qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

smm_helper.c (13207B)


      1 /*
      2  *  x86 SMM helpers (sysemu-only)
      3  *
      4  *  Copyright (c) 2003 Fabrice Bellard
      5  *
      6  * This library is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU Lesser General Public
      8  * License as published by the Free Software Foundation; either
      9  * version 2.1 of the License, or (at your option) any later version.
     10  *
     11  * This library is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14  * Lesser General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU Lesser General Public
     17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18  */
     19 
     20 #include "qemu/osdep.h"
     21 #include "cpu.h"
     22 #include "exec/helper-proto.h"
     23 #include "exec/log.h"
     24 #include "tcg/helper-tcg.h"
     25 
     26 
     27 /* SMM support */
     28 
     29 #ifdef TARGET_X86_64
     30 #define SMM_REVISION_ID 0x00020064
     31 #else
     32 #define SMM_REVISION_ID 0x00020000
     33 #endif
     34 
     35 void do_smm_enter(X86CPU *cpu)
     36 {
     37     CPUX86State *env = &cpu->env;
     38     CPUState *cs = CPU(cpu);
     39     target_ulong sm_state;
     40     SegmentCache *dt;
     41     int i, offset;
     42 
     43     qemu_log_mask(CPU_LOG_INT, "SMM: enter\n");
     44     log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);
     45 
     46     env->msr_smi_count++;
     47     env->hflags |= HF_SMM_MASK;
     48     if (env->hflags2 & HF2_NMI_MASK) {
     49         env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
     50     } else {
     51         env->hflags2 |= HF2_NMI_MASK;
     52     }
     53 
     54     sm_state = env->smbase + 0x8000;
     55 
     56 #ifdef TARGET_X86_64
     57     for (i = 0; i < 6; i++) {
     58         dt = &env->segs[i];
     59         offset = 0x7e00 + i * 16;
     60         x86_stw_phys(cs, sm_state + offset, dt->selector);
     61         x86_stw_phys(cs, sm_state + offset + 2, (dt->flags >> 8) & 0xf0ff);
     62         x86_stl_phys(cs, sm_state + offset + 4, dt->limit);
     63         x86_stq_phys(cs, sm_state + offset + 8, dt->base);
     64     }
     65 
     66     x86_stq_phys(cs, sm_state + 0x7e68, env->gdt.base);
     67     x86_stl_phys(cs, sm_state + 0x7e64, env->gdt.limit);
     68 
     69     x86_stw_phys(cs, sm_state + 0x7e70, env->ldt.selector);
     70     x86_stq_phys(cs, sm_state + 0x7e78, env->ldt.base);
     71     x86_stl_phys(cs, sm_state + 0x7e74, env->ldt.limit);
     72     x86_stw_phys(cs, sm_state + 0x7e72, (env->ldt.flags >> 8) & 0xf0ff);
     73 
     74     x86_stq_phys(cs, sm_state + 0x7e88, env->idt.base);
     75     x86_stl_phys(cs, sm_state + 0x7e84, env->idt.limit);
     76 
     77     x86_stw_phys(cs, sm_state + 0x7e90, env->tr.selector);
     78     x86_stq_phys(cs, sm_state + 0x7e98, env->tr.base);
     79     x86_stl_phys(cs, sm_state + 0x7e94, env->tr.limit);
     80     x86_stw_phys(cs, sm_state + 0x7e92, (env->tr.flags >> 8) & 0xf0ff);
     81 
     82     /* ??? Vol 1, 16.5.6 Intel MPX and SMM says that IA32_BNDCFGS
     83        is saved at offset 7ED0.  Vol 3, 34.4.1.1, Table 32-2, has
     84        7EA0-7ED7 as "reserved".  What's this, and what's really
     85        supposed to happen?  */
     86     x86_stq_phys(cs, sm_state + 0x7ed0, env->efer);
     87 
     88     x86_stq_phys(cs, sm_state + 0x7ff8, env->regs[R_EAX]);
     89     x86_stq_phys(cs, sm_state + 0x7ff0, env->regs[R_ECX]);
     90     x86_stq_phys(cs, sm_state + 0x7fe8, env->regs[R_EDX]);
     91     x86_stq_phys(cs, sm_state + 0x7fe0, env->regs[R_EBX]);
     92     x86_stq_phys(cs, sm_state + 0x7fd8, env->regs[R_ESP]);
     93     x86_stq_phys(cs, sm_state + 0x7fd0, env->regs[R_EBP]);
     94     x86_stq_phys(cs, sm_state + 0x7fc8, env->regs[R_ESI]);
     95     x86_stq_phys(cs, sm_state + 0x7fc0, env->regs[R_EDI]);
