     uint32_t tlb_in_use;
    146     int (*map_address)(CPUMIPSState *env, hwaddr *physical, int *prot,
    147                        target_ulong address, MMUAccessType access_type);
    148     void (*helper_tlbwi)(CPUMIPSState *env);
    149     void (*helper_tlbwr)(CPUMIPSState *env);
    150     void (*helper_tlbp)(CPUMIPSState *env);
    151     void (*helper_tlbr)(CPUMIPSState *env);
    152     void (*helper_tlbinv)(CPUMIPSState *env);
    153     void (*helper_tlbinvf)(CPUMIPSState *env);
    154     union {
    155         struct {
    156             r4k_tlb_t tlb[MIPS_TLB_MAX];
    157         } r4k;
    158     } mmu;
    159 };
    160 
    161 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
    162 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
    163 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
    164 
    165 extern const VMStateDescription vmstate_mips_cpu;
    166 
    167 #endif /* !CONFIG_USER_ONLY */
    168 
    169 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
    170 {
    171     return (env->CP0_Status & (1 << CP0St_IE)) &&
    172         !(env->CP0_Status & (1 << CP0St_EXL)) &&
    173         !(env->CP0_Status & (1 << CP0St_ERL)) &&
    174         !(env->hflags & MIPS_HFLAG_DM) &&
    175         /*
    176          * Note that the TCStatus IXMT field is initialized to zero,
    177          * and only MT capable cores can set it to one. So we don't
    178          * need to check for MT capabilities here.
    179          */
    180         !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
    181 }
    182 
    183 /* Check if there is pending and not masked out interrupt */
    184 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
    185 {
    186     int32_t pending;
    187     int32_t status;
    188     bool r;
    189 
    190     pending = env->CP0_Cause & CP0Ca_IP_mask;
    191     status = env->CP0_Status & CP0Ca_IP_mask;
    192 
    193     if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
    194         /*
    195          * A MIPS configured with a vectorizing external interrupt controller
    196          * will feed a vector into the Cause pending lines. The core treats
    197          * the status lines as a vector level, not as individual masks.
    198          */
    199         r = pending > status;
    200     } else {
    201         /*
    202          * A MIPS configured with compatibility or VInt (Vectored Interrupts)
    203          * treats the pending lines as individual interrupt lines, the status
    204          * lines are individual masks.
    205          */
    206         r = (pending & status) != 0;
    207     }
    208     return r;
    209 }
    210 
    211 void msa_reset(CPUMIPSState *env);
    212 
    213 /* cp0_timer.c */
    214 uint32_t cpu_mips_get_count(CPUMIPSState *env);
    215 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
    216 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
    217 void cpu_mips_start_count(CPUMIPSState *env);
    218 void cpu_mips_stop_count(CPUMIPSState *env);
    219 
    220 static inline void mips_env_set_pc(CPUMIPSState *env, target_ulong value)
    221 {
    222     env->active_tc.PC = value & ~(target_ulong)1;
    223     if (value & 1) {
    224         env->hflags |= MIPS_HFLAG_M16;
    225     } else {
    226         env->hflags &= ~(MIPS_HFLAG_M16);
    227     }
    228 }
    229 
    230 static inline void restore_pamask(CPUMIPSState *env)
    231 {
    232     if (env->hflags & MIPS_HFLAG_ELPA) {
    233         env->PAMask = (1ULL << env->PABITS) - 1;
    234     } else {
    235         env->PAMask = PAMASK_BASE;
    236     }
    237 }
    238 
    239 static inline int mips_vpe_active(CPUMIPSState *env)
    240 {
    241     int active = 1;
    242 
    243     /* Check that the VPE is enabled.  */
    244     if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
    245         active = 0;
    246     }
    247     /* Check that the VPE is activated.  */
    248     if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
    249         active = 0;
    250     }
    251 
    252     /*
    253      * Now verify that there are active thread contexts in the VPE.
    254      *
    255      * This assumes the CPU model will internally reschedule threads
    256      * if the active one goes to sleep. If there are no threads available
    257      * the active one will be in a sleeping state, and we can turn off
    258      * the entire VPE.