     96     for (i = 8; i < 16; i++) {
     97         x86_stq_phys(cs, sm_state + 0x7ff8 - i * 8, env->regs[i]);
     98     }
     99     x86_stq_phys(cs, sm_state + 0x7f78, env->eip);
    100     x86_stl_phys(cs, sm_state + 0x7f70, cpu_compute_eflags(env));
    101     x86_stl_phys(cs, sm_state + 0x7f68, env->dr[6]);
    102     x86_stl_phys(cs, sm_state + 0x7f60, env->dr[7]);
    103 
    104     x86_stl_phys(cs, sm_state + 0x7f48, env->cr[4]);
    105     x86_stq_phys(cs, sm_state + 0x7f50, env->cr[3]);
    106     x86_stl_phys(cs, sm_state + 0x7f58, env->cr[0]);
    107 
    108     x86_stl_phys(cs, sm_state + 0x7efc, SMM_REVISION_ID);
    109     x86_stl_phys(cs, sm_state + 0x7f00, env->smbase);
    110 #else
    111     x86_stl_phys(cs, sm_state + 0x7ffc, env->cr[0]);
    112     x86_stl_phys(cs, sm_state + 0x7ff8, env->cr[3]);
    113     x86_stl_phys(cs, sm_state + 0x7ff4, cpu_compute_eflags(env));
    114     x86_stl_phys(cs, sm_state + 0x7ff0, env->eip);
    115     x86_stl_phys(cs, sm_state + 0x7fec, env->regs[R_EDI]);
    116     x86_stl_phys(cs, sm_state + 0x7fe8, env->regs[R_ESI]);
    117     x86_stl_phys(cs, sm_state + 0x7fe4, env->regs[R_EBP]);
    118     x86_stl_phys(cs, sm_state + 0x7fe0, env->regs[R_ESP]);
    119     x86_stl_phys(cs, sm_state + 0x7fdc, env->regs[R_EBX]);
    120     x86_stl_phys(cs, sm_state + 0x7fd8, env->regs[R_EDX]);
    121     x86_stl_phys(cs, sm_state + 0x7fd4, env->regs[R_ECX]);
    122     x86_stl_phys(cs, sm_state + 0x7fd0, env->regs[R_EAX]);
    123     x86_stl_phys(cs, sm_state + 0x7fcc, env->dr[6]);
    124     x86_stl_phys(cs, sm_state + 0x7fc8, env->dr[7]);
    125 
    126     x86_stl_phys(cs, sm_state + 0x7fc4, env->tr.selector);
    127     x86_stl_phys(cs, sm_state + 0x7f64, env->tr.base);
    128     x86_stl_phys(cs, sm_state + 0x7f60, env->tr.limit);
    129     x86_stl_phys(cs, sm_state + 0x7f5c, (env->tr.flags >> 8) & 0xf0ff);
    130 
    131     x86_stl_phys(cs, sm_state + 0x7fc0, env->ldt.selector);
    132     x86_stl_phys(cs, sm_state + 0x7f80, env->ldt.base);
    133     x86_stl_phys(cs, sm_state + 0x7f7c, env->ldt.limit);
    134     x86_stl_phys(cs, sm_state + 0x7f78, (env->ldt.flags >> 8) & 0xf0ff);
    135 
    136     x86_stl_phys(cs, sm_state + 0x7f74, env->gdt.base);
    137     x86_stl_phys(cs, sm_state + 0x7f70, env->gdt.limit);
    138 
    139     x86_stl_phys(cs, sm_state + 0x7f58, env->idt.base);
    140     x86_stl_phys(cs, sm_state + 0x7f54, env->idt.limit);
    141 
    142     for (i = 0; i < 6; i++) {
    143         dt = &env->segs[i];
    144         if (i < 3) {
    145             offset = 0x7f84 + i * 12;
    146         } else {
    147             offset = 0x7f2c + (i - 3) * 12;
    148         }
    149         x86_stl_phys(cs, sm_state + 0x7fa8 + i * 4, dt->selector);
    150         x86_stl_phys(cs, sm_state + offset + 8, dt->base);
    151         x86_stl_phys(cs, sm_state + offset + 4, dt->limit);
    152         x86_stl_phys(cs, sm_state + offset, (dt->flags >> 8) & 0xf0ff);
    153     }
    154     x86_stl_phys(cs, sm_state + 0x7f14, env->cr[4]);
    155 
    156     x86_stl_phys(cs, sm_state + 0x7efc, SMM_REVISION_ID);
    157     x86_stl_phys(cs, sm_state + 0x7ef8, env->smbase);
    158 #endif
    159     /* init SMM cpu state */
    160 
    161 #ifdef TARGET_X86_64
    162     cpu_load_efer(env, 0);
    163 #endif
    164     cpu_load_eflags(env, 0, ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C |
    165                               DF_MASK));
    166     env->eip = 0x00008000;
    167     cpu_x86_update_cr0(env,
    168                        env->cr[0] & ~(CR0_PE_MASK | CR0_EM_MASK | CR0_TS_MASK |
    169                                       CR0_PG_MASK));
    170     cpu_x86_update_cr4(env, 0);
    171     env->dr[7] = 0x00000400;
    172 
    173     cpu_x86_load_seg_cache(env, R_CS, (env->smbase >> 4) & 0xffff, env->smbase,