    259      */
    260     if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
    261         /* TC is not activated.  */
    262         active = 0;
    263     }
    264     if (env->active_tc.CP0_TCHalt & 1) {
    265         /* TC is in halt state.  */
    266         active = 0;
    267     }
    268 
    269     return active;
    270 }
    271 
    272 static inline int mips_vp_active(CPUMIPSState *env)
    273 {
    274     CPUState *other_cs = first_cpu;
    275 
    276     /* Check if the VP disabled other VPs (which means the VP is enabled) */
    277     if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
    278         return 1;
    279     }
    280 
    281     /* Check if the virtual processor is disabled due to a DVP */
    282     CPU_FOREACH(other_cs) {
    283         MIPSCPU *other_cpu = MIPS_CPU(other_cs);
    284         if ((&other_cpu->env != env) &&
    285             ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
    286             return 0;
    287         }
    288     }
    289     return 1;
    290 }
    291 
    292 static inline void compute_hflags(CPUMIPSState *env)
    293 {
    294     env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
    295                      MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
    296                      MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
    297                      MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
    298                      MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
    299     if (env->CP0_Status & (1 << CP0St_ERL)) {
    300         env->hflags |= MIPS_HFLAG_ERL;
    301     }
    302     if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
    303         !(env->CP0_Status & (1 << CP0St_ERL)) &&
    304         !(env->hflags & MIPS_HFLAG_DM)) {
    305         env->hflags |= (env->CP0_Status >> CP0St_KSU) &
    306                        MIPS_HFLAG_KSU;
    307     }
    308 #if defined(TARGET_MIPS64)
    309     if ((env->insn_flags & ISA_MIPS3) &&
    310         (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
    311          (env->CP0_Status & (1 << CP0St_PX)) ||
    312          (env->CP0_Status & (1 << CP0St_UX)))) {
    313         env->hflags |= MIPS_HFLAG_64;
    314     }
    315 
    316     if (!(env->insn_flags & ISA_MIPS3)) {
    317         env->hflags |= MIPS_HFLAG_AWRAP;
    318     } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
    319                !(env->CP0_Status & (1 << CP0St_UX))) {
    320         env->hflags |= MIPS_HFLAG_AWRAP;
    321     } else if (env->insn_flags & ISA_MIPS_R6) {
    322         /* Address wrapping for Supervisor and Kernel is specified in R6 */
    323         if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
    324              !(env->CP0_Status & (1 << CP0St_SX))) ||
    325             (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
    326              !(env->CP0_Status & (1 << CP0St_KX)))) {
    327             env->hflags |= MIPS_HFLAG_AWRAP;
    328         }
    329     }
    330 #endif
    331     if (((env->CP0_Status & (1 << CP0St_CU0)) &&
    332          !(env->insn_flags & ISA_MIPS_R6)) ||
    333         !(env->hflags & MIPS_HFLAG_KSU)) {
    334         env->hflags |= MIPS_HFLAG_CP0;
    335     }
    336     if (env->CP0_Status & (1 << CP0St_CU1)) {
    337         env->hflags |= MIPS_HFLAG_FPU;
    338     }
    339     if (env->CP0_Status & (1 << CP0St_FR)) {
    340         env->hflags |= MIPS_HFLAG_F64;
    341     }
    342     if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
    343         (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
    344         env->hflags |= MIPS_HFLAG_SBRI;
    345     }
    346     if (env->insn_flags & ASE_DSP_R3) {
    347         /*
    348          * Our cpu supports DSP R3 ASE, so enable
    349          * access to DSP R3 resources.
    350          */
    351         if (env->CP0_Status & (1 << CP0St_MX)) {
    352             env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
    353                            MIPS_HFLAG_DSP_R3;
    354         }
    355     } else if (env->insn_flags & ASE_DSP_R2) {
    356         /*
    357          * Our cpu supports DSP R2 ASE, so enable
    358          * access to DSP R2 resources.
    359          */
    360         if (env->CP0_Status & (1 << CP0St_MX)) {
    361             env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
    362         }
    363 
    364     } else if (env->insn_flags & ASE_DSP) {
    365         /*
    366          * Our cpu supports DSP ASE, so enable
    367          * access to DSP resources.
    368          */
    369         if (env->CP0_Status & (1 << CP0St_MX)) {
    370             env->hflags |= MIPS_HFLAG_DSP;
    371         }
    372 
    373     }
    374     if (env->insn_flags & ISA_MIPS_R2) {
    375         if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
    376             env->hflags |= MIPS_HFLAG_COP1X;
    377         }
    378     } else if (env->insn_flags & ISA_MIPS_R1) {
    379         if (env->hflags & MIPS_HFLAG_64) {
    380             env->hflags |= MIPS_HFLAG_COP1X;
    381         }
    382     } else if (env->insn_flags & ISA_MIPS4) {
    383         /*
    384          * All supported MIPS IV CPUs use the XX (CU3) to enable
    385          * and disable the MIPS IV extensions to the MIPS III ISA.
    386          * Some other MIPS IV CPUs ignore the bit, so the check here
    387          * would be too restrictive for them.
    388          */
    389         if (env->CP0_Status & (1U << CP0St_CU3)) {
    390             env->hflags |= MIPS_HFLAG_COP1X;
    391         }
    392     }
    393     if (ase_msa_available(env)) {
    394         if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
    395             env->hflags |= MIPS_HFLAG_MSA;
    396         }
    397     }
    398     if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
    399         if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
    400             env->hflags |= MIPS_HFLAG_FRE;
    401         }
    402     }
    403     if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
    404         if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
    405             env->hflags |= MIPS_HFLAG_ELPA;
    406         }
    407     }
    408 }
    409 
    410 #endif