    174                            0xffffffff,
    175                            DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
    176                            DESC_G_MASK | DESC_A_MASK);
    177     cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffffffff,
    178                            DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
    179                            DESC_G_MASK | DESC_A_MASK);
    180     cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffffffff,
    181                            DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
    182                            DESC_G_MASK | DESC_A_MASK);
    183     cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffffffff,
    184                            DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
    185                            DESC_G_MASK | DESC_A_MASK);
    186     cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffffffff,
    187                            DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
    188                            DESC_G_MASK | DESC_A_MASK);
    189     cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffffffff,
    190                            DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
    191                            DESC_G_MASK | DESC_A_MASK);
    192 }
    193 
    194 void helper_rsm(CPUX86State *env)
    195 {
    196     X86CPU *cpu = env_archcpu(env);
    197     CPUState *cs = env_cpu(env);
    198     target_ulong sm_state;
    199     int i, offset;
    200     uint32_t val;
    201 
    202     sm_state = env->smbase + 0x8000;
    203 #ifdef TARGET_X86_64
    204     cpu_load_efer(env, x86_ldq_phys(cs, sm_state + 0x7ed0));
    205 
    206     env->gdt.base = x86_ldq_phys(cs, sm_state + 0x7e68);
    207     env->gdt.limit = x86_ldl_phys(cs, sm_state + 0x7e64);
    208 
    209     env->ldt.selector = x86_lduw_phys(cs, sm_state + 0x7e70);
    210     env->ldt.base = x86_ldq_phys(cs, sm_state + 0x7e78);
    211     env->ldt.limit = x86_ldl_phys(cs, sm_state + 0x7e74);
    212     env->ldt.flags = (x86_lduw_phys(cs, sm_state + 0x7e72) & 0xf0ff) << 8;
    213 
    214     env->idt.base = x86_ldq_phys(cs, sm_state + 0x7e88);
    215     env->idt.limit = x86_ldl_phys(cs, sm_state + 0x7e84);
    216 
    217     env->tr.selector = x86_lduw_phys(cs, sm_state + 0x7e90);
    218     env->tr.base = x86_ldq_phys(cs, sm_state + 0x7e98);
    219     env->tr.limit = x86_ldl_phys(cs, sm_state + 0x7e94);
    220     env->tr.flags = (x86_lduw_phys(cs, sm_state + 0x7e92) & 0xf0ff) << 8;
    221 
    222     env->regs[R_EAX] = x86_ldq_phys(cs, sm_state + 0x7ff8);
    223     env->regs[R_ECX] = x86_ldq_phys(cs, sm_state + 0x7ff0);
    224     env->regs[R_EDX] = x86_ldq_phys(cs, sm_state + 0x7fe8);
    225     env->regs[R_EBX] = x86_ldq_phys(cs, sm_state + 0x7fe0);
    226     env->regs[R_ESP] = x86_ldq_phys(cs, sm_state + 0x7fd8);
    227     env->regs[R_EBP] = x86_ldq_phys(cs, sm_state + 0x7fd0);
    228     env->regs[R_ESI] = x86_ldq_phys(cs, sm_state + 0x7fc8);
    229     env->regs[R_EDI] = x86_ldq_phys(cs, sm_state + 0x7fc0);
    230     for (i = 8; i < 16; i++) {
    231         env->regs[i] = x86_ldq_phys(cs, sm_state + 0x7ff8 - i * 8);
    232     }
    233     env->eip = x86_ldq_phys(cs, sm_state + 0x7f78);
    234     cpu_load_eflags(env, x86_ldl_phys(cs, sm_state + 0x7f70),
    235                     ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
    236     env->dr[6] = x86_ldl_phys(cs, sm_state + 0x7f68);
    237     env->dr[7] = x86_ldl_phys(cs, sm_state + 0x7f60);
    238 
    239     cpu_x86_update_cr4(env, x86_ldl_phys(cs, sm_state + 0x7f48));
    240     cpu_x86_update_cr3(env, x86_ldq_phys(cs, sm_state + 0x7f50));
    241     cpu_x86_update_cr0(env, x86_ldl_phys(cs, sm_state + 0x7f58));
    242 
    243     for (i = 0; i < 6; i++) {
    244         offset = 0x7e00 + i * 16;
    245         cpu_x86_load_seg_cache(env, i,
    246                                x86_lduw_phys(cs, sm_state + offset),
    247                                x86_ldq_phys(cs, sm_state + offset + 8),
    248                                x86_ldl_phys(cs, sm_state + offset + 4),
    249                                (x86_lduw_phys(cs, sm_state + offset + 2) &
    250                                 0xf0ff) << 8);
    251     }
    252 
    253     val = x86_ldl_phys(cs, sm_state + 0x7efc); /* revision ID */
    254     if (val & 0x20000) {
    255         env->smbase = x86_ldl_phys(cs, sm_state + 0x7f00);
    256     }
    257 #else
    258     cpu_x86_update_cr0(env, x86_ldl_phys(cs, sm_state + 0x7ffc));
    259     cpu_x86_update_cr3(env, x86_ldl_phys(cs, sm_state + 0x7ff8));
    260     cpu_load_eflags(env, x86_ldl_phys(cs, sm_state + 0x7ff4),
    261                     ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
    262     env->eip = x86_ldl_phys(cs, sm_state + 0x7ff0);
    263     env->regs[R_EDI] = x86_ldl_phys(cs, sm_state + 0x7fec);
    264     env->regs[R_ESI] = x86_ldl_phys(cs, sm_state + 0x7fe8);
    265     env->regs[R_EBP] = x86_ldl_phys(cs, sm_state + 0x7fe4);
    266     env->regs[R_ESP] = x86_ldl_phys(cs, sm_state + 0x7fe0);
    267     env->regs[R_EBX] = x86_ldl_phys(cs, sm_state + 0x7fdc);
    268     env->regs[R_EDX] = x86_ldl_phys(cs, sm_state + 0x7fd8);
    269     env->regs[R_ECX] = x86_ldl_phys(cs, sm_state + 0x7fd4);
    270     env->regs[R_EAX] = x86_ldl_phys(cs, sm_state + 0x7fd0);
    271     env->dr[6] = x86_ldl_phys(cs, sm_state + 0x7fcc);
    272     env->dr[7] = x86_ldl_phys(cs, sm_state + 0x7fc8);
    273 
    274     env->tr.selector = x86_ldl_phys(cs, sm_state + 0x7fc4) & 0xffff;
    275     env->tr.base = x86_ldl_phys(cs, sm_state + 0x7f64);
    276     env->tr.limit = x86_ldl_phys(cs, sm_state + 0x7f60);
    277     env->tr.flags = (x86_ldl_phys(cs, sm_state + 0x7f5c) & 0xf0ff) << 8;
    278 
    279     env->ldt.selector = x86_ldl_phys(cs, sm_state + 0x7fc0) & 0xffff;
    280     env->ldt.base = x86_ldl_phys(cs, sm_state + 0x7f80);
    281     env->ldt.limit = x86_ldl_phys(cs, sm_state + 0x7f7c);
    282     env->ldt.flags = (x86_ldl_phys(cs, sm_state + 0x7f78) & 0xf0ff) << 8;
    283 
    284     env->gdt.base = x86_ldl_phys(cs, sm_state + 0x7f74);
    285     env->gdt.limit = x86_ldl_phys(cs, sm_state + 0x7f70);
    286 
    287     env->idt.base = x86_ldl_phys(cs, sm_state + 0x7f58);
    288     env->idt.limit = x86_ldl_phys(cs, sm_state + 0x7f54);
    289 
    290     for (i = 0; i < 6; i++) {
    291         if (i < 3) {
    292             offset = 0x7f84 + i * 12;
    293         } else {
    294             offset = 0x7f2c + (i - 3) * 12;
    295         }
    296         cpu_x86_load_seg_cache(env, i,
    297                                x86_ldl_phys(cs,
    298                                         sm_state + 0x7fa8 + i * 4) & 0xffff,
    299                                x86_ldl_phys(cs, sm_state + offset + 8),
    300                                x86_ldl_phys(cs, sm_state + offset + 4),
    301                                (x86_ldl_phys(cs,
    302                                          sm_state + offset) & 0xf0ff) << 8);
    303     }
    304     cpu_x86_update_cr4(env, x86_ldl_phys(cs, sm_state + 0x7f14));
    305 
    306     val = x86_ldl_phys(cs, sm_state + 0x7efc); /* revision ID */
    307     if (val & 0x20000) {
    308         env->smbase = x86_ldl_phys(cs, sm_state + 0x7ef8);
    309     }
    310 #endif
    311     if ((env->hflags2 & HF2_SMM_INSIDE_NMI_MASK) == 0) {
    312         env->hflags2 &= ~HF2_NMI_MASK;
    313     }
    314     env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
    315     env->hflags &= ~HF_SMM_MASK;
    316 
    317     qemu_log_mask(CPU_LOG_INT, "SMM: after RSM\n");
    318     log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);
    319 }